1
|
Neumann MS, Jensen SK, Frederiksen R, Andersen SS, Beck KM, Jeppesen JO. Pushing a bistable [2]rotaxane out of equilibrium and isolation of the metastable-state co-conformation. Org Biomol Chem 2024. [PMID: 39469918 DOI: 10.1039/d4ob01419g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Incorporating a steric barrier between the two stations in a bistable [2]rotaxane based on monopyrrolotetrathiafulvalene and cyclobis(paraquat-p-phenylene) allows the high-energy metastable-state co-conformation to be physically isolated following a single redox cycle, thus making it possible to store energy (4.4 J L-1) and to follow its interconversion back to the ground-state co-conformation.
Collapse
Affiliation(s)
- Mathias S Neumann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Sofie K Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Rikke Frederiksen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Sissel S Andersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jan O Jeppesen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
2
|
Neumann MS, Flood AH, Jeppesen JO. Insight from Electrochemical Analysis in the Radical Cation State of a Monopyrrolotetrathiafulvalene-Based [2]Rotaxane. Chemistry 2024; 30:e202402377. [PMID: 39007521 DOI: 10.1002/chem.202402377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
Mechanically interlocked molecules are a class of compounds used for controlling directional movement when barriers can be raised and lowered using external stimuli. Applied voltages can turn on redox states to alter electrostatic barriers but their use for directing motion requires knowledge of their impact on the kinetics. Herein, we make the first measurements on the movement of cyclobis(paraquat-p-phenylene) (CBPQT4+) across the radical-cation state of monopyrrolotetrathiafulvalene (MPTTF) in a [2]rotaxane using variable scan-rate electrochemistry. The [2]rotaxane is designed in a way that directs CBPQT4+ to a high-energy co-conformation upon oxidation of MPTTF to either the radical cation (MPTTF⋅+) or the dication (MPTTF2+). 1H NMR spectroscopic investigations carried out in acetonitrile at 298 K showed direct interconversion to the thermodynamically more stable ground-state co-conformation with CBPQT4+ moving across the oxidized MPTTF2+ electrostatic barrier. The electrochemical studies revealed that interconversion takes place by movement of CBPQT4+ across both the MPTTF•+ (19.3 kcal mol-1) and MPTTF2+ (18.7 kcal mol-1) barriers. The outcome of our studies shows that MPTTF has three accessible redox states that can be used to kinetically control the movement of the ring component in mechanically interlocked molecules.
Collapse
Affiliation(s)
- Mathias S Neumann
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, 5230, Denmark
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Jan O Jeppesen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, 5230, Denmark
| |
Collapse
|
3
|
Nakajima T, Tashiro S, Ehara M, Shionoya M. Selective synthesis of tightly- and loosely-twisted metallomacrocycle isomers towards precise control of helicity inversion motion. Nat Commun 2023; 14:7868. [PMID: 38057325 DOI: 10.1038/s41467-023-43658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Molecular twist is a characteristic component of molecular machines. Selectively synthesising isomers with different modes of twisting and controlling their motion such as helicity inversion is an essential challenge for achieving more advanced molecular systems. Here we report a strategy to control the inversion kinetics: the kinetically selective synthesis of tightly- and loosely-twisted isomers of a trinuclear PdII-macrocycle and their markedly different molecular behaviours. The loosely-twisted isomers smoothly invert between (P)- and (M)-helicity at a rate of 3.31 s-1, while the helicity inversion of the tightly-twisted isomers is undetectable but rather relaxes to the loosely-twisted isomers. This critical difference between these two isomers is explained by the presence or absence of an absolute configuration inversion of the nitrogen atoms of the macrocyclic amine ligand. Strategies to control the helicity inversion and structural loosening motions by the mode of twisting offer future possibilities for the design of molecular machines.
Collapse
Affiliation(s)
- Tomoki Nakajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Jensen SK, Neumann MS, Frederiksen R, Skavenborg ML, Larsen MC, Wessel SE, Jeppesen JO. Mechanistic studies of isomeric [2]rotaxanes consisting of two different tetrathiafulvalene units reveal that the movement of cyclobis(paraquat- p-phenylene) can be controlled. Chem Sci 2023; 14:12366-12378. [PMID: 37969595 PMCID: PMC10631196 DOI: 10.1039/d3sc04408d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023] Open
Abstract
Controlling the movement in artificial molecular machines is a key challenge that needs to be solved before their full potential can be harnessed. In this study, two isomeric tri-stable [2]rotaxanes 1·4PF6 and 2·4PF6 incorporating both a tetrathiafulvalene (TTF) and a monopyrrolotetrathiafulvalene (MPTTF) unit in the dumbbell component have been synthesised to measure the energy barriers when the tetracationic cyclobis(paraquat-p-phenylene) (CBPQT4+) ring moves across either a TTF2+ or an MPTTF2+ dication. By strategically exchanging one of the thiomethyl barriers on either the TTF unit or the MPTTF unit with the bulkier thioethyl group, the movement of the CBPQT4+ ring in 14+ and 24+ can be controlled to take place in only one direction upon tetra-oxidation. Cyclic voltammetry and 1H NMR spectroscopy were used to investigate the switching mechanism and it was found that upon tetra-oxidation of 14+ and 24+, the CBPQT4+ ring moves first to a position where it is located between the TTF2+ and MPTTF2+ dications producing high-energy co-conformations which slowly interconvert into thermodynamically more stable co-conformations. The kinetics of the movement occurring in the tetra-oxidised [2]rotaxanes 18+ and 28+ were studied at different temperatures allowing the free energy of the transition state, when CBPQT4+ moves across TTF2+ (21.5 kcal mol-1) and MPTTF2+ (20.3 kcal mol-1) at 298 K, to be determined. These results demonstrate for the first time that the combination of a TTF and an MPTTF unit can be used to induce directional movement of the CBPQT4+ ring in molecular machines with a 90% efficiency.
Collapse
Affiliation(s)
- Sofie K Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| | - Mathias S Neumann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| | - Rikke Frederiksen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| | - Mathias L Skavenborg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| | - Mads C Larsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| | - Stinne E Wessel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| | - Jan O Jeppesen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230 Odense Denmark
| |
Collapse
|
5
|
Neumann MS, Smith AF, Jensen SK, Frederiksen R, Skavenborg ML, Jeppesen JO. Evaluating the energy landscape of an out-of-equilibrium bistable [2]rotaxane containing monopyrrolotetrathiafulvalene. Chem Commun (Camb) 2023; 59:6335-6338. [PMID: 37067575 DOI: 10.1039/d3cc00360d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The unique redox properties of monopyrrolotetrathiafulvalene can be used to induce directional movement in interlocked molecules. In this study, the kinetics for the directional movement of cyclobis(paraquat-p-phenylene) across the dioxidised monopyrrolotetrathiafulvalene in a [2]rotaxane is quantified by time-resolved 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Mathias S Neumann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Amanda F Smith
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Sofie K Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Rikke Frederiksen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Mathias L Skavenborg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jan O Jeppesen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
6
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
7
|
Fadler RE, Flood AH. Rigidity and Flexibility in Rotaxanes and Their Relatives; On Being Stubborn and Easy-Going. Front Chem 2022; 10:856173. [PMID: 35464214 PMCID: PMC9022846 DOI: 10.3389/fchem.2022.856173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Rotaxanes are an emerging class of molecules composed of two building blocks: macrocycles and threads. Rotaxanes, and their pseudorotaxane and polyrotaxane relatives, serve as prototypes for molecular-level switches and machines and as components in materials like elastic polymers and 3D printing inks. The rigidity and flexibility of these molecules is a characteristic feature of their design. However, the mechanical properties of the assembled rotaxane and its components are rarely examined directly, and the translation of these properties from molecules to bulk materials is understudied. In this Review, we consider the mechanical properties of rotaxanes by making use of concepts borrowed from physical organic chemistry. Rigid molecules have fewer accessible conformations with higher energy barriers while flexible molecules have more accessible conformations and lower energy barriers. The macrocycles and threads become rigidified when threaded together as rotaxanes in which the formation of intermolecular interactions and increased steric contacts collectively reduce the conformational space and raise barriers. Conversely, rotational and translational isomerism in rotaxanes adds novel modes of flexibility. We find that rigidification in rotaxanes is almost universal, but novel degrees of flexibility can be introduced. Both have roles to play in the function of rotaxanes.
Collapse
|
8
|
Kristensen R, Neumann MS, Andersen SS, Stein PC, Flood AH, Jeppesen JO. Quantifying the barrier for the movement of cyclobis(paraquat- p-phenylene) over the dication of monopyrrolotetrathiafulvalene. Org Biomol Chem 2022; 20:2233-2248. [PMID: 35107116 DOI: 10.1039/d1ob02263f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bistable [2]pseudorotaxane 1⊂CBPQT·4PF6 and a bistable [2]rotaxane 2·4PF6 have been synthesised to measure the height of an electrostatic barrier produced by double molecular oxidation (0 to +2). Both systems have monopyrrolotetrathiafulvalene (MPTTF) and oxyphenylene (OP) as stations for cyclobis(paraquat-p-phenylene) (CBPQT4+). They have a large stopper at one end while the second stopper in 24+ is composed of a thioethyl (SEt) group and a thiodiethyleneglycol (TDEG) substituent, whereas in 1⊂CBPQT4+, the SEt group has been replaced with a less bulky thiomethyl (SMe) group. This seemingly small difference in the substituents on the MPTTF unit leads to profound changes when comparing the physical properties of the two systems allowing for the first measurement of the deslipping of the CBPQT4+ ring over an MPTTF2+ unit in the [2]pseudorotaxane. Cyclic voltammetry and 1H NMR spectroscopy were used to investigate the switching mechanism for 1⊂CBPQT·MPTTF4+ and 2·MPTTF4+, and it was found that CBPQT4+ moves first to the OP station producing 1⊂CBPQT·OP6+ and 2·OP6+, respectively, upon oxidation of the MPTTF unit. The kinetics of the complexation/decomplexation process occurring in 1⊂CBPQT·MPTTF4+ and in 1⊂CBPQT·OP6+ were studied, allowing the free energy of the transition state when CBPQT4+ moves across a neutral MPTTF unit (17.0 kcal mol-1) or a di-oxidised MPTTF2+ unit (24.0 kcal mol-1) to be determined. These results demonstrate that oxidation of the MPTTF unit to MPTTF2+ increases the energy barrier that the CBPQT4+ ring must overcome for decomplexation to occur by 7.0 kcal mol-1.
Collapse
Affiliation(s)
- Rikke Kristensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| | - Mathias S Neumann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| | - Sissel S Andersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| | - Paul C Stein
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Jan O Jeppesen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
9
|
Yang JX, Li Z, Gu XH, Zhan TG, Cui J, Zhang KD. A photogated photoswitchable [2]rotaxane based on orthogonal photoreactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Ng AWH, Leung YH, Au-Yeung HY. Dynamics of mechanically bonded macrocycles in radial hetero[4]catenane isomers. Org Chem Front 2021. [DOI: 10.1039/d0qo01658f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A pair of radial [4]catenane isomers interlocked with two CB[6]s and one β-CD is reported. Due to the different positions of the tightly bound CB[6]s, shuttling dynamics of the β-CD between the two biphenyl stations are different in the isomers.
Collapse
Affiliation(s)
| | - Yu Hin Leung
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
- State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment
| |
Collapse
|
11
|
Liang CC, Yuan YH. Exploring Children's Creative Self-Efficacy Affected by After-School Program and Parent-Child Relationships. Front Psychol 2020; 11:2237. [PMID: 33041895 PMCID: PMC7522334 DOI: 10.3389/fpsyg.2020.02237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/10/2020] [Indexed: 12/05/2022] Open
Abstract
This study aimed to verify the relationship among children’s creative self-efficacy, parenting style, parent–child relationship, and after-school program. Judgmental sampling was used for subject selection from Taiwan. There are 550 valid participants composed of elementary school to junior high school students; their data were put into the statistical process. The multiple regression analysis was applied in this study. The survey tool was developed based on literature review and related articles. Research result supported the idea that the after-school program was the most significant variable that affected the student’s creative self-efficacy. The “punitive discipline” and “autonomy support” of parenting style can affect positive parent–child relationships as well as students’ creative self-efficacy. Evidence supported the notion that “negative parent–child relationships” will not motivate students’ creative self-efficacy. Besides, the after-school program plays an important role in the students’ creative self-efficacy independently.
Collapse
Affiliation(s)
- Chen-Chu Liang
- Department of Education, National University of Tainan, Tainan, Taiwan
| | - Yu-Hsi Yuan
- College of Economics and Management, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
12
|
Wu Y, Frasconi M, Liu WG, Young RM, Goddard WA, Wasielewski MR, Stoddart JF. Electrochemical Switching of a Fluorescent Molecular Rotor Embedded within a Bistable Rotaxane. J Am Chem Soc 2020; 142:11835-11846. [PMID: 32470290 PMCID: PMC8007092 DOI: 10.1021/jacs.0c03701] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
We
report how the nanoconfined environment, introduced by the mechanical
bonds within an electrochemically switchable bistable [2]rotaxane,
controls the rotation of a fluorescent molecular rotor, namely, an
8-phenyl-substituted boron dipyrromethene (BODIPY). The electrochemical
switching of the bistable [2]rotaxane induces changes in the ground-state
coconformation and in the corresponding excited-state properties of
the BODIPY rotor. In the starting redox state, when no external potential
is applied, the cyclobis(paraquat-p-phenylene) (CBPQT4+) ring component encircles the tetrathiafulvalene (TTF) unit
on the dumbbell component, leaving the BODIPY rotor unhindered and
exhibiting low fluorescence. Upon oxidation of the TTF unit to a TTF2+ dication, the CBPQT4+ ring is forced toward the
molecular rotor, leading to an increased energy barrier for the excited
state to rotate the rotor into the state with a high nonradiative
rate constant, resulting in an overall 3.4-fold fluorescence enhancement.
On the other hand, when the solvent polarity is high enough to stabilize
the excited charge-transfer state between the BODIPY rotor and the
CBPQT4+ ring, movement of the ring toward the BODIPY rotor
produces an unexpectedly strong fluorescence signal decrease as the
result of photoinduced electron transfer from the BODIPY rotor to
the CBPQT4+ ring. The nanoconfinement effect introduced
by mechanical bonding can effectively lead to modulation of the physicochemical
properties as observed in this bistable [2]rotaxane. On account of
the straightforward synthetic strategy and the facile modulation of
switchable electrochromic behavior, our approach could pave the way
for the development of new stimuli-responsive materials based on mechanically
interlocked molecules for future electro-optical applications, such
as sensors, molecular memories, and molecular logic gates.
Collapse
Affiliation(s)
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Wei-Guang Liu
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | | | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | | | - J Fraser Stoddart
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.,School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
13
|
Jensen M, Kristensen R, Andersen SS, Bendixen D, Jeppesen JO. Probing the Electrostatic Barrier of Tetrathiafulvalene Dications using a Tetra-stable Donor-Acceptor [2]Rotaxane. Chemistry 2020; 26:6165-6175. [PMID: 32049376 DOI: 10.1002/chem.202000302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/09/2020] [Indexed: 12/18/2022]
Abstract
A tetra-stable donor-acceptor [2]rotaxane 1⋅4PF6 has been synthesized. The dumbbell component is comprised of an oxyphenylene (OP), a tetrathiafulvalene (TTF), a monopyrrolo-TTF (MPTTF), and a hydroquinone (HQ) unit, which can act as recognition sites (stations) for the tetra-cationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+ ). The TTF and the MPTTF stations are located in the middle of the dumbbell component and are connected by a triethylene glycol (TEG) chain in such a way that the pyrrole moiety of the MPTTF station points toward the TTF station, while the TTF and MPTTF stations are flanked by the OP and HQ stations on their left hand side and right hand side, respectively. The [2]rotaxane was characterized in solution by 1 H NMR spectroscopy and cyclic voltammetry. The spectroscopic data revealed that the majority (77 %) of the tetra-stable [2]rotaxane 14+ exist as the translational isomer 1⋅MPTTF4+ in which the CBPQT4+ ring encircles the MPTTF station. The electrochemical studies showed that CBPQT4+ in 1⋅MPTTF4+ undergoes ring translation as result of electrostatic repulsion from the oxidized MPTTF unit. Following tetra-oxidation of 1⋅MPTTF4+ , a high-energy state of 18+ was obtained (i.e., 1⋅TEG8+ ) in which the CBPQT4+ ring was located on the TEG linker connecting the di-oxidized TTF2+ and MPTTF2+ units. 1 H NMR spectroscopy carried out in CD3 CN at 298 K on a chemically oxidized sample of 1⋅MPTTF4+ revealed that the metastable state 1⋅TEG8+ is only short-lived with a lifetime of a few minutes and it was found that 70 % of the positively charged CBPQT4+ ring moved from 1⋅TEG8+ to the HQ station, while 30 % moved to the much weaker OP station. These results clearly demonstrate that the CBPQT4+ ring can cross both an MPTTF2+ and a TTF2+ electrostatic barrier and that the free energy of activation required to cross MPTTF2+ is ca. 0.5 kcal mol-1 smaller as compared to TTF2+ .
Collapse
Affiliation(s)
- Morten Jensen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Rikke Kristensen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Sissel S Andersen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Dan Bendixen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jan O Jeppesen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
14
|
Nakamura T, Mori Y, Naito M, Okuma Y, Miyagawa S, Takaya H, Kawasaki T, Tokunaga Y. Rotaxanes comprising cyclic phenylenedioxydiacetamides and secondary mono- and bis-dialkylammonium ions: effect of macrocyclic ring size on pseudorotaxane formation. Org Chem Front 2020. [DOI: 10.1039/c9qo01359h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[2]Rotaxanes, stabilized through multiple and cooperative hydrogen bonding system, were synthesized from dialkylammonium ions and macrocycle possessing two phenylenedioxydiacetamide units and appropriate spacers.
Collapse
Affiliation(s)
- Takanori Nakamura
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Yuka Mori
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Masaya Naito
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Yukari Okuma
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Hikaru Takaya
- International Research Center for Elements Science
- Institute for Chemical Research
- Kyoto University
- Uji 611-0011
- Japan
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| |
Collapse
|
15
|
Jensen M, Olsen G, Kristensen R, Takimiya K, Jeppesen JO. Naphtho[1,2- b
:5,6- b
′]dithiophene Building Blocks and their Complexation with Cyclobis(paraquat- p
-phenylene). European J Org Chem 2019. [DOI: 10.1002/ejoc.201901161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Morten Jensen
- Department of Physics, Chemistry, and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense M Denmark
| | - Gunnar Olsen
- Department of Physics, Chemistry, and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense M Denmark
| | - Rikke Kristensen
- Department of Physics, Chemistry, and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense M Denmark
| | - Kazuo Takimiya
- Emergent Molecular Function Group; RIKEN Center for Emergent Matter Science (CEMS); 2-1 Hirosawa Saitama 351-0198 Wako Japan
- Department of Chemistry; Graduate School of Science; Tohoku University; 6-3 Aoba Miyagi 980-8578 Sendai Japan
| | - Jan O. Jeppesen
- Department of Physics, Chemistry, and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
16
|
Kumpulainen T, Panman MR, Bakker BH, Hilbers M, Woutersen S, Brouwer AM. Accelerating the Shuttling in Hydrogen-Bonded Rotaxanes: Active Role of the Axle and the End Station. J Am Chem Soc 2019; 141:19118-19129. [PMID: 31697078 PMCID: PMC6923795 DOI: 10.1021/jacs.9b10005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The relation between the chemical structure and the mechanical
behavior of molecular machines is of paramount importance for a rational
design of superior nanomachines. Here, we report on a mechanistic
study of a nanometer scale translational movement in two bistable
rotaxanes. Both rotaxanes consist of a tetra-amide macrocycle interlocked
onto a polyether axle. The macrocycle can shuttle between an initial
succinamide station and a 3,6-dihydroxy- or 3,6-di-tert-butyl-1,8-naphthalimide end stations. Translocation of the macrocycle
is controlled by a hydrogen-bonding equilibrium between the stations.
The equilibrium can be perturbed photochemically by either intermolecular
proton or electron transfer depending on the system. To the best of
our knowledge, utilization of proton transfer from a conventional
photoacid for the operation of a molecular machine is demonstrated
for the first time. The shuttling dynamics are monitored by means
of UV–vis and IR transient absorption spectroscopies. The polyether
axle accelerates the shuttling by ∼70% compared to a structurally
similar rotaxane with an all-alkane thread of the same length. The
acceleration is attributed to a decrease in activation energy due
to an early transition state where the macrocycle partially hydrogen
bonds to the ether group of the axle. The dihydroxyrotaxane exhibits
the fastest shuttling speed over a nanometer distance (τshuttling ≈ 30 ns) reported to date. The shuttling in
this case is proposed to take place via a so-called harpooning mechanism
where the transition state involves a folded conformation due to the
hydrogen-bonding interactions with the hydroxyl groups of the end
station.
Collapse
Affiliation(s)
- Tatu Kumpulainen
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| | - Matthijs R Panman
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| | - Bert H Bakker
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| | - Michiel Hilbers
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| | - Albert M Brouwer
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| |
Collapse
|
17
|
Kilde MD, Kristensen R, Olsen G, Jeppesen JO, Nielsen MB. Redox‐Active Monopyrrolotetrathiafulvalene‐Based Rotaxane Incorporating the Dihydroazulene/Vinylheptafulvene Photo/Thermoswitch. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Martin Drøhse Kilde
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Rikke Kristensen
- Department of Physics, Chemistry, and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Gunnar Olsen
- Department of Physics, Chemistry, and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Jan O. Jeppesen
- Department of Physics, Chemistry, and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | | |
Collapse
|
18
|
Andersen SS, Saad AW, Kristensen R, Pedersen TS, O'Driscoll LJ, Flood AH, Jeppesen JO. Salts accelerate the switching kinetics of a cyclobis(paraquat-p-phenylene) [2]rotaxane. Org Biomol Chem 2019; 17:2432-2441. [PMID: 30742174 DOI: 10.1039/c9ob00085b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The rate at which the macrocyclic cyclobis(paraquat-p-phenylene) ring of a bistable [2]rotaxane moves from a tetrathiafulvalene station to an oxyphenylene station upon oxidation of the tetrathiafulvalene station is found to be increased in the presence of added salts. Compared to the salt-free case, 0.1 M solutions of a series of tetraalkylammonium hexafluorophosphate salts (R4N·PF6, R = H, Me, Et or n-Bu) and of tetrabutylammonium perchlorate (n-Bu4N·ClO4) all afford an increased switching rate, which is largest in the case of n-Bu4N·ClO4 with smaller anions. Variation in the size of the ammonium cation has no significant effect. These results indicate that the addition of excess ions can be used as an accelerator to speed up shuttling processes in rotaxanes and catenanes based on the mobile cyclobis(paraquat-p-phenylene) ring, and that the choice of anion offers a convenient means of controlling the extent of this effect.
Collapse
Affiliation(s)
- Sissel S Andersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wolf M, Ogawa A, Bechtold M, Vonesch M, Wytko JA, Oohora K, Campidelli S, Hayashi T, Guldi DM, Weiss J. Light triggers molecular shuttling in rotaxanes: control over proximity and charge recombination. Chem Sci 2019; 10:3846-3853. [PMID: 30996970 PMCID: PMC6446966 DOI: 10.1039/c8sc05328f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/27/2019] [Indexed: 11/21/2022] Open
Abstract
The lifetime of a charge separated state is enhanced by the effects of solvent polarity and the coordination controlled shuttling of a dumbbell in a porphyrin/fullerene rotaxane.
We present the synthesis of novel rotaxanes based on mechanically interlocked porphyrins and fullerene and their advanced investigations by means of photophysical measurements. To this end, a fullerene-capped dumbbell-type axle containing a central triazole was threaded through strapped (metallo)porphyrins—either a free-base or a zinc porphyrin. Femtosecond-resolved transient absorption measurements revealed charge-separation between the porphyrin and fullerene upon light excitation. Solvent polarity and solvent coordination effects induced molecular motion of the rotaxanes upon charge separation and enabled, for the first time, subtle control over the charge recombination by enabling and controlling the directionality of shuttling.
Collapse
Affiliation(s)
- Maximilian Wolf
- Friedrich-Alexander-Universität Erlangen-Nürnberg , Department of Chemistry and Pharmacy , Egerlandstraße 3 , 91058 Erlangen , Germany .
| | - Ayumu Ogawa
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita 565-0871 , Japan . .,Institut de Chimie de Strasbourg , UMR 7177 CNRS-Université de Strasbourg , 4, rue Blaise Pascal , 67000 Strasbourg , France .
| | - Mareike Bechtold
- Friedrich-Alexander-Universität Erlangen-Nürnberg , Department of Chemistry and Pharmacy , Egerlandstraße 3 , 91058 Erlangen , Germany . .,Institute of Inorganic Chemistry Karlsruhe Institute of Technology , Engesserstraße 15 , D-76131 Karlsruhe , Germany
| | - Maxime Vonesch
- Institut de Chimie de Strasbourg , UMR 7177 CNRS-Université de Strasbourg , 4, rue Blaise Pascal , 67000 Strasbourg , France .
| | - Jennifer A Wytko
- Institut de Chimie de Strasbourg , UMR 7177 CNRS-Université de Strasbourg , 4, rue Blaise Pascal , 67000 Strasbourg , France .
| | - Koji Oohora
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita 565-0871 , Japan .
| | - Stéphane Campidelli
- LICSEN , NIMBE , CEA , CNRS , Université Paris-Saclay , CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| | - Takashi Hayashi
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita 565-0871 , Japan .
| | - Dirk M Guldi
- Friedrich-Alexander-Universität Erlangen-Nürnberg , Department of Chemistry and Pharmacy , Egerlandstraße 3 , 91058 Erlangen , Germany .
| | - Jean Weiss
- Institut de Chimie de Strasbourg , UMR 7177 CNRS-Université de Strasbourg , 4, rue Blaise Pascal , 67000 Strasbourg , France .
| |
Collapse
|
20
|
Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem. Proc Natl Acad Sci U S A 2018; 115:9391-9396. [PMID: 29735677 DOI: 10.1073/pnas.1719539115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.
Collapse
|
21
|
Liu W, Johnson A, Smith BD. Guest Back-Folding: A Molecular Design Strategy That Produces a Deep-Red Fluorescent Host/Guest Pair with Picomolar Affinity in Water. J Am Chem Soc 2018; 140:3361-3370. [PMID: 29439578 DOI: 10.1021/jacs.7b12991] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the major goals of modern supramolecular chemistry, with important practical relevance in many technical fields, is the development of synthetic host/guest partners with ultrahigh affinity and selectivity in water. Currently, most association pairs exhibit micromolar affinity or weaker, and there are very few host/guest systems with Ka > 109 M-1, apparently due to a barrier imposed by enthalpy/entropy compensation. This present study investigated the threading of a water-soluble tetralactam cyclophane by a deep-red fluorescent squaraine guest with flanking polyethylene glycol chains, an association process that is dominated by a highly favorable enthalpic driving force. A squaraine structure was rationally designed to permit guest back-folding as a strategy to greatly expand the hydrophobic surface area that could be buried upon complexation. Guided by computational modeling, an increasing number of N-benzyl groups were appended to the squaraine core, so that, after threading, the aromatic rings could fold back and stack against the cyclophane periphery. The final design iteration exhibited an impressive combination of fluorescence and supramolecular properties, including ratiometric change in deep-red emission, picomolar affinity ( Ka = 5.1 × 1010 M-1), and very rapid threading ( kon = 7.9 × 107 M-1 s-1) in water at 25 °C. Similar excellent behavior was observed in serum solution. A tangible outcome of this study is a new cyclophane/squaraine association pair that will be a versatile platform for many different types of fluorescence-based imaging and diagnostics applications. From a broader perspective, guest back-folding of aromatic groups is a promising new supramolecular stabilization strategy to overcome enthalpy/entropy compensation and produce ultrahigh affinity [2]pseudorotaxane complexes in water and biological media.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry and Biochemistry , University of Notre Dame , 236 Nieuwland Science Hall , Notre Dame , Indiana 46556 , United States
| | - Andrew Johnson
- Division of Science , Lindsey Wilson College , 317 Fugitte Science Center , Columbia , Kentucky 42728 , United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry , University of Notre Dame , 236 Nieuwland Science Hall , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
22
|
Huang F, Wang G, Ma L, Wang Y, Chen X, Che Y, Jiang H. Molecular Spur Gears Based on a Switchable Quinquepyridine Foldamer Acting as a Stator. J Org Chem 2017; 82:12106-12111. [DOI: 10.1021/acs.joc.7b01864] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fu Huang
- CAS
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R.China
- University of Chinese Academy of Sciences, Beijing 100149, P.R.China
| | - Guangxia Wang
- CAS
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China
- University of Chinese Academy of Sciences, Beijing 100149, P.R.China
| | - Lishuang Ma
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R.China
| | - Ying Wang
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R.China
| | - Xuebo Chen
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R.China
| | - Yanke Che
- CAS
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China
| | - Hua Jiang
- CAS
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R.China
| |
Collapse
|
23
|
Gómez-Durán CFA, Liu W, Betancourt-Mendiola MDL, Smith BD. Structural Control of Kinetics for Macrocycle Threading by Fluorescent Squaraine Dye in Water. J Org Chem 2017; 82:8334-8341. [PMID: 28753022 DOI: 10.1021/acs.joc.7b01486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While the general concept of steric speed bumps has been demonstrated in rotaxane shuttles and macrocycle threading systems, the sensitivity of speed bump effects has not been evaluated as a function of structural geometry. Values of Ka and kon for macrocycle threading in water are reported for a series of homologous squaraine dyes with different substituents (speed bumps) on the flanking chains and two macrocycles with different cavity sizes. Sensitivity to a steric speed bump effect was found to depend on (a) structural location, being lowest when the speed bump was near the end of a flanking chain, and (b) macrocycle cavity size, which was enhanced when the cavity was constricted. This new insight is broadly applicable to many types of molecular threading systems.
Collapse
Affiliation(s)
- César F A Gómez-Durán
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, South Bend, Indiana 46556, United States
| | - Wenqi Liu
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, South Bend, Indiana 46556, United States
| | | | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, South Bend, Indiana 46556, United States
| |
Collapse
|
24
|
Kristensen R, Andersen SS, Olsen G, Jeppesen JO. Probing the Role of Glycol Chain Lengths in π-Donor–Acceptor [2]Pseudorotaxanes Based on Monopyrrolo-Tetrathiafulvalene and Cyclobis(paraquat-p-phenylene). J Org Chem 2017; 82:1371-1379. [DOI: 10.1021/acs.joc.6b02466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Rikke Kristensen
- Department of Physics, Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Sissel S. Andersen
- Department of Physics, Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Gunnar Olsen
- Department of Physics, Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jan O. Jeppesen
- Department of Physics, Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
25
|
Yu C, Ma L, He J, Xiang J, Deng X, Wang Y, Chen X, Jiang H. Flexible, Linear Chains Act as Baffles To Inhibit the Intramolecular Rotation of Molecular Turnstiles. J Am Chem Soc 2016; 138:15849-15852. [PMID: 27960355 DOI: 10.1021/jacs.6b10816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In artificial molecular devices, flexible, linear chains typically exhibit very weak capability in inhibiting molecular motion. Herein, we describe the dynamic properties of a series of molecular turnstiles consisting of a rigid frame and a phenyl rotator flanked with linear alkoxymethyl substituents. The long, flexible substituents act as elastic baffles to inhibit the rotations of the rotator at medium to fast speeds on the NMR time scale. When the rotator moves slowly, the substituents become more relaxed, thus obtaining an opportunity to completely thread through the cavity of the turnstiles. These findings reveal a basic but missing correlation between steric hindrance and speed of motion for flexible, linear chains in dynamic molecular devices, thus opening up a new direction toward molecular machines with more elaborate dynamic functions.
Collapse
Affiliation(s)
- Chengyuan Yu
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Lishuang Ma
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Jiaojiao He
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Junfeng Xiang
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Xuebin Deng
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Ying Wang
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Hua Jiang
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University , Beijing 100875, China
| |
Collapse
|
26
|
Liang G, Wu G, Wang H, Su J, Li H, Lin Q, Zhang Y, Wei T. Unidirectional threading of tadpole-looking guests into a symmetric pillar[5]arene through host–guest complexation. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0662-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Cheng C, Cheng T, Xiao H, Krzyaniak MD, Wang Y, McGonigal PR, Frasconi M, Barnes JC, Fahrenbach AC, Wasielewski MR, Goddard WA, Stoddart JF. Influence of Constitution and Charge on Radical Pairing Interactions in Tris-radical Tricationic Complexes. J Am Chem Soc 2016; 138:8288-300. [DOI: 10.1021/jacs.6b04343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chuyang Cheng
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tao Cheng
- Materials
and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Hai Xiao
- Materials
and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Matthew D. Krzyaniak
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| | - Yuping Wang
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paul R. McGonigal
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Marco Frasconi
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Jonathan C. Barnes
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Albert C. Fahrenbach
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Howard Hughes Medical Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Earth-Life
Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Michael R. Wasielewski
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| | - William A. Goddard
- Materials
and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Franchi P, Bleve V, Mezzina E, Schäfer C, Ragazzon G, Albertini M, Carbonera D, Credi A, Di Valentin M, Lucarini M. Structural Changes of a Doubly Spin-Labeled Chemically Driven Molecular Shuttle Probed by PELDOR Spectroscopy. Chemistry 2016; 22:8745-50. [DOI: 10.1002/chem.201601407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Paola Franchi
- Dipartimento di Chimica “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Valentina Bleve
- Dipartimento di Chimica “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Elisabetta Mezzina
- Dipartimento di Chimica “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Christian Schäfer
- Dipartimento di Chimica “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Giulio Ragazzon
- Dipartimento di Chimica “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Marco Albertini
- Dipartimento di Scienze Chimiche; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Donatella Carbonera
- Dipartimento di Scienze Chimiche; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Alberto Credi
- Dipartimento di Chimica “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari; University of Bologna; Viale Fanin 44 40127 Bologna Italy
| | - Marilena Di Valentin
- Dipartimento di Scienze Chimiche; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Marco Lucarini
- Dipartimento di Chimica “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
29
|
Benson CR, Share AI, Marzo MG, Flood AH. Double Switching of Two Rings in Palindromic [3]Pseudorotaxanes: Cooperativity and Mechanism of Motion. Inorg Chem 2016; 55:3767-76. [DOI: 10.1021/acs.inorgchem.5b02554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Christopher R. Benson
- Department
of Chemistry, Indiana University 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Andrew I. Share
- Department
of Chemistry, Indiana University 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Matthew G. Marzo
- Department
of Chemistry, Indiana University 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Amar H. Flood
- Department
of Chemistry, Indiana University 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
30
|
Abstract
The past quarter of a century has witnessed an increasing engagement on the part of physicists and chemists in the design and synthesis of molecular machines de novo. This minireview traces the development of artificial molecular machines from their prototypes in the form of shuttles and switches to their emergence as motors and pumps where supplies of energy in the form of chemical fuel, electrochemical potential and light activation become a minimum requirement for them to function away from equilibrium. The challenge facing this rapidly growing community of scientists and engineers today is one of putting wholly synthetic molecules to work, both individually and as collections. Here, we highlight some of the recent conceptual and practical advances relating to the operation of wholly synthetic rotary and linear motors.
Collapse
Affiliation(s)
- Chuyang Cheng
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA.
| |
Collapse
|
31
|
Zhang YC, Qin Y, Wang H, Zhang DW, Yang G, Li ZT. Bipyridinium Polymers That Dock Tetrathiafulvalene Guests in Water Driven by Donor-Acceptor and Ion Pair Interactions. Chem Asian J 2016; 11:1065-70. [DOI: 10.1002/asia.201600017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Yun-Chang Zhang
- Department of Chemistry; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Fudan University; 220 Handan Road Shanghai 200433 China
| | - Ying Qin
- College of Chemistry and Molecular Engineering; Zhengzhou University; 100 Kexue Street Zhengzhou 450001 China
| | - Hui Wang
- Department of Chemistry; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Fudan University; 220 Handan Road Shanghai 200433 China
| | - Dan-Wei Zhang
- Department of Chemistry; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Fudan University; 220 Handan Road Shanghai 200433 China
| | - Guanyu Yang
- College of Chemistry and Molecular Engineering; Zhengzhou University; 100 Kexue Street Zhengzhou 450001 China
| | - Zhan-Ting Li
- Department of Chemistry; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Fudan University; 220 Handan Road Shanghai 200433 China
| |
Collapse
|
32
|
Logtenberg H, Areephong J, Bauer J, Meetsma A, Feringa BL, Browne WR. Towards Redox-Driven Unidirectional Molecular Motion. Chemphyschem 2016; 17:1895-901. [DOI: 10.1002/cphc.201501184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Hella Logtenberg
- Stratingh Institute for Chemistry; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborgh 4 9747 AG The Netherlands
| | - Jetsuda Areephong
- Stratingh Institute for Chemistry; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborgh 4 9747 AG The Netherlands
| | - Jurica Bauer
- Stratingh Institute for Chemistry; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborgh 4 9747 AG The Netherlands
| | - Auke Meetsma
- Stratingh Institute for Chemistry; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborgh 4 9747 AG The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborgh 4 9747 AG The Netherlands
| | - Wesley R. Browne
- Stratingh Institute for Chemistry; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborgh 4 9747 AG The Netherlands
| |
Collapse
|
33
|
Wang WK, Xu ZY, Zhang YC, Wang H, Zhang DW, Liu Y, Li ZT. A tristable [2]rotaxane that is doubly gated by foldamer and azobenzene kinetic barriers. Chem Commun (Camb) 2016; 52:7490-3. [DOI: 10.1039/c6cc02110g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonded foldamer and azobenzene units have been incorporated into a donor–acceptor-type [2]rotaxane to assemble a doubly gated switching system.
Collapse
Affiliation(s)
- Wei-Kun Wang
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Fudan University
- Shanghai 200433
- China
| | - Zi-Yue Xu
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Fudan University
- Shanghai 200433
- China
| | - Yun-Chang Zhang
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Fudan University
- Shanghai 200433
- China
| | - Hui Wang
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Fudan University
- Shanghai 200433
- China
| | - Dan-Wei Zhang
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Fudan University
- Shanghai 200433
- China
| | - Yi Liu
- The Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Zhan-Ting Li
- Department of Chemistry
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
34
|
Sun J, Wu Y, Wang Y, Liu Z, Cheng C, Hartlieb KJ, Wasielewski MR, Stoddart JF. An Electrochromic Tristable Molecular Switch. J Am Chem Soc 2015; 137:13484-7. [DOI: 10.1021/jacs.5b09274] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Junling Sun
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yilei Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuping Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhichang Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chuyang Cheng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karel J. Hartlieb
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
35
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
36
|
Sun J, Wu Y, Liu Z, Cao D, Wang Y, Cheng C, Chen D, Wasielewski MR, Stoddart JF. Visible Light-Driven Artificial Molecular Switch Actuated by Radical–Radical and Donor–Acceptor Interactions. J Phys Chem A 2015; 119:6317-25. [DOI: 10.1021/acs.jpca.5b04570] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Junling Sun
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yilei Wu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States
| | - Zhichang Liu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Dennis Cao
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yuping Wang
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chuyang Cheng
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Dongyang Chen
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
37
|
Yamada Y, Hiraga K, Tanaka K. Metal-induced dynamic conformational and fluorescence switch of quinone-appended Zn-porphyrin. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615500169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this report, we have designed and synthesized a novel switching molecule whose fluorescence can be switched via dynamic conformational change between expanded and shrunk states induced by metal complexation and decomplexation. The switching molecule is composed of three kinds of components, namely, a Zn 2+-porphyrin fluorophore, two quinone quenchers, and their linkers containing a 4,4′-bipyridine moiety. UV-vis and fluorescence titration studies revealed that metal complexation of the bipyridine units with Zn 2+ ions induced the dynamic structural change of the molecular shape and simultaneous enhancement of fluorescence of the Zn 2+-porphyrin fluorophore.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Research Institute of Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kosuke Hiraga
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
38
|
Romano F, Manoni R, Franchi P, Mezzina E, Lucarini M. Supramolecular control of spin exchange in a spin-labelled [2]rotaxane incorporating a tetrathiafulvalene unit. Chemistry 2015; 21:2775-9. [PMID: 25538046 DOI: 10.1002/chem.201406301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 11/07/2022]
Abstract
The EPR properties of a novel triradical obtained by single-electron oxidation of a nitroxide-spin-labelled rotaxane containing a tetrathiafulvalene unit and cyclobis(paraquat-p-phenylene) ring is reported. Rotaxanation is proved to have a dramatic effect on through-space magnetic interactions between radical fragments. Analysis of the EPR spectra by a three-jump model, allowed us to obtain structural information on the interlocked structure.
Collapse
Affiliation(s)
- Francesco Romano
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna (Italy) http://www.ciam.unibo.it/radicals
| | | | | | | | | |
Collapse
|
39
|
Le Poul N, Colasson B. Electrochemically and Chemically Induced Redox Processes in Molecular Machines. ChemElectroChem 2015. [DOI: 10.1002/celc.201402399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Chen L, Wang H, Zhang DW, Zhou Y, Li ZT. Quadruple Switching of Pleated Foldamers of Tetrathiafulvalene-Bipyridinium Alternating Dynamic Covalent Polymers. Angew Chem Int Ed Engl 2015; 54:4028-31. [PMID: 25651411 DOI: 10.1002/anie.201410757] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Lan Chen
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, 220 Handan Road, Shanghai 200433 (China)
| | | | | | | | | |
Collapse
|
41
|
Lin F, Zhao X. A series of polyaromatic hydrocarbons conjugated viologens: synthesis, supramolecular structures in solid state, and electrochemical and photophysical properties. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.12.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
42
|
Chen L, Wang H, Zhang DW, Zhou Y, Li ZT. Quadruple Switching of Pleated Foldamers of Tetrathiafulvalene-Bipyridinium Alternating Dynamic Covalent Polymers. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Akae Y, Koyama Y, Kuwata S, Takata T. Cyclodextrin-Based Size-Complementary [3]Rotaxanes: Selective Synthesis and Specific Dissociation. Chemistry 2014; 20:17132-6. [DOI: 10.1002/chem.201405005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 11/09/2022]
|
44
|
Wang Q, Cheng M, Zhao Y, Yang Z, Jiang J, Wang L, Pan Y. Redox-switchable host–guest systems based on a bisthiotetrathiafulvalene-bridged cryptand. Chem Commun (Camb) 2014; 50:15585-8. [DOI: 10.1039/c4cc07770a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Cheng C, McGonigal PR, Liu WG, Li H, Vermeulen NA, Ke C, Frasconi M, Stern CL, Goddard III WA, Stoddart JF. Energetically Demanding Transport in a Supramolecular Assembly. J Am Chem Soc 2014; 136:14702-5. [DOI: 10.1021/ja508615f] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Chuyang Cheng
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Paul R. McGonigal
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Wei-Guang Liu
- Materials
and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Hao Li
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicolaas A. Vermeulen
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chenfeng Ke
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Marco Frasconi
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William A. Goddard III
- Materials
and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
46
|
Zhang DW, Tian J, Chen L, Zhang L, Li ZT. Dimerization of Conjugated Radical Cations: An Emerging Non-Covalent Interaction for Self-Assembly. Chem Asian J 2014; 10:56-68. [DOI: 10.1002/asia.201402805] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Indexed: 11/12/2022]
|