1
|
Chen X, Abakumov S, Wranne MS, Goyvaerts V, Helmer Lauer M, Rubberecht J, Rohand T, Leen V, Westerlund F, Hofkens J. Sequence-Specific Minor Groove Binders in Labeling and Single-Molecule Analysis of DNA. J Am Chem Soc 2025; 147:384-396. [PMID: 39715062 DOI: 10.1021/jacs.4c11028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The ability to address specific sequences within DNA is of tremendous interest in biotechnology and biomedicine. Various technologies have been established over the past few decades, such as nicking enzymes and methyltransferase-directed sequence-specific labeling, transcription activator-like effector nucleases (TALENs), the CRISPR-Cas9 system, and polyamides of heterocycles as sequence-specific DNA minor groove binders. Pyrrole-imidazole polyamides have been reported to recognize predetermined DNA sequences, and some successful attempts have demonstrated their potential in regulating gene expression. However, few studies on single-molecule labeling and analysis of DNA have been explored, particularly at single-targeting sites. In this study, we rationally designed and synthesized a set of functional minor groove binders, varying in structures, sequence information addressed, and methods of dye introduction. Their potential for sequence-specific labeling and single-molecule DNA analysis was evaluated through chromatographic and on-surface optical assays. First results indicated that, while they yielded excellent imaging output, the labeling specificity of the hairpin polyamides for single-molecule use was hindered by single-mismatch sites. To address this issue, and in an unprecedented approach, we devised a competitive binding strategy that utilizes ethidium bromide as a nonspecific binder to competitively block the mismatches, significantly enhancing the labeling specificity. These findings provide valuable insights into the use of hairpin polyamides as sequence-programmable and enzyme-free DNA labelers in the field of sequence-specific DNA recognition and modification.
Collapse
Affiliation(s)
- Xiong Chen
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | | | - Moa Sandberg Wranne
- Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | | | | | | | - Taoufik Rohand
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohammed I, Nador 60700, Morocco
| | | | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| |
Collapse
|
2
|
Hirose Y, Sato S, Hashiya K, Bando T, Sugiyama H. Anticancer Activities of DNA-Alkylating Pyrrole-Imidazole Polyamide Analogs Targeting RUNX Transcription Factors against p53-Mutated Pancreatic Cancer PANC-1 Cells. J Med Chem 2023; 66:12059-12068. [PMID: 37606185 DOI: 10.1021/acs.jmedchem.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The runt-related transcription factor (RUNX) family is known to play important roles in the progression of cancer. Conjugate 1, which covalently binds to the RUNX-binding sequences, was reported to inhibit the binding of RUNX proteins to their target sites and suppress cancer growth. Here, we evaluated the anticancer effects of 1 and its analogs 2-4 against p53-mutated PANC-1 pancreatic cancer cells. We found that they possessed different DNA-alkylating properties in vitro. And conjugates 1-3 were shown to have anticancer effects by inducing apoptosis in PANC-1 cells. Furthermore, conjugates 2 and 3 suppressed cancer growth in PANC-1 xenograft mice, with activity equivalent to a 50-fold dose of gemcitabine. Especially, 3 showed the highest alkylation efficiency, specificity, and better anticancer effects against pancreatic cancer than 1 in vivo without significant body weight loss. Our results revealed the potential of our compounds as new candidates for cancer therapy.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Sun H, Zhou S, Liu Y, Lu P, Qi N, Wang G, Yang M, Huo D, Hou C. A fluorescent biosensor based on exponential amplification reaction-initiated CRISPR/Cas12a (EIC) strategy for ultrasensitive DNA methyltransferase detection. Anal Chim Acta 2023; 1239:340732. [PMID: 36628729 DOI: 10.1016/j.aca.2022.340732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
DNA methyltransferase (DNA MTase) catalyzes the process of DNA methylation, and the aberrant DNA MTase activity is closely associated with cancer incidence and progression. Inspired by the exponential amplification reaction (EXPAR) characteristics, we developed an EXPAR-initiated CRISPR/Cas12a (EIC) strategy for sensitively detecting DNA MTase activity. A hairpin probe (HP) was designed with a palindromic sequence in the stem as substrate and NH2-modified 3' end to prevent nonspecific amplification. HP could be methylated by DNA adenine methyltransferase (Dam MTase) and then digested by DpnI to generate an oligonucleotide that can serve as an EXPAR primer. With the assistance of Nt.BstNBI nicking enzyme and Vent(exo-) polymerase, this primer bound to template and induced EXPAR. Interestingly, the product of Cycle 1 in EXPAR can function as primer to initiate Cycle 2. Both EXPAR products can further activate the collateral cleavage of CRISPR/Cas12a-crRNA, resulting in the fragmentation of fluorescence reporters and fluorescence recovery. Due to the highly efficient amplification (about 5 times signal-to-noise of SDA) and the robust trans-cleavage of CRISPR/Cas12a, the EIC system owned an extreme limit of detection (LOD) of 2 × 10-4 U/mL and a broad detection range from 2 × 10-4 to 10 U/mL for Dam MTase. In addition, this method has succeeded in inhibitor screening and evaluation, showing magnificent promise in drug discovery and cancer therapy.
Collapse
Affiliation(s)
- Human Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Yin Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Peng Lu
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
4
|
Scott L, Chalikian TV. Stabilization of G-Quadruplex-Duplex Hybrid Structures Induced by Minor Groove-Binding Drugs. Life (Basel) 2022; 12:life12040597. [PMID: 35455088 PMCID: PMC9030760 DOI: 10.3390/life12040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Once it had been realized that G-quadruplexes exist in the cell and are involved in regulation of genomic processes, the quest for ligands recognizing these noncanonical structures was underway. Many organic compounds that tightly associate with G-quadruplexes have been identified. However, the specificity of G-quadruplex-binding ligands towards individual structures remains problematic, as the common recognition element of these ligands is the G-tetrad. In this paper, we focus on G-quadruplex-duplex hybrids (QDH) containing a hairpin duplex incorporated as a stem-loop into the G-quadruplex core. The presence of a stem-loop renders QDH amenable to sequence-specific recognition by duplex-binding drugs. Should the thermodynamic crosstalk between the stem-loop and the tetraplex core be sufficiently strong, the drug binding to the loop would lead to the stabilization of the entire structure. We studied the stabilizing influence of the minor groove-binders netropsin and Hoechst 33258 on a family of QDH structures, as well as a G-quadruplex and a hairpin modeling the G-quadruplex core and the stem-loop of the QDH’s. We found that the binding of either drug results in an enhancement of the thermal stability of all DNA structures, as expressed by increases in the melting temperature, TM. Analysis of the hierarchical order of increases in TM revealed that the drug-induced stabilization arises from drug binding to the G-quadruplex domain of a QDH and the stem-loop, if the latter contains an all-AT binding site. This result attests to the thermodynamic crosstalk between the stem-loop and the tetraplex core of a QDH. Given the existing library of minor groove-binding drugs recognizing mixed A·T and G·C DNA sequences, our results point to an untapped avenue for sequence-specific recognition of QDH structures in vitro and, possibly, in vivo; thereby, opening the way for selective stabilization of four-stranded DNA structures at predetermined genomic loci, with implications for the control of genomic events.
Collapse
|
5
|
Hirose Y, Ohno T, Asamitsu S, Hashiya K, Bando T, Sugiyama H. Strong and Specific Recognition of CAG/CTG Repeat DNA (5'-dWGCWGCW-3') by a Cyclic Pyrrole-Imidazole Polyamide. Chembiochem 2021; 23:e202100533. [PMID: 34796607 PMCID: PMC9298716 DOI: 10.1002/cbic.202100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Indexed: 11/30/2022]
Abstract
Abnormally expanded CAG/CTG repeat DNA sequences lead to a variety of neurological diseases, such as Huntington's disease. Here, we synthesized a cyclic pyrrole‐imidazole polyamide (cPIP), which can bind to the minor groove of the CAG/CTG DNA sequence. The double‐stranded DNA melting temperature (Tm) and surface plasmon resonance assays revealed the high binding affinity of the cPIP. In addition, next‐generation sequencing showed that the cPIP had high specificity for its target DNA sequence.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tomo Ohno
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Present address: Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, countryPart/>Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Corvaglia V, Ait Mohamed Amar I, Garambois V, Letast S, Garcin A, Gongora C, Del Rio M, Denevault-Sabourin C, Joubert N, Huc I, Pourquier P. Internalization of Foldamer-Based DNA Mimics through a Site-Specific Antibody Conjugate to Target HER2-Positive Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14070624. [PMID: 34203395 PMCID: PMC8308903 DOI: 10.3390/ph14070624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of protein-DNA interactions represents an attractive strategy to modulate essential cellular functions. We reported the synthesis of unique oligoamide-based foldamers that adopt single helical conformations and mimic the negatively charged phosphate moieties of B-DNA. These mimics alter the activity of DNA interacting enzymes used as targets for cancer treatment, such as DNA topoisomerase I, and they are cytotoxic only in the presence of a transfection agent. The aim of our study was to improve internalization and selective delivery of these highly charged molecules to cancer cells. For this purpose, we synthesized an antibody-drug conjugate (ADC) using a DNA mimic as a payload to specifically target cancer cells overexpressing HER2. We report the bioconjugation of a 16-mer DNA mimic with trastuzumab and its functional validation in breast and ovarian cancer cells expressing various levels of HER2. Binding of the ADC to HER2 increased with the expression of the receptor. The ADC was internalized into cells and was more efficient than trastuzumab at inhibiting their growth in vitro. These results provide proof of concept that it is possible to site-specifically graft high molecular weight payloads such as DNA mimics onto monoclonal antibodies to improve their selective internalization and delivery in cancer cells.
Collapse
Affiliation(s)
- Valentina Corvaglia
- Center for Integrated Protein Science, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (V.C.); (I.H.)
| | - Imène Ait Mohamed Amar
- GICC EA7501, Equipe IMT, Université de Tours, 10 Boulevard Tonnellé, F-37032 Tours, France; (I.A.M.A.); (S.L.); (C.D.-S.); (N.J.)
| | - Véronique Garambois
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, F-34298 Montpellier, France; (V.G.); (A.G.); (C.G.); (M.D.R.)
| | - Stéphanie Letast
- GICC EA7501, Equipe IMT, Université de Tours, 10 Boulevard Tonnellé, F-37032 Tours, France; (I.A.M.A.); (S.L.); (C.D.-S.); (N.J.)
| | - Aurélie Garcin
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, F-34298 Montpellier, France; (V.G.); (A.G.); (C.G.); (M.D.R.)
| | - Céline Gongora
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, F-34298 Montpellier, France; (V.G.); (A.G.); (C.G.); (M.D.R.)
| | - Maguy Del Rio
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, F-34298 Montpellier, France; (V.G.); (A.G.); (C.G.); (M.D.R.)
| | - Caroline Denevault-Sabourin
- GICC EA7501, Equipe IMT, Université de Tours, 10 Boulevard Tonnellé, F-37032 Tours, France; (I.A.M.A.); (S.L.); (C.D.-S.); (N.J.)
| | - Nicolas Joubert
- GICC EA7501, Equipe IMT, Université de Tours, 10 Boulevard Tonnellé, F-37032 Tours, France; (I.A.M.A.); (S.L.); (C.D.-S.); (N.J.)
| | - Ivan Huc
- Center for Integrated Protein Science, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (V.C.); (I.H.)
| | - Philippe Pourquier
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, F-34298 Montpellier, France; (V.G.); (A.G.); (C.G.); (M.D.R.)
- Correspondence: ; Tel.: +33-467-613-765; Fax: +33-467-613-787
| |
Collapse
|
7
|
Abe K, Hirose Y, Eki H, Takeda K, Bando T, Endo M, Sugiyama H. X-ray Crystal Structure of a Cyclic-PIP-DNA Complex in the Reverse-Binding Orientation. J Am Chem Soc 2020; 142:10544-10549. [PMID: 32401492 DOI: 10.1021/jacs.0c03972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elucidation of the details of the associating mode is one of the major concerns for the precise design of DNA-binding molecules that are used for gene regulation. Pyrrole-imidazole polyamide (PIP) is a well-established synthetic DNA-binding molecule that has sequence-specificity for duplex DNA. By the design of the sequence of pyrrole, imidazole, and other synthetic units, PIP is bound to the target DNA sequence selectively. Here, we report the X-ray crystal structure of newly synthesized chiral cyclic PIP (cPIP) complexed with DNA at 1.5 Å resolution and reveal that cPIP binds in the reverse orientation in the DNA minor groove. Analysis of the crystal structure revealed that the positions of the hydrogen bonds between the bases and the pyrrole-imidazole moieties of cPIP were similar for both forward- and reverse-binding orientations and that the distortion of the B-form DNA structure caused by cPIP binding was also similar for both orientations. We further found that new hydrogen bonds formed between the amino groups on the γ-turn units and DNA at both ends of the cPIP molecule. Additionally, by comparing the reverse PIP orientation with the forward orientation, we could clarify that the cause of the preference toward the reverse orientation in the S-form cPIP as used in this study is the overall conformation of the cPIP-DNA complex, particularly the configuration of hydrogen bonds. These results thus provide an explanation for the different stereoselectivity of cPIP binding in the minor groove.
Collapse
Affiliation(s)
- Katsuhiko Abe
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruhiko Eki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Science, Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Science, Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Bando T, Sugiyama H. Epigenetic Drug Discovery by Artificial Genetic Switches. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science Kyoto University
| |
Collapse
|
9
|
The Road Not Taken with Pyrrole-Imidazole Polyamides: Off-Target Effects and Genomic Binding. Biomolecules 2020; 10:biom10040544. [PMID: 32260120 PMCID: PMC7226143 DOI: 10.3390/biom10040544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
The high sequence specificity of minor groove-binding N-methylpyrrole-N-methylimidazole polyamides have made significant advances in cancer and disease biology, yet there have been few comprehensive reports on their off-target effects, most likely as a consequence of the lack of available tools in evaluating genomic binding, an essential aspect that has gone seriously underexplored. Compared to other N-heterocycles, the off-target effects of these polyamides and their specificity for the DNA minor groove and primary base pair recognition require the development of new analytical methods, which are missing in the field today. This review aims to highlight the current progress in deciphering the off-target effects of these N-heterocyclic molecules and suggests new ways that next-generating sequencing can be used in addressing off-target effects.
Collapse
|
10
|
Surin M, Ulrich S. From Interaction to Function in DNA-Templated Supramolecular Self-Assemblies. ChemistryOpen 2020; 9:480-498. [PMID: 32328404 PMCID: PMC7175023 DOI: 10.1002/open.202000013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
DNA-templated self-assembly represents a rich and growing subset of supramolecular chemistry where functional self-assemblies are programmed in a versatile manner using nucleic acids as readily-available and readily-tunable templates. In this review, we summarize the different DNA recognition modes and the basic supramolecular interactions at play in this context. We discuss the recent results that report the DNA-templated self-assembly of small molecules into complex yet precise nanoarrays, going from 1D to 3D architectures. Finally, we show their emerging functions as photonic/electronic nanowires, sensors, gene delivery vectors, and supramolecular catalysts, and their growing applications in a wide range of area from materials to biological sciences.
Collapse
Affiliation(s)
- Mathieu Surin
- Laboratory for Chemistry of Novel MaterialsCenter of Innovation and Research in Materials and Polymers (CIRMAP)University of Mons-UMONS7000MonsBelgium
| | | |
Collapse
|
11
|
Bando T, Sugiyama H. Sequence-Specific PI Polyamides Make It Possible to Regulate DNA Structure and Function. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Corvaglia V, Carbajo D, Prabhakaran P, Ziach K, Mandal PK, Santos VD, Legeay C, Vogel R, Parissi V, Pourquier P, Huc I. Carboxylate-functionalized foldamer inhibitors of HIV-1 integrase and Topoisomerase 1: artificial analogues of DNA mimic proteins. Nucleic Acids Res 2019; 47:5511-5521. [PMID: 31073604 PMCID: PMC6582331 DOI: 10.1093/nar/gkz352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inspired by DNA mimic proteins, we have introduced aromatic foldamers bearing phosphonate groups as synthetic mimics of the charge surface of B-DNA and competitive inhibitors of some therapeutically relevant DNA-binding enzymes: the human DNA Topoisomerase 1 (Top1) and the human HIV-1 integrase (HIV-1 IN). We now report on variants of these anionic foldamers bearing carboxylates instead of phosphonates. Several new monomers have been synthesized with protecting groups suitable for solid phase synthesis (SPS). Six hexadecaamides have been prepared using SPS. Proof of their resemblance to B-DNA was brought by the first crystal structure of one of these DNA-mimic foldamers in its polyanionic form. While some of the foldamers were found to be as active as, or even more active than, the original phosphonate oligomers, others had no activity at all or could even stimulate enzyme activity in vitro. Some foldamers were found to have differential inhibitory effects on the two enzymes. These results demonstrate a strong dependence of inhibitory activity on foldamer structure and charge distribution. They open broad avenues for the development of new classes of derivatives that could inhibit the interaction of specific proteins with their DNA target thereby influencing the cellular pathways in which they are involved.
Collapse
Affiliation(s)
- Valentina Corvaglia
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Daniel Carbajo
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Panchami Prabhakaran
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Krzysztof Ziach
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Pradeep Kumar Mandal
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | | | - Carole Legeay
- Sanofi recherche & développement, Montpellier 34184, France
| | - Rachel Vogel
- Sanofi recherche & développement, Montpellier 34184, France
| | - Vincent Parissi
- Université de Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (UMR 5234), Bordeaux 33146, France
| | - Philippe Pourquier
- INSERM U1194, Institut de Recherche en Cancérologie de Montpellier & Université de Montpellier, Montpellier 34298, France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| |
Collapse
|
13
|
Hirose Y, Asamitsu S, Bando T, Sugiyama H. Control of Forward/Reverse Orientation Preference of Cyclic Pyrrole-Imidazole Polyamides. J Am Chem Soc 2019; 141:13165-13170. [PMID: 31398026 DOI: 10.1021/jacs.9b05516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pyrrole-imidazole polyamides (PIPs) bind to predetermined double-stranded DNA sequences and selectively target a large variety of DNA sequences. Although the forward-binding (5'-3'/N-C) orientation, in which the N-terminus of PIPs faces the 5'-terminus of DNAs, is considered to be the main binding manner of PIPs, a reverse-binding (5'-3'/C-N) orientation, in which the C-terminus of PIPs faces the 3'-terminus of DNAs, sometimes causes unintended binding. Here, we synthesized optical or structural isomers of previously reported cyclic PIPs (cPIPs), which differ in the position of the amino groups in the γ-turn units, and we investigated their binding affinities both in the forward- and reverse-binding orientation. We show that cPIPs with (R)-α-amino-γ-turn units prefer the forward orientation as do hairpin PIPs. More importantly, we document for the first time the remarkable reverse-binding preference of cPIPs with (S)-α-amino-γ-turns. These results indicate that the orientation preference of cPIPs can be controlled by the position of the amino groups on the γ-turn units, which may markedly increase the number of DNA sequences that can be targeted by PIPs.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan
| | - Sefan Asamitsu
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan.,Institute for Integrated Cell-Material Science (WPI-iCeMS) , Kyoto University , Sakyo , Kyoto 606-8501 , Japan
| |
Collapse
|
14
|
Sato S, Asamitsu S, Bando T, Sugiyama H. Orientation preferences of hairpin pyrrole-imidazole polyamides toward mCGG site. Bioorg Med Chem 2019; 27:2167-2171. [PMID: 31000407 DOI: 10.1016/j.bmc.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022]
Abstract
Hairpin pyrrole-imidazole (Py-Im) polyamides are promising medium-sized molecules that bind sequence-specifically to the minor groove of B-form DNA. Here, we synthesized a series of hairpin Py-Im polyamides and explored their binding affinities and orientation preferences to methylated DNA with the mCGG target sequence. Thermal denaturation assays revealed that the five hairpin Py-Im polyamides, which were anticipated to recognize mCGG in a forward orientation, bind to nontarget DNA, GGmC, in a reverse orientation. Therefore, we designed five Py-Im polyamides that could recognize mCGG in a reverse orientation. We found that the two Py-Im polyamides containing Im/β pairs preferentially bound to mCGG in a reverse orientation. The reverse binding Py-Im polyamide successfully inhibited TET1 binding on the methylated DNA. Taken together, this study illustrated the importance of designing reverse binding Py-Im polyamides for the target sequence, mCGG, which paved the way for Py-Im polyamides that can be used with otherwise difficult to access DNA with CG sequences.
Collapse
Affiliation(s)
- Shinsuke Sato
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Sefan Asamitsu
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Materials Science (WPI-iCeMS), Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
15
|
Xia Y, Wu L, Hu Y, He Y, Cao Z, Zhu X, Yi X, Wang J. Sensitive surface plasmon resonance detection of methyltransferase activity and screening of its inhibitors amplified by p53 protein bound to methylation-specific ds-DNA consensus sites. Biosens Bioelectron 2019; 126:269-274. [DOI: 10.1016/j.bios.2018.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 01/31/2023]
|
16
|
Alagarswamy K, Shinohara KI, Takayanagi S, Fukuyo M, Okabe A, Rahmutulla B, Yoda N, Qin R, Shiga N, Sugiura M, Sato H, Kita K, Suzuki T, Nemoto T, Kaneda A. Region-specific alteration of histone modification by LSD1 inhibitor conjugated with pyrrole-imidazole polyamide. Oncotarget 2018; 9:29316-29335. [PMID: 30034620 PMCID: PMC6047668 DOI: 10.18632/oncotarget.25451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/07/2018] [Indexed: 12/26/2022] Open
Abstract
Epigenome regulates gene expression to determine cell fate, and accumulation of epigenomic aberrations leads to diseases, including cancer. NCD38 inhibits lysine-specific demethylase-1 (LSD1), a histone demethylase targeting H3K4me1 and H3K4me2, but not H3K4me3. In this study, we conjugated NCD38 with a potent small molecule called pyrrole (Py) imidazole (Im) polyamide, to analyze whether targets of the inhibitor could be regulated in a sequence-specific manner. We synthesized two conjugates using β-Ala (β) as a linker, i.e., NCD38-β-β-Py-Py-Py-Py (NCD38-β2P4) recognizing WWWWWW sequence, and NCD38-β-β-Py-Im-Py-Py (NCD38-β2PIPP) recognizing WWCGWW sequence. When RKO cells were treated with NCD38, H3K4me2 levels increased in 103 regions with significant activation of nearby genes (P = 0.03), whereas H3K4me3 levels were not obviously increased. H3K27ac levels were also increased in 458 regions with significant activation of nearby genes (P = 3 × 10-10), and these activated regions frequently included GC-rich sequences, but less frequently included AT-rich sequences (P < 1 × 10-15) or WWCGWW sequences (P = 2 × 10-13). When treated with NCD38-β2P4, 234 regions showed increased H3K27ac levels with significant activation of nearby genes (P = 2 × 10-11), including significantly fewer GC-rich sequences (P < 1 × 10-15) and significantly more AT-rich sequences (P < 1 × 10-15) compared with NCD38 treatment. When treated with NCD38-β2PIPP, 82 regions showed increased H3K27ac levels, including significantly fewer GC-rich sequences (P = 1 × 10-11) and fewer AT-rich sequences (P = 0.005), but significantly more WWCGWW sequences (P = 0.0001) compared with NCD38 treatment. These indicated that target regions of epigenomic inhibitors could be modified in a sequence-specific manner and that conjugation of Py-Im polyamides may be useful for this purpose.
Collapse
Affiliation(s)
| | - Ken-Ichi Shinohara
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Shihori Takayanagi
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Natsumi Yoda
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Rui Qin
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Naoki Shiga
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masahiro Sugiura
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Sato
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Kazuko Kita
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Takayoshi Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuhiro Nemoto
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
17
|
Gumpper RH, Li W, Castañeda CH, Scuderi MJ, Bashkin JK, Luo M. A Polyamide Inhibits Replication of Vesicular Stomatitis Virus by Targeting RNA in the Nucleocapsid. J Virol 2018; 92:e00146-18. [PMID: 29437970 PMCID: PMC5874401 DOI: 10.1128/jvi.00146-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022] Open
Abstract
Polyamides have been shown to bind double-stranded DNA by complementing the curvature of the minor groove and forming various hydrogen bonds with DNA. Several polyamide molecules have been found to have potent antiviral activities against papillomavirus, a double-stranded DNA virus. By analogy, we reason that polyamides may also interact with the structured RNA bound in the nucleocapsid of a negative-strand RNA virus. Vesicular stomatitis virus (VSV) was selected as a prototype virus to test this possibility since its genomic RNA encapsidated in the nucleocapsid forms a structure resembling one strand of an A-form RNA duplex. One polyamide molecule, UMSL1011, was found to inhibit infection of VSV. To confirm that the polyamide targeted the nucleocapsid, a nucleocapsid-like particle (NLP) was incubated with UMSL1011. The encapsidated RNA in the polyamide-treated NLP was protected from thermo-release and digestion by RNase A. UMSL1011 also inhibits viral RNA synthesis in the intracellular activity assay for the viral RNA-dependent RNA polymerase. The crystal structure revealed that UMSL1011 binds the structured RNA in the nucleocapsid. The conclusion of our studies is that the RNA in the nucleocapsid is a viable antiviral target of polyamides. Since the RNA structure in the nucleocapsid is similar in all negative-strand RNA viruses, polyamides may be optimized to target the specific RNA genome of a negative-strand RNA virus, such as respiratory syncytial virus and Ebola virus.IMPORTANCE Negative-strand RNA viruses (NSVs) include several life-threatening pathogens, such as rabies virus, respiratory syncytial virus, and Ebola virus. There are no effective antiviral drugs against these viruses. Polyamides offer an exceptional opportunity because they may be optimized to target each NSV. Our studies on vesicular stomatitis virus, an NSV, demonstrated that a polyamide molecule could specifically target the viral RNA in the nucleocapsid and inhibit viral growth. The target specificity of the polyamide molecule was proved by its inhibition of thermo-release and RNA nuclease digestion of the RNA bound in a model nucleocapsid, and a crystal structure of the polyamide inside the nucleocapsid. This encouraging observation provided the proof-of-concept rationale for designing polyamides as antiviral drugs against NSVs.
Collapse
Affiliation(s)
- Ryan H Gumpper
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
- Molecular Basis of Disease, Georgia State University, Atlanta, Georgia, USA
| | - Weike Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Carlos H Castañeda
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - M José Scuderi
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - James K Bashkin
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
A simple and universal electrochemical assay for sensitive detection of DNA methylation, methyltransferase activity and screening of inhibitors. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Basak S, Léon JC, Ferranco A, Sharma R, Hebenbrock M, Lough A, Müller J, Kraatz HB. AgI
-Induced Switching of DNA Binding Modes via Formation of a Supramolecular Metallacycle. Chemistry 2018; 24:3729-3732. [DOI: 10.1002/chem.201800440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Shibaji Basak
- Department of Physical and Environmental Sciences; University of Toronto; Scarborough 1265 Military Trail Toronto Ontario M1C 1A4 Canada
| | - J. Christian Léon
- Institut für Anorganische und Analytische Chemie; Westfälische Wilhelms-Universität Münster; Corrensstraße 28/30 48149 Münster Germany
| | - Annaleizle Ferranco
- Department of Physical and Environmental Sciences; University of Toronto; Scarborough 1265 Military Trail Toronto Ontario M1C 1A4 Canada
| | - Renu Sharma
- Department of Physical and Environmental Sciences; University of Toronto; Scarborough 1265 Military Trail Toronto Ontario M1C 1A4 Canada
| | - Marian Hebenbrock
- Institut für Anorganische und Analytische Chemie; Westfälische Wilhelms-Universität Münster; Corrensstraße 28/30 48149 Münster Germany
| | - Alan Lough
- Department of Chemistry; University of Toronto; 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie; Westfälische Wilhelms-Universität Münster; Corrensstraße 28/30 48149 Münster Germany
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences; University of Toronto; Scarborough 1265 Military Trail Toronto Ontario M1C 1A4 Canada
- Department of Chemistry; University of Toronto; 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
20
|
Kawamoto Y, Bando T, Sugiyama H. Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications. Bioorg Med Chem 2018; 26:1393-1411. [PMID: 29439914 DOI: 10.1016/j.bmc.2018.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/25/2022]
Abstract
Pyrrole-imidazole polyamides (Py-Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py-Im polyamides.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
21
|
Raiber EA, Hardisty R, van Delft P, Balasubramanian S. Mapping and elucidating the function of modified bases in DNA. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0069] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Synthesis of pyrrole-imidazole polyamide oligomers based on a copper-catalyzed cross-coupling strategy. Bioorg Med Chem Lett 2017; 27:2197-2200. [PMID: 28389153 DOI: 10.1016/j.bmcl.2017.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Pyrrole-imidazole (Py-Im) polyamides are useful tools for chemical biology and medicinal chemistry studies due to their unique binding properties to the minor groove of DNA. We developed a novel method of synthesizing Py-Im polyamide oligomers based on a Cu-catalyzed cross-coupling strategy. All four patterns of dimer fragments could be synthesized using a Cu-catalyzed Ullmann-type cross-coupling with easily prepared monomer units. Moreover, we demonstrated that pyrrole dimer, trimer, and tetramer building blocks for Py-Im polyamide synthesis were accessible by combining site selective iodination of the pyrrole/pyrrole coupling adduct.
Collapse
|
23
|
Aranda J, Attana F, Tuñón I. Molecular Mechanism of Inhibition of DNA Methylation by Zebularine. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Juan Aranda
- Departamento Química
Física, Universitat de València, 46100 Burjassot, Spain
| | - Fedaa Attana
- Departamento Química
Física, Universitat de València, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departamento Química
Física, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
24
|
Abstract
Sorting of single-wall carbon nanotubes by their electronic and atomic structures in liquid phases is reviewed in this chapter. We first introduce the sorting problem, and then provide an overview of several sorting methodologies, following roughly the chronological order of their development over the past 15 years or so. Major methods discussed include ion-exchange chromatography, density-gradient ultracentrifugation, selective extraction in organic solvents, gel chromatography, and aqueous two-phase extraction. A main focus of the review is on the common mechanisms underlining all sorting processes. We propose that differences in solvation among different nanotube species are the ultimate driving force of sorting, and we corroborate this proposal by presenting analysis on how the differences are realized in electronic-structure-based sorting and atomic-structure-based sorting. In the end, we offer some suggestions on future directions that may grow out of carbon nanotube sorting. In particular, the prospect of expanding the function of DNA/carbon nanotube hybrid to control inter-particle interactions both inside and outside the nanotube is discussed.
Collapse
Affiliation(s)
- Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
25
|
Genomic targeting of epigenetic probes using a chemically tailored Cas9 system. Proc Natl Acad Sci U S A 2017; 114:681-686. [PMID: 28069948 DOI: 10.1073/pnas.1615723114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent advances in the field of programmable DNA-binding proteins have led to the development of facile methods for genomic localization of genetically encodable entities. Despite the extensive utility of these tools, locus-specific delivery of synthetic molecules remains limited by a lack of adequate technologies. Here we combine the flexibility of chemical synthesis with the specificity of a programmable DNA-binding protein by using protein trans-splicing to ligate synthetic elements to a nuclease-deficient Cas9 (dCas9) in vitro and subsequently deliver the dCas9 cargo to live cells. The versatility of this technology is demonstrated by delivering dCas9 fusions that include either the small-molecule bromodomain and extra-terminal family bromodomain inhibitor JQ1 or a peptide-based PRC1 chromodomain ligand, which are capable of recruiting endogenous copies of their cognate binding partners to targeted genomic binding sites. We expect that this technology will allow for the genomic localization of a wide array of small molecules and modified proteinaceous materials.
Collapse
|
26
|
Shinohara KI, Yoda N, Takane K, Watanabe T, Fukuyo M, Fujiwara K, Kita K, Nagase H, Nemoto T, Kaneda A. Inhibition of DNA Methylation at the MLH1 Promoter Region Using Pyrrole-Imidazole Polyamide. ACS OMEGA 2016; 1:1164-1172. [PMID: 30023504 PMCID: PMC6044701 DOI: 10.1021/acsomega.6b00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/28/2016] [Indexed: 05/17/2023]
Abstract
Aberrant DNA methylation causes major epigenetic changes and has been implicated in cancer following the inactivation of tumor suppressor genes by hypermethylation of promoter CpG islands. Although methylated DNA regions can be randomly demethylated by 5-azacytidine and 5-aza-2'-deoxycytidine, site-specific inhibition of DNA methylation, for example, in the promoter region of a specific gene, has yet to be technically achieved. Hairpin pyrrole (Py)-imidazole (Im) polyamides are small molecules that can be designed to recognize and bind to particular DNA sequences. In this study, we synthesized the hairpin polyamide MLH1_-16 (Py-Im-β-Im-Im-Py-γ-Im-Py-β-Im-Py-Py) to target a CpG site 16 bp upstream of the transcription start site of the human MLH1 gene. MLH1 is known to be frequently silenced by promoter hypermethylation, causing microsatellite instability and a hypermutation phenotype in cancer. We show that MLH1_-16 binds to the target site and that CpG methylation around the binding site is selectively inhibited in vitro. MLH1_non, which does not have a recognition site in the MLH1 promoter, neither binds to the sequence nor inhibits DNA methylation in the region. When MLH1_-16 was used to treat RKO human colorectal cancer cells in a remethylating system involving the MLH1 promoter under hypoxic conditions (1% O2), methylation of the MLH1 promoter was inhibited in the region surrounding the compound binding site. Silencing of the MLH1 expression was also inhibited. Promoter methylation and silencing of MLH1 were not inhibited when MLH1_non was added. These results indicate that Py-Im polyamides can act as sequence-specific antagonists of CpG methylation in living cells.
Collapse
Affiliation(s)
- Ken-ichi Shinohara
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- Institute
for Global and Prominent Research, Chiba
University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Natsumi Yoda
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kiyoko Takane
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takayoshi Watanabe
- Laboratory
of Cancer Genetics, Chiba Cancer Center
Research Institute, 666-2
Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Masaki Fukuyo
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kyoko Fujiwara
- Innovative
Therapy Research Group, Nihon University
Research Institute of Medical Science, Nihon University School of
Medicine, 30-1 Ooyaguchi-kami, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kazuko Kita
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroki Nagase
- Laboratory
of Cancer Genetics, Chiba Cancer Center
Research Institute, 666-2
Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Tetsuhiro Nemoto
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Kaneda
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- E-mail: . Phone: +81-43-226-2039. Fax: +81-43-226-2039 (A.K.)
| |
Collapse
|
27
|
Zhang H, Yang Y, Dong H, Cai C. A superstructure-based electrochemical assay for signal-amplified detection of DNA methyltransferase activity. Biosens Bioelectron 2016; 86:927-932. [DOI: 10.1016/j.bios.2016.07.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/11/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
|
28
|
Identification of Binding Targets of a Pyrrole-Imidazole Polyamide KR12 in the LS180 Colorectal Cancer Genome. PLoS One 2016; 11:e0165581. [PMID: 27798693 PMCID: PMC5087912 DOI: 10.1371/journal.pone.0165581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/16/2016] [Indexed: 01/06/2023] Open
Abstract
Pyrrole-imidazole polyamides are versatile DNA minor groove binders and attractive therapeutic options against oncological targets, especially upon functionalization with an alkylating agent such as seco-CBI. These molecules also provide an alternative for oncogenes deemed "undruggable" at the protein level, where the absence of solvent-accessible pockets or structural crevices prevent the formation of protein-inhibitor ligands; nevertheless, the genome-wide effect of pyrrole-imidazole polyamide binding remain largely unclear to-date. Here we propose a next-generation sequencing-based workflow combined with whole genome expression arrays to address such issue using a candidate anti-cancer alkylating agent, KR12, against codon 12 mutant KRAS. Biotinylating KR12 enables the means to identify its genome-wide effects in living cells and possible biological implications via a coupled workflow of enrichment-based sequencing and expression microarrays. The subsequent computational pathway and expression analyses allow the identification of its genomic binding sites, as well as a route to explore a polyamide's possible genome-wide effects. Among the 3,343 KR12 binding sites identified in the human LS180 colorectal cancer genome, the reduction of KR12-bound gene expressions was also observed. Additionally, the coupled microarray-sequencing analysis also revealed some insights about the effect of local chromatin structure on pyrrole-imidazole polyamide, which had not been fully understood to-date. A comparative analysis with KR12 in a different human colorectal cancer genome SW480 also showed agreeable agreements of KR12 binding affecting gene expressions. Combination of these analyses thus suggested the possibility of applying this approach to other pyrrole-imidazole polyamides to reveal further biological details about the effect of polyamide binding in a genome.
Collapse
|
29
|
Kawamoto Y, Sasaki A, Chandran A, Hashiya K, Ide S, Bando T, Maeshima K, Sugiyama H. Targeting 24 bp within Telomere Repeat Sequences with Tandem Tetramer Pyrrole–Imidazole Polyamide Probes. J Am Chem Soc 2016; 138:14100-14107. [DOI: 10.1021/jacs.6b09023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yusuke Kawamoto
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Asuka Sasaki
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Anandhakumar Chandran
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Satoru Ide
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Toshikazu Bando
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazuhiro Maeshima
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material
Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
30
|
A sequence-specific DNA binding small molecule triggers the release of immunogenic signals and phagocytosis in a model of B-cell lymphoma. Q Rev Biophys 2016; 48:453-64. [PMID: 26537405 PMCID: PMC4743504 DOI: 10.1017/s0033583515000104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Means to cause an immunogenic cell death could lead to significant insight into how cancer escapes immune control. In this study, we screened a library of five pyrrole–imidazole polyamides coding for different DNA sequences in a model of B-cell lymphoma for the upregulation of surface calreticulin, a pro-phagocytosis signal implicated in immunogenic cell death. We found that hairpin polyamide 1 triggers the release of the damage-associated molecular patterns calreticulin, ATP and HMGB1 in a slow necrotic-type cell death. Consistent with this signaling, we observed an increase in the rate of phagocytosis by macrophages after the cancer cells were exposed to polyamide 1. The DNA sequence preference of polyamide 1 is 5′-WGGGTW-3′ (where W = A/T), indicated by the pairing rules and confirmed by the Bind-n-Seq method. The close correspondence of this sequence with the telomere-repeat sequence suggests a potential mechanism of action through ligand binding at the telomere. This study reveals a chemical means to trigger an inflammatory necrotic cell death in cancer cells.
Collapse
|
31
|
Kashiwazaki G, Chandran A, Asamitsu S, Kawase T, Kawamoto Y, Sawatani Y, Hashiya K, Bando T, Sugiyama H. Comparative Analysis of DNA-Binding Selectivity of Hairpin and Cyclic Pyrrole-Imidazole Polyamides Based on Next-Generation Sequencing. Chembiochem 2016; 17:1752-8. [DOI: 10.1002/cbic.201600282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Gengo Kashiwazaki
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Anandhakumar Chandran
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Sefan Asamitsu
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Takashi Kawase
- Department of Systems Science; Graduate School of Informatics; Kyoto University; Yoshida-Honmachi 36-1 Sakyo Kyoto 606-8501 Japan
| | - Yusuke Kawamoto
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Yoshito Sawatani
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Kaori Hashiya
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Toshikazu Bando
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida-Ushinomiyacho Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
32
|
Sawatani Y, Kashiwazaki G, Chandran A, Asamitsu S, Guo C, Sato S, Hashiya K, Bando T, Sugiyama H. Sequence-specific DNA binding by long hairpin pyrrole-imidazole polyamides containing an 8-amino-3,6-dioxaoctanoic acid unit. Bioorg Med Chem 2016; 24:3603-11. [PMID: 27301681 DOI: 10.1016/j.bmc.2016.05.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
Abstract
With the aim of improving aqueous solubility, we designed and synthesized five N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides capable of recognizing 9-bp sequences. Their DNA-binding affinities and sequence specificities were evaluated by SPR and Bind-n-Seq analyses. The design of polyamide 1 was based on a conventional model, with three consecutive Py or Im rings separated by a β-alanine to match the curvature and twist of long DNA helices. Polyamides 2 and 3 contained an 8-amino-3,6-dioxaoctanoic acid (AO) unit, which has previously only been used as a linker within linear Py-Im polyamides or between Py-Im hairpin motifs for tandem hairpin. It is demonstrated herein that AO also functions as a linker element that can extend to 2-bp in hairpin motifs. Notably, although the AO-containing unit can fail to bind the expected sequence, polyamide 4, which has two AO units facing each other in a hairpin form, successfully showed the expected motif and a KD value of 16nM was recorded. Polyamide 5, containing a β-alanine-β-alanine unit instead of the AO of polyamide 2, was synthesized for comparison. The aqueous solubilities and nuclear localization of three of the polyamides were also examined. The results suggest the possibility of applying the AO unit in the core of Py-Im polyamide compounds.
Collapse
Affiliation(s)
- Yoshito Sawatani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Chuanxin Guo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo, Kyoto 606-8501, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
33
|
Harika NK, Paul A, Stroeva E, Chai Y, Boykin DW, Germann MW, Wilson WD. Imino proton NMR guides the reprogramming of A•T specific minor groove binders for mixed base pair recognition. Nucleic Acids Res 2016; 44:4519-27. [PMID: 27131382 PMCID: PMC4889958 DOI: 10.1093/nar/gkw353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/17/2016] [Indexed: 12/19/2022] Open
Abstract
Sequence-specific binding to DNA is crucial for targeting transcription factor-DNA complexes to modulate gene expression. The heterocyclic diamidine, DB2277, specifically recognizes a single G•C base pair in the minor groove of mixed base pair sequences of the type AAAGTTT. NMR spectroscopy reveals the presence of major and minor species of the bound compound. To understand the principles that determine the binding affinity and orientation in mixed sequences of DNA, over thirty DNA hairpin substrates were examined by NMR and thermal melting. The NMR exchange dynamics between major and minor species shows that the exchange is much faster than compound dissociation determined from biosensor–surface plasmon resonance. Extensive modifications of DNA sequences resulted in a unique DNA sequence with binding site AAGATA that binds DB2277 in a single orientation. A molecular docking result agrees with the model representing rapid flipping of DB2277 between major and minor species. Imino spectral analysis of a 15N-labeled central G clearly shows the crucial role of the exocyclic amino group of G in sequence-specific recognition. Our results suggest that this approach can be expanded to additional modules for recognition of more sequence-specific DNA complexes. This approach provides substantial information about the sequence-specific, highly efficient, dynamic nature of minor groove binding agents.
Collapse
Affiliation(s)
- Narinder K Harika
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ekaterina Stroeva
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Yun Chai
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| |
Collapse
|
34
|
Aranda J, Zinovjev K, Świderek K, Roca M, Tuñón I. Unraveling the Reaction Mechanism of Enzymatic C5-Cytosine Methylation of DNA. A Combined Molecular Dynamics and QM/MM Study of Wild Type and Gln119 Variant. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00394] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan Aranda
- Departament
de Quı́mica Fı́sica, Universitat de València, 46100 Burjassot, Spain
| | - Kirill Zinovjev
- Departament
de Quı́mica Fı́sica, Universitat de València, 46100 Burjassot, Spain
| | - Katarzyna Świderek
- Departament
de Quı́mica Fı́sica, Universitat de València, 46100 Burjassot, Spain
- Institute
of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Maite Roca
- Departament
de Quı́mica Fı́sica, Universitat de València, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departament
de Quı́mica Fı́sica, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
35
|
Chandran A, Syed J, Taylor RD, Kashiwazaki G, Sato S, Hashiya K, Bando T, Sugiyama H. Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing. Nucleic Acids Res 2016; 44:4014-24. [PMID: 27098039 PMCID: PMC4872120 DOI: 10.1093/nar/gkw283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 04/05/2016] [Indexed: 12/17/2022] Open
Abstract
Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2: showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing.
Collapse
Affiliation(s)
- Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Junetha Syed
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Rhys D Taylor
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Materials Science (iCeMS) Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan Institute for Integrated Cell-Materials Science (iCeMS) Kyoto University, Sakyo, Kyoto 606-8502, Japan CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
36
|
Kizaki S, Chandran A, Sugiyama H. Identification of Sequence Specificity of 5-Methylcytosine Oxidation by Tet1 Protein with High-Throughput Sequencing. Chembiochem 2016; 17:403-6. [PMID: 26715454 DOI: 10.1002/cbic.201500646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 12/23/2022]
Abstract
Tet (ten-eleven translocation) family proteins have the ability to oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC). However, the oxidation reaction of Tet is not understood completely. Evaluation of genomic-level epigenetic changes by Tet protein requires unbiased identification of the highly selective oxidation sites. In this study, we used high-throughput sequencing to investigate the sequence specificity of mC oxidation by Tet1. A 6.6×10(4) -member mC-containing random DNA-sequence library was constructed. The library was subjected to Tet-reactive pulldown followed by high-throughput sequencing. Analysis of the obtained sequence data identified the Tet1-reactive sequences. We identified mCpG as a highly reactive sequence of Tet1 protein.
Collapse
Affiliation(s)
- Seiichiro Kizaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan
| | - Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan. .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan.
| |
Collapse
|
37
|
Pauff SM, Fallows AJ, Mackay SP, Su W, Cullis PM, Burley GA. Pyrrole‐Imidazole Polyamides: Manual Solid‐Phase Synthesis. ACTA ACUST UNITED AC 2015; 63:8.10.1-8.10.41. [DOI: 10.1002/0471142700.nc0810s63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Steven M. Pauff
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow United Kingdom
| | - Andrew J. Fallows
- Department of Chemistry, University of Leicester Leicester United Kingdom
| | - Simon P. Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow United Kingdom
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong People's Republic of China
| | - Paul M. Cullis
- Department of Chemistry, University of Leicester Leicester United Kingdom
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow United Kingdom
| |
Collapse
|
38
|
Satam V, Babu B, Patil P, Brien KA, Olson K, Savagian M, Lee M, Mepham A, Jobe LB, Bingham JP, Pett L, Wang S, Ferrara M, Bruce CD, Wilson WD, Lee M, Hartley JA, Kiakos K. AzaHx, a novel fluorescent, DNA minor groove and G·C recognition element: Synthesis and DNA binding properties of a p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (azaHx-PI) polyamide. Bioorg Med Chem Lett 2015; 25:3681-5. [PMID: 26122210 DOI: 10.1016/j.bmcl.2015.06.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/30/2022]
Abstract
The design, synthesis, and DNA binding properties of azaHx-PI or p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (5) are described. AzaHx, 2-(p-anisyl)-4-aza-benzimidazole-5-carboxamide, is a novel, fluorescent DNA recognition element, derived from Hoechst 33258 to recognize G·C base pairs. Supported by theoretical data, the results from DNase I footprinting, CD, ΔT(M), and SPR studies provided evidence that an azaHx/IP pairing, formed from antiparallel stacking of two azaHx-PI molecules in a side-by-side manner in the minor groove, selectively recognized a C-G doublet. AzaHx-PI was found to target 5'-ACGCGT-3', the Mlu1 Cell Cycle Box (MCB) promoter sequence with specificity and significant affinity (K(eq) 4.0±0.2×10(7) M(-1)).
Collapse
Affiliation(s)
- Vijay Satam
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Balaji Babu
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Pravin Patil
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Kimberly A Brien
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Kevin Olson
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Mia Savagian
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Megan Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Andrew Mepham
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Laura Beth Jobe
- Department of Chemistry, Erskine College, Due West, SC 29639, United States
| | - John P Bingham
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| | - Luke Pett
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| | - Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Maddi Ferrara
- Department of Chemistry, John Carroll University, University Heights, OH 44118, United States
| | - Chrystal D Bruce
- Department of Chemistry, John Carroll University, University Heights, OH 44118, United States
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Moses Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States; Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States.
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| | - Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| |
Collapse
|
39
|
Taylor RD, Chandran A, Kashiwazaki G, Hashiya K, Bando T, Nagase H, Sugiyama H. Selective Targeting of the KRAS Codon 12 Mutation Sequence by Pyrrole-Imidazole Polyamideseco-CBI Conjugates. Chemistry 2015; 21:14996-5003. [DOI: 10.1002/chem.201501870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 12/16/2022]
|
40
|
Zhao J, Chandrasekaran AR, Li Q, Li X, Sha R, Seeman NC, Mao C. Post‐Assembly Stabilization of Rationally Designed DNA Crystals. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiemin Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| | | | - Qian Li
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| | - Xiang Li
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY 10003 (USA)
| | - Nadrian C. Seeman
- Department of Chemistry, New York University, New York, NY 10003 (USA)
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| |
Collapse
|
41
|
Zhao J, Chandrasekaran AR, Li Q, Li X, Sha R, Seeman NC, Mao C. Post‐Assembly Stabilization of Rationally Designed DNA Crystals. Angew Chem Int Ed Engl 2015; 54:9936-9. [PMID: 26136359 DOI: 10.1002/anie.201503610] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/05/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Jiemin Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| | | | - Qian Li
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| | - Xiang Li
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY 10003 (USA)
| | - Nadrian C. Seeman
- Department of Chemistry, New York University, New York, NY 10003 (USA)
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| |
Collapse
|
42
|
Syed J, Chandran A, Pandian GN, Taniguchi J, Sato S, Hashiya K, Kashiwazaki G, Bando T, Sugiyama H. A Synthetic Transcriptional Activator of Genes Associated with the Retina in Human Dermal Fibroblasts. Chembiochem 2015; 16:1497-501. [DOI: 10.1002/cbic.201500140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 01/30/2023]
|
43
|
Wang S, Aston K, Koeller KJ, Harris GD, Rath NP, Bashkin JK, Wilson WD. Modulation of DNA-polyamide interaction by β-alanine substitutions: a study of positional effects on binding affinity, kinetics and thermodynamics. Org Biomol Chem 2015; 12:7523-36. [PMID: 25141096 DOI: 10.1039/c4ob01456a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hairpin polyamides (PAs) are an important class of sequence-specific DNA minor groove binders, and frequently employ a flexible motif, β-alanine (β), to reduce the molecular rigidity to maintain the DNA recognition register. To better understand the diverse effects that β can have on DNA-PA binding affinity, selectivity, and especially kinetics, which have rarely been reported, we have initiated a detailed study for an eight-heterocyclic hairpin PA and its β derivatives with their cognate and mutant sequences. With these derivatives, all internal pyrroles of the parent PA are systematically substituted with single or double βs. A set of complementary experiments have been conducted to evaluate the molecular interactions in detail: UV-melting, biosensor-surface plasmon resonance, circular dichroism and isothermal titration calorimetry. The β substitutions generally weaken the binding affinities of these PAs with cognate DNA, and have large and diverse influences on PA binding kinetics in a position- and number-dependent manner. The DNA base mutations have also shown positional effects on the binding of a single PA. Besides the β substitutions, the monocationic Dp group [3-(dimethylamino)propylamine] in parent PA has been modified into a dicationic Ta group (3,3'-diamino-N-methyldipropylamine) to minimize the frequently observed PA aggregation with ITC experiments. The results clearly show that the Ta modification not only maintains the DNA binding mode and affinity of PA, but also significantly reduces PA aggregation and allows the complete thermodynamic signature of eight-ring hairpin PA to be determined for the first time. This combined set of results significantly extends our understanding of the energetic basis of specific DNA recognition by PAs.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Mariani A, Bartoli A, Atwal M, Lee KC, Austin CA, Rodriguez R. Differential Targeting of Human Topoisomerase II Isoforms with Small Molecules. J Med Chem 2015; 58:4851-6. [PMID: 25945730 DOI: 10.1021/acs.jmedchem.5b00473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The TOP2 poison etoposide has been implicated in the generation of secondary malignancies during cancer treatment. Structural similarities between TOP2 isoforms challenge the rational design of isoform-specific poisons to further delineate these processes. Herein, we describe the synthesis and biological evaluation of a focused library of etoposide analogues, with the identification of two novel small molecules exhibiting TOP2B-dependent toxicity. Our findings pave the way toward studying isoform-specific cellular processes by means of small molecule intervention.
Collapse
Affiliation(s)
- Angelica Mariani
- †Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Alexandra Bartoli
- †Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Mandeep Atwal
- ‡Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ka C Lee
- ‡Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Caroline A Austin
- ‡Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Raphaël Rodriguez
- †Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.,§Organic Synthesis and Cell Biology Group, Institut Curie Research Center, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
45
|
Mishra R, Watanabe T, Kimura MT, Koshikawa N, Ikeda M, Uekusa S, Kawashima H, Wang X, Igarashi J, Choudhury D, Grandori C, Kemp CJ, Ohira M, Verma NK, Kobayashi Y, Takeuchi J, Koshinaga T, Nemoto N, Fukuda N, Soma M, Kusafuka T, Fujiwara K, Nagase H. Identification of a novel E-box binding pyrrole-imidazole polyamide inhibiting MYC-driven cell proliferation. Cancer Sci 2015; 106:421-9. [PMID: 25611295 PMCID: PMC4406810 DOI: 10.1111/cas.12610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 12/23/2022] Open
Abstract
The MYC transcription factor plays a crucial role in the regulation of cell cycle progression, apoptosis, angiogenesis, and cellular transformation. Due to its oncogenic activities and overexpression in a majority of human cancers, it is an interesting target for novel drug therapies. MYC binding to the E-box (5'-CACGTGT-3') sequence at gene promoters contributes to more than 4000 MYC-dependent transcripts. Owing to its importance in MYC regulation, we designed a novel sequence-specific DNA-binding pyrrole-imidazole (PI) polyamide, Myc-5, that recognizes the E-box consensus sequence. Bioinformatics analysis revealed that the Myc-5 binding sequence appeared in 5'- MYC binding E-box sequences at the eIF4G1, CCND1, and CDK4 gene promoters. Furthermore, ChIP coupled with detection by quantitative PCR indicated that Myc-5 has the ability to inhibit MYC binding at the target gene promoters and thus cause downregulation at the mRNA level and protein expression of its target genes in human Burkitt's lymphoma model cell line, P493.6, carrying an inducible MYC repression system and the K562 (human chronic myelogenous leukemia) cell line. Single i.v. injection of Myc-5 at 7.5 mg/kg dose caused significant tumor growth inhibition in a MYC-dependent tumor xenograft model without evidence of toxicity. We report here a compelling rationale for the identification of a PI polyamide that inhibits a part of E-box-mediated MYC downstream gene expression and is a model for showing that phenotype-associated MYC downstream gene targets consequently inhibit MYC-dependent tumor growth.
Collapse
Affiliation(s)
- Rajeev Mishra
- Division of Cancer Genetics, Department of Advanced Medical Science, Nihon University Research Institute of Medical Science, Tokyo, Japan; Department of Medicine, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu S, Chen Q, Sheng Y, Shen J, Peng C, Liu H. Unraveling the forming mechanism of hierarchical helices via self-assembly of an achiral supramolecular polymer brush. Polym Chem 2015. [DOI: 10.1039/c5py00163c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a detailed structural transition of the hierarchical helix or superhelix of PVP–PDP from straightforward experimental evidence.
Collapse
Affiliation(s)
- Shanshan Liu
- State Key Laboratory of Chemical Engineering and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qibin Chen
- State Key Laboratory of Chemical Engineering and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yujie Sheng
- State Key Laboratory of Chemical Engineering and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jincheng Shen
- State Key Laboratory of Chemical Engineering and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Changjun Peng
- State Key Laboratory of Chemical Engineering and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
47
|
Erdmann A, Halby L, Fahy J, Arimondo PB. Targeting DNA Methylation with Small Molecules: What’s Next? J Med Chem 2014; 58:2569-83. [DOI: 10.1021/jm500843d] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alexandre Erdmann
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| | - Ludovic Halby
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| | - Jacques Fahy
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| | - Paola B Arimondo
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| |
Collapse
|
48
|
Anandhakumar C, Kizaki S, Bando T, Pandian GN, Sugiyama H. Advancing Small-Molecule-Based Chemical Biology with Next-Generation Sequencing Technologies. Chembiochem 2014; 16:20-38. [DOI: 10.1002/cbic.201402556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 12/24/2022]
|
49
|
Dršata T, Zgarbová M, Špačková N, Jurečka P, Šponer J, Lankaš F. Mechanical Model of DNA Allostery. J Phys Chem Lett 2014; 5:3831-3835. [PMID: 26278756 DOI: 10.1021/jz501826q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The importance of allosteric effects in DNA is becoming increasingly appreciated, but the underlying mechanisms remain poorly understood. In this work, we propose a general modeling framework to study DNA allostery. We describe DNA in a coarse-grained manner by intra-base pair and base pair step coordinates, complemented by groove widths. Quadratic deformation energy is assumed, yielding linear relations between the constraints and their effect. Model parameters are inferred from standard unrestrained, explicit-solvent molecular dynamics simulations of naked DNA. We applied the approach to study minor groove binding of diamidines and pyrrole-imidazole polyamides. The predicted DNA bending is in quantitative agreement with experiment and suggests that diamidine binding to the alternating TA sequence brings the DNA closer to the A-tract conformation, with potentially important functional consequences. The approach can be readily applied to other allosteric effects in DNA and generalized to model allostery in various molecular systems.
Collapse
Affiliation(s)
- Tomáš Dršata
- †Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- ‡Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University Prague, Albertov 6, 128 43 Prague, Czech Republic
| | - Marie Zgarbová
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Naďa Špačková
- ∥Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- ⊥Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Petr Jurečka
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- ∥Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- #CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Filip Lankaš
- †Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
50
|
Anandhakumar C, Li Y, Kizaki S, Pandian GN, Hashiya K, Bando T, Sugiyama H. Next-Generation Sequencing Studies Guide the Design of Pyrrole-Imidazole Polyamides with Improved Binding Specificity by the Addition of β-Alanine. Chembiochem 2014; 15:2647-51. [DOI: 10.1002/cbic.201402497] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Indexed: 01/01/2023]
|