1
|
Sanislav O, Tetaj R, Metali, Ratcliffe J, Phillips W, Klein AR, Sethi A, Zhou J, Mezzenga R, Saxer SS, Charnley M, Annesley SJ, Reynolds NP. Cell invasive amyloid assemblies from SARS-CoV-2 peptides can form multiple polymorphs with varying neurotoxicity. NANOSCALE 2024; 16:19814-19827. [PMID: 39363846 DOI: 10.1039/d4nr03030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The neurological symptoms of COVID-19, often referred to as neuro-COVID include neurological pain, memory loss, cognitive and sensory disruption. These neurological symptoms can persist for months and are known as Post-Acute Sequalae of COVID-19 (PASC). The molecular origins of neuro-COVID, and how it contributes to PASC are unknown, however a growing body of research highlights that the self-assembly of protein fragments from SARS-CoV-2 into amyloid nanofibrils may play a causative role. Previously, we identified two fragments from the SARS-CoV-2 proteins, Open Reading Frame (ORF) 6 and ORF10, that self-assemble into neurotoxic amyloid assemblies. Here we further our understanding of the self-assembly mechanisms and nano-architectures formed by these fragments and their biological responses. By solubilising the peptides in a fluorinated solvent, we eliminate insoluble aggregates in the starting materials (seeds) that change the polymorphic landscape of the assemblies. The resultant assemblies are dominated by structures with higher free energies (e.g. ribbons and amorphous aggregates) that are less toxic to cultured neurons but do affect their mitochondrial respiration. We also show the first direct evidence of cellular uptake of viral amyloids. This work highlights the importance of understanding the polymorphic behaviour of amyloids and the correlation to neurotoxicity, particularly in the context of neuro-COVID and PASC.
Collapse
Affiliation(s)
- Oana Sanislav
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Rina Tetaj
- Institute for Chemistry and Bioanalytics, School of Life Sciences, FHNW, Muttenz, 4132, Switzerland
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Metali
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Julian Ratcliffe
- Bio Imaging Platform, La Trobe University, Melbourne, Victoria 3086, Australia
| | - William Phillips
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Annaleise R Klein
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Ashish Sethi
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Jiangtao Zhou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
- Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Sina S Saxer
- Institute for Chemistry and Bioanalytics, School of Life Sciences, FHNW, Muttenz, 4132, Switzerland
| | - Mirren Charnley
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
| | - Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nicholas P Reynolds
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
2
|
Pei R, Tan J, Luo Y, Ye S. Close Packing in Trans Conformers Promotes the Formation of Supramolecular Structures with C 1 Symmetry. J Phys Chem Lett 2024; 15:8797-8803. [PMID: 39166774 DOI: 10.1021/acs.jpclett.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Assemblies with C1 symmetry exhibit important applications in many fields such as enantioselective catalysis. However, their formation is challenging due to their large entropic disadvantage, and molecular information on their formation dynamics is limited because of the lack of effective characterization techniques. Here, using achiral amphiphilic molecules such as N-oleoyl ethanolamide (OEA) and its analogues as modeling assembly units, we demonstrated that the sss polarization signals, generated by femtosecond sum frequency generation vibrational spectroscopy (SFG-VS), provide a powerful tool to monitor the formation dynamics of the C1 symmetric supramolecular structures at the interfaces. The trans conformation of the assembly units can provide strong π-π interactions and thus produce enough enthalpy to drive the formation of C1 symmetric supramolecular structures. However, the cis conformation impedes the assembly of C1 symmetric structures and cannot generate sss and chiral polarization SFG signals. These findings may aid in rationally constructing ordered and functional superstructures and understanding the mechanism of chirality formation.
Collapse
Affiliation(s)
- Ruoqi Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
3
|
Qi K, Qi H, Wang M, Ma X, Wang Y, Yao Q, Liu W, Zhao Y, Wang J, Wang Y, Qi W, Zhang J, Lu JR, Xu H. Chiral inversion induced by aromatic interactions in short peptide assembly. Nat Commun 2024; 15:6186. [PMID: 39043665 PMCID: PMC11266598 DOI: 10.1038/s41467-024-50448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Although hydrophobic interactions provide the main driving force for initial peptide aggregation, their role in regulating suprastructure handedness of higher-order architectures remains largely unknown. We here interrogate the effects of hydrophobic amino acids on handedness at various assembly stages of peptide amphiphiles. Our studies reveal that relative to aliphatic side chains, aromatic side chains set the twisting directions of single β-strands due to their strong steric repulsion to the backbone, and upon packing into multi-stranded β-sheets, the side-chain aromatic interactions between strands form the aromatic ladders with a directional preference. This ordering not only leads to parallel β-sheet arrangements but also induces the chiral flipping over of single β-strands within a β-sheet. In contrast, the lack of orientational hydrophobic interactions in the assembly of aliphatic peptides implies no chiral inversion upon packing into β-sheets. This study opens an avenue to harness peptide aggregates with targeted handedness via aromatic side-chain interactions.
Collapse
Affiliation(s)
- Kai Qi
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Hao Qi
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Muhan Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Xiaoyue Ma
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Yan Wang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Qiang Yao
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Wenliang Liu
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Jian R Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, United Kingdom.
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China.
| |
Collapse
|
4
|
Bellotto O, Scarel E, Pierri G, Rozhin P, Kralj S, Polentarutti M, Bandiera A, Rossi B, Vargiu AV, Tedesco C, Marchesan S. Supramolecular Hydrogels and Water Channels of Differing Diameters from Dipeptide Isomers. Biomacromolecules 2024; 25:2476-2485. [PMID: 38551400 DOI: 10.1021/acs.biomac.3c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Dipeptides stereoisomers and regioisomers composed of norleucine (Nle) and phenylalanine (Phe) self-assemble into hydrogels under physiological conditions that are suitable for cell culture. The supramolecular behavior, however, differs as the packing modes comprise amphipathic layers or water channels, whose diameter is defined by either four or six dipeptide molecules. A variety of spectroscopy, microscopy, and synchrotron-radiation-based techniques unveil fine details of intermolecular interactions that pinpoint the relationship between the chemical structure and ability to form supramolecular architectures that define soft biomaterials.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Erica Scarel
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Giovanni Pierri
- Department Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Slavko Kralj
- Department Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | - Antonella Bandiera
- Department Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127 Trieste, Italy
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - Attilio V Vargiu
- Department Physics, University of Cagliari, Cittadella Universitaria S.P. 8 km. 0.7, 09042 Monserrato, CA Italy
| | - Consiglia Tedesco
- Department Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
5
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
6
|
Wang Y, Wang Z, Yang L, Zhang W, Ma G. Unravelling the non-classical nucleation mechanism of an amyloid nanosheet through atomic force microscopy and an infrared probe technique. Phys Chem Chem Phys 2024; 26:7855-7864. [PMID: 38376417 DOI: 10.1039/d3cp05345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Understanding the amyloid nucleation mechanism is fundamentally important for the development of diagnostics and therapeutics of amyloid-related diseases and for the design and application of amyloid-based materials. To this end, we here explore the use of atomic force microscopy (AFM) and a side-chain-based infrared (IR) probe technique to investigate the amyloid nanosheet formation mechanism of an Aβ16-22 variant, KLVFXAK, where X is p-cyanophenylalanine with its side-chain cyano group being an infrared probe. Using AFM, we reveal that the formation of KLVFXAK amyloid nanosheets follows a two-step non-classical nucleation mechanism. The first step is the rapid formation of a metastable fibrillar intermediate and the second step is slow transformation to the final nanosheet. Using the side-chain-based IR probe technique, we obtain spectroscopic evidence for the proposed nucleation mechanism of the amyloid nanosheet as well as the structural details for the intermediate and amyloid nanosheet. By using the structural constraints set by the two techniques, we propose the structural models for both the fibrillar intermediate and the amyloid nanosheet. In addition, we further investigated the amyloid nanosheet formation mechanism of a similar Aβ16-22 variant, KLVFXAE, and showed the impact of mutation on the amyloid nucleation mechanism. Our work also provides a nice example of how to use the combined approach of AFM and a side-chain-based IR probe technique to unravel the complex nucleation mechanism of amyloid formation.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Ziqi Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Lujuan Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Wenkai Zhang
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Gao RT, Li SY, Liu BH, Chen Z, Liu N, Zhou L, Wu ZQ. One-pot asymmetric living copolymerization-induced chiral self-assemblies and circularly polarized luminescence. Chem Sci 2024; 15:2946-2953. [PMID: 38404389 PMCID: PMC10882484 DOI: 10.1039/d3sc06242b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 02/27/2024] Open
Abstract
Controlled synthesis of conjugated block polymers enables the optimization of their self-assembly and may lead to distinct optical properties and functionalities. Herein, we report a direct chain extension of one-handed helical poly(acyl methane) with 1-ethynyl-4-iodo-2,5-bis(octyloxy)benzene, affording well-defined π-conjugated poly(acyl methane)-b-poly(phenylene ethynylene) copolymers. Although the distinct monomers are polymerized via different mechanisms, the one-pot copolymerization follows a living polymerization manner, giving the desired optically active block copolymers with controllable molar mass and low distribution. The block copolymerization induced chiral self-assembly simultaneously due to the one-handed helicity of the poly(acyl methane) block, giving spherical nanoparticles, one-handed helices, and chiral micelles with controlled dimensions regarding the composition of the generated copolymers. Interestingly, the chiral assemblies exhibit clear circularly polarized luminescence with tunable handedness and a high dissymmetric factor.
Collapse
Affiliation(s)
- Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Bing-Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun Jilin 130021 P.R. China
| | - Li Zhou
- Department of Polymer Science and Engineering, Hefei University of Technology Hefei 230009 China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
8
|
Jin T, Yuan Y, Bagnani M, Wu C, Liu B, Mezzenga R. Structural Colors from Amyloid-Based Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308437. [PMID: 37804231 DOI: 10.1002/adma.202308437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Indexed: 10/09/2023]
Abstract
The helical periodicity and layered structure in cholesteric liquid crystals (CLCs) may be tuned to generate structural color according to the Bragg's law of diffraction. A wide range of natural-based materials such as condensed DNA, collagen, chitin, cellulose, and chiral biopolymers exhibit cholesteric phases with left-handed helixes and ensued structural colors. Here, the possibility of using amyloid CLCs is reported to prepare films with iridescent color reflection and opposite handedness. Right-handed CLCs assembled by left-handed amyloid fibrils are dried into layered structures with variable pitch controlled by the addition of glucose. Circularly polarized light with the same handedness of amyloid CLCs helix is reflected in the Bragg regime. Varying the drying speed leads to the switching between films with a rainbow-like color gradient and large area uniform color. It is confirmed that the origin of the colors derives from the layered structures of the amyloid CLCs, given the negligeable birefringence of the films, calculated from optical rotatory dispersion. These findings provide a facile approach to constructing biosourced cholesteric materials and introduce an original class of proteinaceous materials for the generation of structural colors from right-handed circularly polarized light.
Collapse
Affiliation(s)
- Tonghui Jin
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Ye Yuan
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Chao Wu
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100091, P. R. China
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
- Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, Zürich, 8093, Switzerland
| |
Collapse
|
9
|
Xu H, Qi K, Zong C, Deng J, Zhou P, Hu X, Ma X, Wang D, Wang M, Zhang J, King SM, Rogers SE, Lu JR, Yang J, Wang J. Controlling 1D Nanostructures and Handedness by Polar Residue Chirality of Amphiphilic Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304424. [PMID: 37726235 DOI: 10.1002/smll.202304424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Indexed: 09/21/2023]
Abstract
Peptide assemblies are promising nanomaterials, with their properties and technological applications being highly hinged on their supramolecular architectures. Here, how changing the chirality of the terminal charged residues of an amphiphilic hexapeptide sequence Ac-I4 K2 -NH2 gives rise to distinct nanostructures and supramolecular handedness is reported. Microscopic imaging and neutron scattering measurements show thin nanofibrils, thick nanofibrils, and wide nanotubes self-assembled from four stereoisomers. Spectroscopic and solid-state nuclear magnetic resonance (NMR) analyses reveal that these isomeric peptides adopt similar anti-parallel β-sheet secondary structures. Further theoretical calculations demonstrate that the chiral alterations of the two C-terminal lysine residues cause the formation of diverse single β-strand conformations, and the final self-assembled nanostructures and handedness are determined by the twisting direction and degree of single β-strands. This work not only lays a useful foundation for the fabrication of diverse peptide nanostructures by manipulating the chirality of specific residues but also provides a framework for predicting the supramolecular structures and handedness of peptide assemblies from single molecule conformations.
Collapse
Affiliation(s)
- Hai Xu
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kai Qi
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Cheng Zong
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Peng Zhou
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, China
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Xiaoyue Ma
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Muhan Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266033, China
| | - Stephen M King
- ISIS Pulsed Neutron & Muon Source, Didcot, Oxon, OX11 0QX, UK
| | - Sarah E Rogers
- ISIS Pulsed Neutron & Muon Source, Didcot, Oxon, OX11 0QX, UK
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
10
|
Liu B, Li X, Zhang JP, Li X, Yuan Y, Hou GH, Zhang HJ, Zhang H, Li Y, Mezzenga R. Protein Nanotubes as Advanced Material Platforms and Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307627. [PMID: 37921269 DOI: 10.1002/adma.202307627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Protein nanotubes (PNTs) as state-of-the-art nanocarriers are promising for various potential applications both in the food and pharmaceutical industries. Derived from edible starting sources like α-lactalbumin, lysozyme, and ovalbumin, PNTs bear properties of biocompatibility and biodegradability. Their large specific surface area and hydrophobic core facilitate chemical modification and loading of bioactive substances, respectively. Moreover, their enhanced permeability and penetration ability across biological barriers such as intestinal mucus, extracellular matrix, and thrombus clot, make it promising platforms for health-related applications. Most importantly, their simple preparation processes enable large-scale production, supporting applications in the biomedical and nanotechnological fields. Understanding the self-assembly principles is crucial for controlling their morphology, size, and shape, and thus provides the ground to a multitude of applications. Here, the current state-of-the-art of PNTs including their building materials, physicochemical properties, and self-assembly mechanisms are comprehensively reviewed. The advantages and limitations, as well as challenges and prospects for their successful applications in biomaterial and pharmaceutical sectors are then discussed and highlighted. Potential cytotoxicity of PNTs and the need of regulations as critical factors for enabling in vivo applications are also highlighted. In the end, a brief summary and future prospects for PNTs as advanced platforms and delivery systems are included.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100091, P. R. China
| | - Xing Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Ji Peng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Xin Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Yu Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Guo Hua Hou
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hui Juan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hui Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zürich, 8092, Switzerland
- Department of Materials, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
11
|
Hierarchical metal-peptide assemblies with chirality-encoded spiral architecture and catalytic activity. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1351-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
He X, Li M, Liu Y, Nian Y, Hu B. Purification of Egg White Lysozyme Determines the Downstream Fibrillation of Protein and Co-assembly with Phytochemicals to Form Edible Hydrogels Regulating the Lipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9432-9441. [PMID: 35876899 DOI: 10.1021/acs.jafc.2c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although the synthetic chemistry or synthetic biological systems have already shown the power of biomaterials engineering, natural bioresource matter is still a valuable library of raw ingredients for the production of biomaterials, in particular, the edible ones. However, the influence of upstream isolation and purification of the raw materials on their performance in the downstream processing procedures is still unexplored, which is essential for the engineering of biomaterials. Based on the comparison of conventional techniques, heating-induced precipitation combined with resin-blending ion exchange was developed as a simple and cheap method for the utilization of egg whites to produce the lysozyme that is found to be exclusively feasible for fibrillation. Even with similar purities, only the lysozyme prepared by this method could be utilized to form ordered linear aggregate fibrils. Fibrillation was recently pursued as a new approach to utilize bioresource mass for high-tech end-products. Phytochemicals, totally replacing salts, induced the lysozyme fibrils to form hydrogels spontaneously, which was further demonstrated in an in vivo study to prevent obesity induced by a high-fat diet (HFD) by reducing lipid absorption and lipogenesis, promoting energy expenditure, and inhibiting inflammation. The agri-food bioresource was successfully employed as a proof of concept in edible biomedical materials for the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Xiaoqian He
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Min Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yanhua Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yingqun Nian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| |
Collapse
|
13
|
Wu J, Zhang J, Liu Y, Wang J, Zhang C, Yan J, Li W, Masuda T, Whittaker AK, Zhang A. Supramolecular Chiral Assembly of Symmetric Molecules with an Extended Conjugated Core. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33734-33745. [PMID: 35834778 DOI: 10.1021/acsami.2c09752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
C3-symmetric molecules carrying a conjugated diacetylene (DA) core are found to self-assemble into well-defined supramolecular fibers with enhanced supramolecular chirality in both organic and aqueous solutions. The conjugated core affords these amphiphiles characteristic fluorescence properties, which can be quenched partially due to the aggregation. Integration of the C3-symmetry with the conjugation provides these novel molecules strong aggregation tendency through solvent-mediated π-π stacking with preferential supramolecular chirality, which is predominately related to steric hindrance from their dipeptide pendants. Highly uniform supramolecular fibers of P and M handedness with thickness consistent in the dimensions of individual C3 molecules are obtained. The increase of concentrations induces these fibers to wrap together to form supramolecular fibrous bundles. Topochemical polymerization of the DA moieties can transform these supramolecular fibers into stable covalent polymers. We therefore believe that self-assembly of these C3-symmetric molecules with extended conjugated DA cores provides new prospects for the construction of supramolecular helical fibers through enhanced π-π stacking and creates a convenient strategy to furnish covalent chiral polymers of hierarchical structures through supramolecular assembly.
Collapse
Affiliation(s)
- Jindiao Wu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Jianan Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Yanjun Liu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Jun Wang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Toshio Masuda
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| |
Collapse
|
14
|
Fittolani G, Vargová D, Seeberger PH, Ogawa Y, Delbianco M. Bottom-Up Approach to Understand Chirality Transfer across Scales in Cellulose Assemblies. J Am Chem Soc 2022; 144:12469-12475. [PMID: 35765970 PMCID: PMC9284553 DOI: 10.1021/jacs.2c04522] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellulose is a polysaccharide that displays chirality across different scales, from the molecular to the supramolecular level. This feature has been exploited to generate chiral materials. To date, the mechanism of chirality transfer from the molecular level to higher-order assemblies has remained elusive, partially due to the heterogeneity of cellulose samples obtained via top-down approaches. Here, we present a bottom-up approach that uses well-defined cellulose oligomers as tools to understand the transfer of chirality from the single oligomer to supramolecular assemblies beyond the single cellulose crystal. Synthetic cellulose oligomers with defined sequences self-assembled into thin micrometer-sized platelets with controllable thicknesses. These platelets further assembled into bundles displaying intrinsic chiral features, directly correlated to the monosaccharide chirality. Altering the stereochemistry of the oligomer termini impacted the chirality of the self-assembled bundles and thus allowed for the manipulation of the cellulose assemblies at the molecular level. The molecular description of cellulose assemblies and their chirality will improve our ability to control and tune cellulose materials. The bottom-up approach could be expanded to other polysaccharides whose supramolecular chirality is less understood.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Yu Ogawa
- Univ.
Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Martina Delbianco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
15
|
Pathak R, Bhangu SK, Martin GJO, Separovic F, Ashokkumar M. Ultrasound-induced protein restructuring and ordered aggregation to form amyloid crystals. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:335-352. [PMID: 35576075 PMCID: PMC9233657 DOI: 10.1007/s00249-022-01601-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022]
Abstract
Amyloid crystals, a form of ordered protein aggregates documented relatively recently, have not been studied as extensively as amyloid fibres. This study investigates the formation of amyloid crystals with low frequency ultrasound (20 kHz) using β-lactoglobulin, as a model protein for amyloid synthesis. Acoustic cavitation generates localised zones of intense shear, with extreme heat and pressure that could potentially drive the formation of amyloid structures at ambient bulk fluid temperatures (20 ± 1 °C). Thioflavin T fluorescence and electron microscopy showed that low-frequency ultrasound at 20 W/cm3 input power induced β-stacking to produce amyloid crystals in the mesoscopic size range, with a mean length of approximately 22 µm. FTIR spectroscopy indicated a shift towards increased intermolecular antiparallel β-sheet content. An increase in sonication time (0-60 min) and input power (4-24 W/cm3) increased the mean crystal length, but this increase was not linearly proportional to sonication time and input power due to the delayed onset of crystal growth. We propose that acoustic cavitation causes protein unfolding and aggregation and imparts energy to aggregates to cross the torsion barrier, to achieve their lowest energy state as amyloid crystals. The study contributes to a further understanding of protein chemistry relating to the energy landscape of folding and aggregation. Ultrasound presents opportunities for practical applications of amyloid structures, presenting a more adaptable and scalable approach for synthesis.
Collapse
Affiliation(s)
- Rachana Pathak
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
- The ARC Dairy Innovation Hub, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | - Gregory J O Martin
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
- The ARC Dairy Innovation Hub, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Frances Separovic
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Muthupandian Ashokkumar
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- The ARC Dairy Innovation Hub, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
16
|
Charnley M, Islam S, Bindra GK, Engwirda J, Ratcliffe J, Zhou J, Mezzenga R, Hulett MD, Han K, Berryman JT, Reynolds NP. Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19. Nat Commun 2022; 13:3387. [PMID: 35697699 PMCID: PMC9189797 DOI: 10.1038/s41467-022-30932-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/18/2022] [Indexed: 01/04/2023] Open
Abstract
COVID-19 is primarily known as a respiratory disease caused by SARS-CoV-2. However, neurological symptoms such as memory loss, sensory confusion, severe headaches, and even stroke are reported in up to 30% of cases and can persist even after the infection is over (long COVID). These neurological symptoms are thought to be produced by the virus infecting the central nervous system, however we don't understand the molecular mechanisms triggering them. The neurological effects of COVID-19 share similarities to neurodegenerative diseases in which the presence of cytotoxic aggregated amyloid protein or peptides is a common feature. Following the hypothesis that some neurological symptoms of COVID-19 may also follow an amyloid etiology we identified two peptides from the SARS-CoV-2 proteome that self-assemble into amyloid assemblies. Furthermore, these amyloids were shown to be highly toxic to neuronal cells. We suggest that cytotoxic aggregates of SARS-CoV-2 proteins may trigger neurological symptoms in COVID-19.
Collapse
Affiliation(s)
- Mirren Charnley
- Centre for Optical Sciences and Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, VIC, 3000, Australia
| | - Saba Islam
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Guneet K Bindra
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jeremy Engwirda
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Julian Ratcliffe
- La Trobe University Bioimaging Platform, Bundoora, 3086, VIC, Australia
| | - Jiangtao Zhou
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Mark D Hulett
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Kyunghoon Han
- Department of Physics and Materials Science, Faculty of Science, Technology and Medicine, University of Luxembourg, 162a Avenue de la Faïencerie, Esch-sur-Alzette, L-1511, Luxembourg
| | - Joshua T Berryman
- Department of Physics and Materials Science, Faculty of Science, Technology and Medicine, University of Luxembourg, 162a Avenue de la Faïencerie, Esch-sur-Alzette, L-1511, Luxembourg.
| | - Nicholas P Reynolds
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
17
|
Lipid membrane-mediated assembly of the functional amyloid-forming peptide Somatostatin-14. Biophys Chem 2022; 287:106830. [DOI: 10.1016/j.bpc.2022.106830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
|
18
|
Zhang G, Liang Y, Wang Y, Li Q, Qi W, Zhang W, Su R, He Z. Chirality-Dependent Copper-Diphenylalanine Assemblies with Tough Layered Structure and Enhanced Catalytic Performance. ACS NANO 2022; 16:6866-6877. [PMID: 35319863 DOI: 10.1021/acsnano.2c01912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral regulation to prepare functional materials has aroused considerable interest in recent years. However, little is known on the effect of chirality of ligands in the metal-organic coordination assembly process. We report the self-assembly of diphenylalanine peptide (Phe-Phe, FF), the core fragment of Aβ protein, with metal copper ion (Cu2+) into metal-organic assemblies with chirality-encoded structures and properties. The chirality-dependent metal-dipeptide assembles with different morphologies and supramolecular chirality were obtained by facile changing of the FF chirality. Single-crystal results indicate that (L)-FF coordinated with Cu2+ into a cross-chain structure with a five-coordinated style, while the racemates of (L+D)-FF with Cu2+ crystallized into an (L)-Cu2+-(D)-Cu2+ alternated four-coordinating structure, enabling a higher mechanical and catalytic performance. The Young's modulus of (L+D)-FF-Cu is as high as 34.36 GPa, which is 2.45 times higher than that of (L)-FF-Cu. Furthermore, both of them follow the characteristic enzyme kinetics and show higher catalytic activity than natural laccase at the same mass concentration. Specifically, the calculated catalytic efficiency (kcat/KM) of (L+D)-FF-Cu is 1.14 times higher than that of (L)-FF-Cu, and the (L+D)-FF-Cu shows significantly enhanced stability and reusability compared with (L)-FF-Cu. The results reveal that highly functional materials could be constructed by encoding the chirality of molecular building blocks.
Collapse
Affiliation(s)
- Gong Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, People's Republic of China
| | - Yaoyu Liang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Qing Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, People's Republic of China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
19
|
Vahedifar A, Wu J. Self-assembling peptides: Structure, function, in silico prediction and applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Shen Y, Wang Y, Hamley IW, Qi W, Su R, He Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Xiong Q, Stupp SI, Schatz GC. Molecular Insight into the β-Sheet Twist and Related Morphology of Self-Assembled Peptide Amphiphile Ribbons. J Phys Chem Lett 2021; 12:11238-11244. [PMID: 34762436 DOI: 10.1021/acs.jpclett.1c03243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembly of high-aspect-ratio filaments containing β-sheets has attracted much attention due to potential use in bioengineering and biomedicine. However, precisely predicting the assembled morphologies remains a grand challenge because of insufficient understanding of the self-assembly process. We employed an atomistic model to study the self-assembly of peptide amphiphiles (PAs) containing valine-glutamic acid (VE) dimeric repeats. By changing of the sequence length, the assembly morphology changes from flat ribbon to left-handed twisted ribbon, implying a relationship between β-sheet twist and strength of interstrand hydrogen bonds. The calculations are used to quantify this relationship including both magnitude and sign of the ribbon twist angle. Interestingly, a change in chirality is observed when we introduce the RGD epitope into the C-terminal of VE repeats, suggesting arginine and glycine's role in suppressing right-handed β-sheet formation. This study provides insight into the relationship between β-sheet twist and self-assembled nanostructures including a possible design rule for PA self-assembly.
Collapse
Affiliation(s)
- Qinsi Xiong
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Samuel I Stupp
- Department of Chemistry, Center for BioInspired Energy Science, and Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
22
|
Xu XH, Jiang ZQ, Xu L, Zhou L, Liu N, Wu ZQ. Precise Synthesis of π-Conjugated Block Copolymers and Polymerization-Induced Chiral Self-Assembly toward Helical Nanofibers with Circularly Polarized Luminescence. ACS APPLIED BIO MATERIALS 2021; 4:7213-7221. [PMID: 35006953 DOI: 10.1021/acsabm.1c00763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Precise synthesis and efficient self-assembly of semiconducting polymers are of great interest. Herein, we report the controlled synthesis of π-conjugated poly(phenyl isocyanide)-b-poly(phenyleneethylene) (PPI-b-PPE) copolymers via chain extension of ethynyl 4-iodobenzene initiated by Pd(II)-terminated helical poly(phenyl isocyanide) (PPI). The in-situ-generated block copolymers self-assembled into various supramolecular architectures depending on the PPE length. The helical PPI segment induced the block copolymers with an appropriate PPE length self-assemble into helical nanofibers with a controlled size and defined helicity. Interestingly, the chiral assemblies of the block copolymers exhibit intense optical activity and emit clear circularly polarized luminescence.
Collapse
Affiliation(s)
- Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zhi-Qiang Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
23
|
Enzymatic Synthesis of Chiral Polyamide via Condensation of Natural Source Amino Acid Diesters and Diamine. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Zhou Y, Qiu P, Yao D, Song Y, Zhu Y, Pan H, Wu J, Zhang J. A crosslinked colloidal network of peptide/nucleic base amphiphiles for targeted cancer cell encapsulation. Chem Sci 2021; 12:10063-10069. [PMID: 34349970 PMCID: PMC8317620 DOI: 10.1039/d1sc02995a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
The use of peptide amphiphiles (PAs) is becoming increasingly popular, not only because of their unique self-assembly properties but also due to the versatility of designs, allowing biological responsiveness, biocompatibility, and easy synthesis, which could potentially contribute to new drug design and disease treatment concepts. Oligonucleotides, another major functional bio-macromolecule class, have been introduced recently as new functional building blocks into PAs, further enriching the tools available for the fabrication of bio-functional PAs. Taking advantage of this, in the present work, two nucleic base-linked (adenine, A and thymine, T) RGD-rich peptide amphiphiles (NPAs) containing the fluorophores naphthalimide and rhodamine (Nph-A and Rh-T) were designed and synthesized. The two NPAs exhibit distinctive assembly behaviours with spherical (Rh-T) and fibrous (Nph-A) morphologies, and mixing Nph-A with Rh-T leads to a densely crosslinked colloidal network (Nph-A/Rh-T) via mutually promoted supramolecular polymerization via nucleation-growth assembly. Because of the RGD-rich sequences in the crosslinked network, further research on in situ targeted cancer cell (MDA-MB-231) encapsulation via RGD-integrin recognition was performed, and the modulation of cell behaviours (e.g., cell viability and migration) was demonstrated using both confocal laser scanning microscopy (CLSM) imaging and a scratch wound healing assay.
Collapse
Affiliation(s)
- Yanzi Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Peng Qiu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine 1665 Kongjiang Road Shanghai 200092 China
| | - Yanyan Song
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yuedong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Haiting Pan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junchen Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
25
|
Zheng Y, Mao K, Chen S, Zhu H. Chirality Effects in Peptide Assembly Structures. Front Bioeng Biotechnol 2021; 9:703004. [PMID: 34239866 PMCID: PMC8258317 DOI: 10.3389/fbioe.2021.703004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Peptide assembly structures have been widely exploited in fabricating biomaterials that are promising for medical applications. Peptides can self-organize into various highly ordered supramolecular architectures, such as nanofibril, nanobelt, nanotube, nanowire, and vesicle. Detailed studies of the molecular mechanism by which these versatile building blocks assemble can guide the design of peptide architectures with desired structure and functionality. It has been revealed that peptide assembly structures are highly sequence-dependent and sensitive to amino acid composition, the chirality of peptide and amino acid residues, and external factors, such as solvent, pH, and temperature. This mini-review focuses on the regulatory effects of chirality alteration on the structure and bioactivity of linear and cyclic peptide assemblies. In addition, chiral self-sorting and co-assembly of racemic peptide mixtures were discussed.
Collapse
Affiliation(s)
- Yongfang Zheng
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Kejing Mao
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shixian Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hu Zhu
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
26
|
Wang Y, Li Q, Zhang J, Qi W, You S, Su R, He Z. Self-Templated, Enantioselective Assembly of an Amyloid-like Dipeptide into Multifunctional Hierarchical Helical Arrays. ACS NANO 2021; 15:9827-9840. [PMID: 34047550 DOI: 10.1021/acsnano.1c00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chiral self-assembly of peptides has attracted great interest owing to their promising applications in biomedicine, chemistry, and materials science. However, compared with the rich knowledge about their chiral self-assembly at the molecular or nanoscale, the formation of long-range-ordered hierarchical helical arrays (HHAs) from simple peptides remains a formidable challenge. Herein, we report the self-templated assembly of an amyloid-like dipeptide into long-range-ordered HHAs by their spontaneous fibrillization and hierarchical helical assembly within a confined film. The chiral interactions between the peptide and diamines result in geometry frustration and the phase transition of self-assembling peptide films from achiral spherulite structures into chiral HHAs. By changing the chirality and enantioselective interactions, we can control the phase behavior, handedness, and chiroptics of the self-assembled HHAs precisely. Moreover, the redox activity of the HHAs allows the in situ decoration of nanoparticles with high catalytic activity. These results provide insights into the chiral self-assembly of peptides and the fabrication of highly ordered materials with complex architectures and promising applications in chiroptics and catalysis.
Collapse
Affiliation(s)
- Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Qing Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Shengping You
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
27
|
Wang M, Zhao Y, Zhang L, Deng J, Qi K, Zhou P, Ma X, Wang D, Li Z, Wang J, Yang J, Lu JR, Zhang J, Xu H. Unexpected Role of Achiral Glycine in Determining the Suprastructural Handedness of Peptide Nanofibrils. ACS NANO 2021; 15:10328-10341. [PMID: 34047551 DOI: 10.1021/acsnano.1c02547] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helical supramolecular architectures play important structural and functional roles in biological systems. Although their occurrence is widely perceived to correlate to fundamental chiral units including l-amino acids and d-sugars, the detailed relationship between molecular and supramolecular handedness is still unclear. At the same time, although achiral units are practically always in close proximity to chiral ones by covalent linkage along a polymeric chain, their effect on supramolecular handedness has received relatively less attention. Here, we designed a set of short amphiphilic peptides, in which an achiral glycine residue was incorporated at the interface between the hydrophobic and hydrophilic segments. We observed that glycine incorporation caused dramatic variations in suprastructural handedness in self-assembled peptide nanofibrils, and the effect of the hydrophilic charged residue at the C-terminus on supramolecular handedness was demolished, leading to chiral truncation. Furthermore, molecular dynamics simulations and quantum chemistry calculations revealed that the unanticipated role of the glycine residue in regulating supramolecular handedness originated from its effect on the conformational preference of single β-strands. Importantly, reduced density gradient analyses on single β-strands indicated that, due to the lack of a side chain in glycine, intricate noncovalent interactions were produced among the neighboring amino acid side chains of the incorporated glycine and its local backbone, resulting in diverse β-strand conformations.
Collapse
Affiliation(s)
- Muhan Wang
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
- Department of Civil Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Limin Zhang
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kai Qi
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Peng Zhou
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xiaoyue Ma
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhen Li
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jian R Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jun Zhang
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
28
|
Wang J, Li Q, Hu L, Wang Y, Qi W, Su R, He Z. Self-Assembly of Ferrocenyl Phenylalanine into Nanohelical Arrays via Kinetic Control. ACS APPLIED BIO MATERIALS 2021; 4:4744-4752. [PMID: 35007024 DOI: 10.1021/acsabm.0c00607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spontaneous alignment of self-assembled chiral nanostructures at macroscopic scales is appealing because of their unique structural features and physicochemical properties. Here we present the construction of highly ordered bioorganometallic nanohelical arrays on the basis of the hierarchical chiral self-assembly of the simple ferrocenyl l-phenylalanine (Fc-l-F). The formation of nanohelical arrays is under kinetic control, which can be controlled by changing the growth time and the vapor temperature. The chiral nanoarrays can generate circularly polarized luminescence by the incorporation of fluorescent dyes. Moreover, due to the redox activity of the Fc moiety, the nanohelical arrays show enhanced electrical capacity compared with previously reported peptide nanomaterials. The results shed light on the highly ordered chiral self-assembled nanomaterials, which have potential applications in fields of optics, sensing, and energy storage.
Collapse
Affiliation(s)
- Jiahui Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Liuping Hu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
29
|
Giraud T, Bouguet-Bonnet S, Stébé MJ, Richaudeau L, Pickaert G, Averlant-Petit MC, Stefan L. Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides. NANOSCALE 2021; 13:10566-10578. [PMID: 34100504 DOI: 10.1039/d1nr02417e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peptide-based hydrogels are physical gels formed through specific supramolecular self-assembling processes, leading to ordered nanostructures which constitute the water entrapping scaffold of the soft material. Thanks to the inherent properties of peptides, these hydrogels are highly considered in the biomedical domain and open new horizons in terms of application in advanced therapies and biotechnologies. The use of one, and only one, native peptide to formulate a gel is by far the most reported approach to design such materials, but suffers from several limitations, including in terms of mechanical properties. To improve peptide-based hydrogels interest and give rise to innovative properties, several strategies have been proposed in the recent years, and the development of multicomponent peptide-based hydrogels appears as a promising and relevant strategy. Indeed, mixing two or more compounds to develop new materials is a much-used approach that has proven its effectiveness in a wide variety of domains, including polymers, composites and alloys. While still limited to a handful of examples, we would like to report herein on the formulation and the comprehensive study of multicomponent hybrid DNA-nucleobase/peptide-based hydrogels using a multiscale approach based on a large panel of analytical techniques (i.e., rheometry, proton relaxometry, SAXS, electronic microscopy, infrared, circular dichroism, fluorescence, Thioflavin T assays). Among the six multicomponent systems studied, the results highlight the synergistic role of the presence of the two complementary DNA-nucleobases (i.e., adenine/thymine and guanine/cytosine) on the co-assembling process from structural (e.g., morphology of the nanoobjects) to physicochemical (e.g., kinetics of formation, fluorescence properties) and mechanical (e.g., stiffness, resistance to external stress) properties. All the data confirm the relevance of the multicomponent peptide-based approach in the design of innovative hydrogels and bring another brick in the wall of the understanding of these complex and promising systems.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | | | | | - Loic Stefan
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
30
|
Dual thermoresponsive mPEG-b-poly(O-benzyl-l-threonine acid) hydrogel based on β-sheet nano-structural disassembly and PEG dehydration. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Adamcik J, Ruggeri FS, Berryman JT, Zhang A, Knowles TPJ, Mezzenga R. Evolution of Conformation, Nanomechanics, and Infrared Nanospectroscopy of Single Amyloid Fibrils Converting into Microcrystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002182. [PMID: 33511004 PMCID: PMC7816722 DOI: 10.1002/advs.202002182] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/04/2020] [Indexed: 06/12/2023]
Abstract
Nanomechanical properties of amyloid fibrils and nanocrystals depend on their secondary and quaternary structure, and the geometry of intermolecular hydrogen bonds. Advanced imaging methods based on atomic force microscopy (AFM) have unravelled the morphological and mechanical heterogeneity of amyloids, however a full understanding has been hampered by the limited resolution of conventional spectroscopic methods. Here, it is shown that single molecule nanomechanical mapping and infrared nanospectroscopy (AFM-IR) in combination with atomistic modelling enable unravelling at the single aggregate scale of the morphological, nanomechanical, chemical, and structural transition from amyloid fibrils to amyloid microcrystals in the hexapeptides, ILQINS, IFQINS, and TFQINS. Different morphologies have different Young's moduli, within 2-6 GPa, with amyloid fibrils exhibiting lower Young's moduli compared to amyloid microcrystals. The origins of this stiffening are unravelled and related to the increased content of intermolecular β-sheet and the increased lengthscale of cooperativity following the transition from twisted fibril to flat nanocrystal. Increased stiffness in Young's moduli is correlated with increased density of intermolecular hydrogen bonding and parallel β-sheet structure, which energetically stabilize crystals over the other polymorphs. These results offer additional evidence for the position of amyloid crystals in the minimum of the protein folding and aggregation landscape.
Collapse
Affiliation(s)
- Jozef Adamcik
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
| | | | - Joshua T. Berryman
- University of LuxembourgDepartment of Physics and Materials Science162a Avenue de la FaïencerieLuxembourgL‐1511Luxembourg
| | - Afang Zhang
- Shanghai University Department of Polymer MaterialsNanchen Street 333Shanghai200444China
| | - Tuomas P. J. Knowles
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Cavendish LaboratoryUniversity of CambridgeJ. J. Thomson AvenueCambridgeCB3 0HEUK
| | - Raffaele Mezzenga
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
- Department of MaterialsETH ZürichZürich8093Switzerland
| |
Collapse
|
32
|
Lin S, Tong Q, Jiang P, Li B, Li Y, Yang Y. Effect of C 12H 25O– substituent position on the self-assembly behaviour of C 6H 5COO–Ala–Ala dipeptide. NEW J CHEM 2021. [DOI: 10.1039/d1nj01148k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular hydrogen bonding and steric hindrance of side chain lead the different molecular packing of dipeptides and the morphological transformation of self-assemblies’ nanostructures.
Collapse
Affiliation(s)
- Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China
- School of Optoelectronics Science and Engineering
- Soochow University
- Suzhou 215123
- China
| | - Qiyun Tong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Pan Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
33
|
Yang X, Zhang L, Liang Y, Wang Y, Shen Y, Xing Q, Qi W, Wang P, Liu X, Yang M, Su R, He M, He Z. Self-Assembled Bio-Organometallic Nanocatalysts for Highly Enantioselective Direct Aldol Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13735-13742. [PMID: 33175547 DOI: 10.1021/acs.langmuir.0c01485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular nanocatalysts were designed for asymmetric reactions through the self-assembly process of a bio-organometallic molecule, ferrocene-l-prolinamide (Fc-CO-NH-P). Fc-CO-NH-P could self-assemble into versatile nanostructures in water, including nanospheres, nanosheets, nanoflowers, and pieces. In particular, the self-assembled nanoflowers exhibited a superior specific surface area, high stability, and delicate three-dimensional (3D) chiral catalytic active sites. The nanoflowers could serve as heterogeneous catalysts with an excellent catalytic performance toward direct aldol reactions in aqueous solution, achieving both high yield (>99%) and stereoselectivity (anti/syn = 97:3, ee% >99%). This study proposed a significant strategy to fabricate supramolecular chiral catalysts, serving as a favorable template for designing new asymmetric catalysts.
Collapse
Affiliation(s)
- Xuejiao Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Liwei Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yaoyu Liang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qiguo Xing
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Pengfei Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 30072, P. R. China
| | - Xiao Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mengyao Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mingxia He
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 30072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
34
|
Wang Y, Zhang W, Gong C, Liu B, Li Y, Wang L, Su Z, Wei G. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. SOFT MATTER 2020; 16:10029-10045. [PMID: 32696801 DOI: 10.1039/d0sm00966k] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembled peptide-based nanomaterials have exhibited wide application potential in the fields of materials science, nanodevices, biomedicine, tissue engineering, biosensors, energy storage, environmental science, and others. Due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization, three-dimensional self-assembled peptide hydrogels revealed promising potential in bio-related applications. To present the advances in this interesting topic, we present a review on the synthesis and functionalization of peptide hydrogels, as well as their applications in drug delivery, antibacterial materials, cell culture, biomineralization, bone tissue engineering, and biosensors. Specifically, we focus on the fabrication methods of peptide hydrogels through physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by incorporation with polymers, DNA, protein, nanoparticles, and carbon materials is introduced and discussed in detail. It is expected that this work will be helpful not only for the design and synthesis of various peptide-based nanostructures and nanomaterials, but also for the structural and functional tailoring of peptide-based nanomaterials to meet specific demands.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Banerjee P, Rajak K, Nandi PK, Pal S, Ghosh M, Mishra S, Sarkar N. Aging-Dependent Morphological Crystallinity Determines Membrane Activity of l-Phenylalanine Self-Assembles. J Phys Chem Lett 2020; 11:8585-8591. [PMID: 32931285 DOI: 10.1021/acs.jpclett.0c01831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amyloid polymorphism has emerged as an important topic of research in recent years to identify the particular species responsible for several neurodegenerative disorders, whereas the concept is overlooked in the case of the simplest building block, that is, l-phenylalanine (l-Phe) self-assembly. Here, we report the first evidence of l-Phe polymorphism and the conversion of metastable helical fibrillar to thermodynamically stable rodlike crystalline morphologies with increasing time and temperature. Furthermore, only the fibrillar l-Phe polymorph shows a significant modulation of the model membrane. In addition, the l-Phe molecules prefer to arrange in a multilayered rodlike fashion than in a lateral arrangement, which reduces the membrane binding ability of the l-Phe polymorph due to the decrease in the partial charge of the N-terminal of l-Phe units. The present work exemplifies a different approach to understanding l-Phe self-assembly and provides an effective strategy for the therapy of phenylketonuria by scrutinizing the discrete membrane activity of different l-Phe polymorphs.
Collapse
Affiliation(s)
- Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Karunamoy Rajak
- Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Siddhartha Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| |
Collapse
|
36
|
Giraud T, Bouguet-Bonnet S, Marchal P, Pickaert G, Averlant-Petit MC, Stefan L. Improving and fine-tuning the properties of peptide-based hydrogels via incorporation of peptide nucleic acids. NANOSCALE 2020; 12:19905-19917. [PMID: 32985645 DOI: 10.1039/d0nr03483e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peptide self-assemblies have attracted intense research interest over the last few decades thanks to their implications in key biological processes (e.g., amyloid formation) and their use in biotechnological and (bio)material fields. In particular, peptide-based hydrogels have been highly considered as high potential supramolecular materials in the biomedical domain and open new horizons in terms of applications. To further understand their self-assembly mechanisms and to optimize their properties, several strategies have been proposed with the modification of the constituting amino acid chains via, per se, the introduction of d-amino acids, halogenated amino acids, pseudopeptide bonds, or other chemical moieties. In this context, we report herein on the incorporation of DNA-nucleobases into their peptide nucleic acid (PNA) forms to develop a new series of hybrid nucleopeptides. Thus, depending on the nature of the nucleobase (i.e., thymine, cytosine, adenine or guanine), the physicochemical and mechanical properties of the resulting hydrogels can be significantly improved and fine-tuned with, for instance, drastic enhancements of both the gel stiffness (up to 70-fold) and the gel resistance to external stress (up to 40-fold), and the generation of both thermo-reversible and uncommon red-edge excitation shift (REES) properties. To decipher the actual role of each PNA moiety in the self-assembly processes, the induced modifications from the molecular to the macroscopic scales are studied thanks to the multiscale approach based on a large panel of analytical techniques (i.e., rheology, NMR relaxometry, TEM, thioflavin T assays, FTIR, CD, fluorescence, NMR chemical shift index). Thus, such a strategy provides new opportunities to adapt and fit hydrogel properties to the intended ones and pushes back the limits of supramolecular materials.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | | | | |
Collapse
|
37
|
Role of molecular chirality and solvents in directing the self-assembly of peptide into an ultra-pH-sensitive hydrogel. J Colloid Interface Sci 2020; 577:388-396. [DOI: 10.1016/j.jcis.2020.05.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022]
|
38
|
Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213418] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Zhang G, Zhang J, Wang Y, Wu Y, Li Q, Liang Y, Qi W, Rao H, Su R, He Z. Self-assembly of multifunctional hydrogels with polyoxometalates helical arrays using nematic peptide liquid crystal template. J Colloid Interface Sci 2020; 578:218-228. [DOI: 10.1016/j.jcis.2020.05.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
|
40
|
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E, Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR, Dobson CM, Eisenberg DS, Mezzenga R. Half a century of amyloids: past, present and future. Chem Soc Rev 2020; 49:5473-5509. [PMID: 32632432 PMCID: PMC7445747 DOI: 10.1039/c9cs00199a] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China; Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hilal A. Lashuel
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ian W. Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, Centre for Microbial Research, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Raffaele Mezzenga
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
41
|
Chen Y, Peng F, Su T, Yang H, Qiu F. Direct Identification of Amyloid Peptide Fragments in Human α-Synuclein Based on Consecutive Hydrophobic Amino Acids. ACS OMEGA 2020; 5:11677-11686. [PMID: 32478258 PMCID: PMC7254785 DOI: 10.1021/acsomega.0c00979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
![]()
Formation of amyloid fibrils by misfolding
α-synuclein is
a characteristic feature of Parkinson’s disease, but the exact
molecular mechanism of this process has long been an unresolved mystery.
Identification of critical amyloid peptide fragments from α-synuclein
may hold the key to decipher this mystery. Focusing on consecutive
hydrophobic amino acids (CHAA) in the protein sequence, in this study
we proposed a sequence-based strategy for direct identification of
amyloid peptide fragments in α-synuclein. We picked out three
CHAA fragments (two hexapeptides and one tetrapeptide) from α-synuclein
and studied their amyloidogenic property. The thioflavin-T binding
test, transmission electron microscopy, Congo red staining, and Fourier
transform infrared spectroscopy revealed that although only hexapeptides
could undergo amyloid aggregation on their own, extended peptide fragments
based on any of the three peptides could form typical amyloid fibrils.
Primary amyloidogenic fragments based on the three peptides showed
synergetic aggregation behavior and could accelerate the aggregation
of full-length α-synuclein. It was proved that hydrophobic interaction
played a predominant role for the aggregation of these peptides and
full-length α-synuclein. A central alanine-to-lysine substitution
in each hydrophobic fragment completely eliminated the peptides’
amyloidogenic property, and alanine-to-lysine substitutions at corresponding
sites in full-length α-synuclein also decreased the protein’s
amyloidogenic potency. These findings suggested that CHAA fragments
were potentially amyloidogenic and played an important role for the
aggregation of α-synuclein. The identification of these fragments
might provide helpful information for eventually clarifying the molecular
mechanism of α-synuclein aggregation. On the other hand, our
study suggested that the CHAA fragment might be a simple motif for
direct sequence-based identification of amyloid peptides.
Collapse
Affiliation(s)
- Yongzhu Chen
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Peng
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Qiu
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Zaguri D, Shaham-Niv S, Chakraborty P, Arnon Z, Makam P, Bera S, Rencus-Lazar S, Stoddart PR, Gazit E, Reynolds NP. Nanomechanical Properties and Phase Behavior of Phenylalanine Amyloid Ribbon Assemblies and Amorphous Self-Healing Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21992-22001. [PMID: 32307977 DOI: 10.1021/acsami.0c01574] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phenylalanine was the minimalistic and first of numerous nonproteinaceous building blocks to be demonstrated to form amyloid-like fibrils. This unexpected organization of such a simple building block into canonical architecture, which was previously observed only with proteins and peptides, has numerous implications for medicine and supramolecular chemistry. However, the morphology of phenylalanine fibrils and their mechanical properties was never characterized in solutions. Here, using electron and atomic force microscopy, we analyze the morphological and mechanical properties of phenylalanine fibrils in both air and fluids. The fibrils demonstrate an exceptionally high Young's modulus (up to 30 GPa) and are found to be composed of intertwined protofilaments in a helical or twisted ribbon morphology. In addition, X-ray scattering experiments provide convincing evidence of an amyloidal cross-β-like secondary structure within the nanoassemblies. Furthermore, increasing the phenylalanine concentration results in the formation of highly homogenous, noncrystalline, self-healing hydrogels that display storage and loss moduli significantly higher than similar noncovalently cross-linked biomolecular nanofibrillar scaffolds. These remarkably stiff nanofibrillar hydrogels can be harnessed for various technological and biomedical applications, such as self-healing, printable, structural, load-bearing 3D scaffolds. The properties of this simple but quite remarkable hydrogel open a possibility to utilize it in the biomaterial industry.
Collapse
Affiliation(s)
- Dor Zaguri
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shira Shaham-Niv
- BLAVATNIK CENTER for Drug Discovery, Metabolite Medicine Division, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Priyadarshi Chakraborty
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zohar Arnon
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pandeeswar Makam
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Santu Bera
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Paul R Stoddart
- ARC Training Centre in Biodevices, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- BLAVATNIK CENTER for Drug Discovery, Metabolite Medicine Division, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nicholas P Reynolds
- ARC Training Centre in Biodevices, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
43
|
Amyloid Evolution: Antiparallel Replaced by Parallel. Biophys J 2020; 118:2526-2536. [PMID: 32311316 PMCID: PMC7231890 DOI: 10.1016/j.bpj.2020.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
Several atomic structures have now been found for micrometer-scale amyloid fibrils or elongated microcrystals using a range of methods, including NMR, electron microscopy, and X-ray crystallography, with parallel β-sheet appearing as the most common secondary structure. The etiology of amyloid disease, however, indicates nanometer-scale assemblies of only tens of peptides as significant agents of cytotoxicity and contagion. By combining solution X-ray with molecular dynamics, we show that antiparallel structure dominates at the first stages of aggregation for a specific set of peptides, being replaced by parallel at large length scales only. This divergence in structure between small and large amyloid aggregates should inform future design of molecular therapeutics against nucleation or intercellular transmission of amyloid. Calculations and an overview from the literature argue that antiparallel order should be the first appearance of structure in many or most amyloid aggregation processes, regardless of the endpoint. Exceptions to this finding should exist, depending inevitably on the sequence and on solution conditions.
Collapse
|
44
|
Zanjani AAH, Reynolds NP, Zhang A, Schilling T, Mezzenga R, Berryman JT. Kinetic Control of Parallel versus Antiparallel Amyloid Aggregation via Shape of the Growing Aggregate. Sci Rep 2019; 9:15987. [PMID: 31690748 PMCID: PMC6831816 DOI: 10.1038/s41598-019-52238-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/14/2019] [Indexed: 11/09/2022] Open
Abstract
By combining atomistic and higher-level modelling with solution X-ray diffraction we analyse self-assembly pathways for the IFQINS hexapeptide, a bio-relevant amyloid former derived from human lysozyme. We verify that (at least) two metastable polymorphic structures exist for this system which are substantially different at the atomistic scale, and compare the conditions under which they are kinetically accessible. We further examine the higher-level polymorphism for these systems at the nanometre to micrometre scales, which is manifested in kinetic differences and in shape differences between structures instead of or as well as differences in the small-scale contact topology. Any future design of structure based inhibitors of the IFQINS steric zipper, or of close homologues such as TFQINS which are likely to have similar structures, should take account of this polymorphic assembly.
Collapse
Affiliation(s)
- Ali Asghar Hakami Zanjani
- University of Luxembourg, Department of Physics and Materials Science, 162a Avenue de la Fäıencerie, Luxembourg City, L-1511, Luxembourg
| | - Nicholas P Reynolds
- Swinburne University of Technology, ARC Training Centre for Biodevices, John Street, Melbourne, VIC, 3122, Australia
| | - Afang Zhang
- Shanghai University Department of Polymer Materials, Nanchen Street 333, Shanghai, 200444, China
| | - Tanja Schilling
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104, Freiburg im Breisgau, Germany
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, CH-8092, Zurich, Switzerland.,Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Joshua T Berryman
- University of Luxembourg, Department of Physics and Materials Science, 162a Avenue de la Fäıencerie, Luxembourg City, L-1511, Luxembourg.
| |
Collapse
|
45
|
Mason ML, Lalisse RF, Finnegan TJ, Hadad CM, Modarelli DA, Parquette JR. pH-Controlled Chiral Packing and Self-Assembly of a Coumarin Tetrapeptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12460-12468. [PMID: 31469284 DOI: 10.1021/acs.langmuir.9b01939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A coumarin-tetrapeptide conjugate, EFEK(DAC)-NH2 (1), is reported to undergo a pH-dependent interconversion between nanotubes and nanoribbons. An examination of zeta potential measurements, circular dichroism (CD) spectra, and microscopy imaging (transmission electron microscopy and atomic force microscopy) identified three different self-assembly regimes based on pH: (1) pH 2-5, positively charged, left-handed helical nanotubes; (2) pH 6-8, negatively charged, right-handed helical nanoribbons; and (3) pH ≥ 9.0, a monomeric/disassembled peptide. The nanotubes exhibited uniform diameters of 41 ± 5 nm and wall thicknesses of 4.8 ± 0.8 nm, whereas the nanoribbons existed as either flat or twisted sheets ranging in width from 11 to 60 nm with heights of 8 ± 1 nm. The UV-vis and CD spectra of the most common antiparallel, β-sheet conformation of 1-dimer were simulated at the B3LYP/def2svpd level of theory in implicit water. These studies indicated that the transition from nanotubes to nanoribbons was coupled to an M → P helical inversion of the coumarin packing orientation, respectively, within the nanostructures. The assembly process was driven by β-sheet aggregation and π-π interactions, leading to the formation of nanoribbons, which progressively wound into helical ribbons and laterally grew into smooth nanotubes as the pH decreased.
Collapse
Affiliation(s)
- McKensie L Mason
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Tyler J Finnegan
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - David A Modarelli
- Department of Chemistry and The Center for Laser and Optical Spectroscopy, Knight Chemical Laboratory , The University of Akron , Akron , Ohio 44325-3601 , United States
| | - Jon R Parquette
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
46
|
Amyloid-like peptide nanofibrils as scaffolds for tissue engineering: Progress and challenges (Review). Biointerphases 2019; 14:040801. [PMID: 31284721 DOI: 10.1116/1.5098332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Networks of amyloid-like nanofibrils assembled from short peptide sequences have the ability to form scaffolds that can encapsulate clinically relevant stem cells encouraging their attachment, growth, and differentiation into various lineages which can be used in tissue engineering applications to treat a range of diseases and traumas. In this review, the author highlights a selection of important proof-of-principle papers that show how this class of self-assembled networks is highly suited to biomaterial scaffold development. The author highlights recent studies which have shown that these scaffolds can be used to promote cell and tissue regeneration both in vitro and in vivo. The author also presents some fundamental knowledge gaps which are preventing the widespread translation of such scaffolds. Finally, the author outlines a selection of studies that elucidate molecular assembly mechanisms and biophysical properties of amyloid-like peptide nanofibrils and suggests how studies like these might lead to the ability to generate nanofibril scaffolds with bespoke properties for tissue engineering.
Collapse
|
47
|
Wang Y, Feng Y, Yang X, Wang J, Qi W, Yang X, Liu X, Xing Q, Su R, He Z. Polyamine-induced, chiral expression from liquid crystalline peptide nanofilaments to long-range ordered nanohelices. SOFT MATTER 2019; 15:4818-4826. [PMID: 31179471 DOI: 10.1039/c8sm02554a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We reported the condensation and transformation of peptide micelles into well-defined nanohelices through the incorporation of natural polyamines. The liquid-crystalline peptide micelles are assembled by a short dipeptide amphiphile driven by strong electrostatic repulsions and aromatic stacking attractions. By incorporating polyamines into the peptide solutions, like-charge attractions were achieved to induce the condensation of the like-charged nanofilaments into giant bundles. Intriguingly, by increasing the temperature or electrostatic screening effects, the nanofilaments within the bundles fuse with each other into well-defined flat ribbons which then spontaneously twisted into macroscopically aligned nanohelices. Moreover, the chiral interactions between the aromatic groups of adjacent peptides are inverted from right-handedness to left-handedness during the formation of nanohelices. The results provide new insights into the chiral evolution during peptide self-assembly and offer opportunities for the design of peptide materials with new properties, such as anisotropic hydrogels and long-range ordered chiral nanostructures.
Collapse
Affiliation(s)
- Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
49
|
Amino acid conformations control the morphological and chiral features of the self-assembled peptide nanostructures: Young investigators perspective. J Colloid Interface Sci 2019; 548:244-254. [PMID: 31004957 DOI: 10.1016/j.jcis.2019.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 01/11/2023]
Abstract
HYPOTHESIS A variety of nanostructures with different chiral features can be self-assembled from short peptides with highly similar sequences. We hypothesize that these supramolecular nanostructures are ruled by the constituent amino acid residues which adopt their conformations under the influence of intra-/inter-molecular interactions during peptide self-assembly. APPROACH Through reviewing recent advances in the self-assembly of short peptides and focusing on the relationship between amino acid conformations, peptide secondary structures and intra-/inter-molecular interactions within the supramolecular architectures, we aim to rationalize the complex interactive processes involved in the self-assembly of short, designed peptides. RESULTS Given the highly complexing interactive processes, the adoption of amino acid conformations and their control over peptide self-assembly consist of 4 main steps: (1) Each amino acid residue adopts its unique conformation in a specific sequence; (2) The sequence exhibits its own main chain geometry and determines the propensity of the intermolecular alignment within the building block; (3) The structural propensity of the building block and the packing mode between them determine the self-assembled structural features such as twisting, growth and chirality; (4) In addition to intra-/inter-molecular interactions, inter-sheet and inter-building block interactions could also affect the residue conformations and nanostructures, causing structural readjustment.
Collapse
|
50
|
Zhang H, Lou S, Yu Z. Polar-π Interactions Promote Self-assembly of Dipeptides into Laminated Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4710-4717. [PMID: 30836752 DOI: 10.1021/acs.langmuir.9b00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Precise incorporation of functional residues into sequences allows for tailoring the noncovalent interactions between peptides to guide their self-assembly into well-defined nanostructures, thus facilitating creation of artificial functional materials resembling natural systems. Here, we report on the self-assembly of dipeptides consisting of one fluorinated phenylalanine unit (Z residue) and one natural aromatic residue into laminated nanofibers predominately driven by polar-π interactions. On the basis of characterizations using transmission electron microscopy, scanning electron microscopy, atomic force microscopy, circular dichroism, Fourier transform infrared spectroscopy, and thioflavin T binding assay, we found that the face-centered stacking pattern of the dipeptides FZ, ZF, and ZY stabilized by the polar-π interactions and antiparallel β-sheet H-bonding interactions led to lamination of nanofibers and formation of ribbonlike nanostructures. Our findings demonstrate that incorporation of fluorinated aromatic units into short peptides not only promotes of polar-π interactions as alternative self-assembling driving forces but also governs the organizing pattern of peptides, thus benefiting creation of well-defined peptide nanostructures.
Collapse
Affiliation(s)
- Huiru Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry , College of Chemistry, Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Shaofeng Lou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry , College of Chemistry, Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry , College of Chemistry, Nankai University , Weijin Road 94 , Tianjin 300071 , China
| |
Collapse
|