1
|
Ye M, Brown AC, Suess DLM. Reversible Alkyl-Group Migration between Iron and Sulfur in [Fe 4S 4] Clusters. J Am Chem Soc 2022; 144:13184-13195. [PMID: 35830717 PMCID: PMC9526375 DOI: 10.1021/jacs.2c03195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic [Fe4S4] clusters with Fe-R groups (R = alkyl/benzyl) are shown to release organic radicals on an [Fe4S4]3+-R/[Fe4S4]2+ redox couple, the same that has been proposed for a radical-generating intermediate in the superfamily of radical S-adenosyl-l-methionine (SAM) enzymes. In attempts to trap the immediate precursor to radical generation, a species in which the alkyl group has migrated from Fe to S is instead isolated. This S-alkylated cluster is a structurally faithful model of intermediates proposed in a variety of functionally diverse S transferase enzymes and features an "[Fe4S4]+-like" core that exists as a physical mixture of S = 1/2 and 7/2 states. The latter corresponds to an unusual, valence-localized electronic structure as indicated by distortions in its geometric structure and supported by computational analysis. Fe-to-S alkyl group migration is (electro)chemically reversible, and the preference for Fe vs S alkylation is dictated by the redox state of the cluster. These findings link the organoiron and organosulfur chemistry of Fe-S clusters and are discussed in the context of metalloenzymes that are proposed to make and break Fe-S and/or C-S bonds during catalysis.
Collapse
Affiliation(s)
- Mengshan Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexandra C. Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel L. M. Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Boncella AE, Sabo ET, Santore RM, Carter J, Whalen J, Hudspeth JD, Morrison CN. The expanding utility of iron-sulfur clusters: Their functional roles in biology, synthetic small molecules, maquettes and artificial proteins, biomimetic materials, and therapeutic strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
4
|
Pal N, White CJ, Demeshko S, Meyer F, Lehnert N, Majumdar A. A Monohydrosulfidodinitrosyldiiron Complex That Generates N 2O as a Model for Flavodiiron Nitric Oxide Reductases: Reaction Mechanism and Electronic Structure. Inorg Chem 2021; 60:15890-15900. [PMID: 34106714 DOI: 10.1021/acs.inorgchem.1c00429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Flavodiiron nitric oxide reductases (FNORs) protect microbes from nitrosative stress under anaerobic conditions by mediating the reduction of nitric oxide (NO) to nitrous oxide (N2O). The proposed mechanism for the catalytic reduction of NO by FNORs involves a dinitrosyldiiron intermediate with a [hs-{FeNO}7]2 formulation, which produces N2O and a diferric species. Moreover, both NO and hydrogen sulfide (H2S) have been implicated in several similar physiological functions in biology and are also known to cross paths in cell signaling. Here we report the synthesis, spectroscopic and theoretical characterization, and N2O production activity of an unprecedented monohydrosulfidodinitrosyldiiron compound, with a [(HS)hs-{FeNO}7/hs-{FeNO}7] formulation, that models the key dinitrosyl intermediate of FNORs. The generation of N2O from this unique compound follows a semireduced pathway, where one-electron reduction generates a reactive hs-{FeNO}8 center via the occupation of an Fe-NO antibonding orbital. In contrast to the well-known reactivity of H2S and NO, the coordinated hydrosulfide remains unreactive toward NO and acts only as a spectator ligand during the NO reduction process.
Collapse
Affiliation(s)
- Nabhendu Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Corey J White
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Nicolai Lehnert
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
5
|
Pal N, Jana M, Majumdar A. Reduction of NO by diiron complexes in relation to flavodiiron nitric oxide reductases. Chem Commun (Camb) 2021; 57:8682-8698. [PMID: 34373873 DOI: 10.1039/d1cc03149j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of nitric oxide (NO) to nitrous oxide (N2O) is associated with immense biological and health implications. Flavodiiron nitric oxide reductases (FNORs) are diiron containing enzymes that catalyze the two electron reduction of NO to N2O and help certain pathogenic bacteria to survive under "nitrosative stress" in anaerobic growth conditions. Consequently, invading bacteria can proliferate inside the body of mammals by bypassing the immune defense mechanism involving NO and may thus lead to harmful infections. Various mechanisms, namely the direct reduction, semireduction, superreduction and hyponitrite mechanisms, have been proposed over time for catalytic NO reduction by FNORs. Model studies in relation to the diiron active site of FNORs have immensely helped to replicate the minimal structure-reactivity relationship and to understand the mechanism of NO reduction. A brief overview of the FNOR activity and the proposed reaction mechanisms followed by a systematic description and detailed analysis of the model studies is presented, which describes the development in the area of NO reduction by diiron complexes and its implications. A great deal of successful modeling chemistry as well as the shortcomings related to the synthesis and reactivity studies is discussed in detail. Finally, future prospects in this particular area of research are proposed, which in due course may bring more clarity in the understanding of this important redox reaction.
Collapse
Affiliation(s)
- Nabhendu Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | |
Collapse
|
6
|
Deng QJ, Chen M, Chen DC, Long HY, Chen CA. Tracking the dissolution-recrystallization structural transformation (DRST) of copper(II) complexes: a combined crystallographic, mass spectrometric and DFT study. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:655-662. [PMID: 32624512 DOI: 10.1107/s2053229620006701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/19/2020] [Indexed: 11/10/2022]
Abstract
Methanol- and temperature-induced dissolution-recrystallization structural transformation (DRST) was observed among two novel CuII complexes. This is first time that the combination of X-ray crystallography, mass spectrometry and density functional theory (DFT) theoretical calculations has been used to describe the fragmentation and recombination of a mononuclear CuII complex at 60 °C in methanol to obtain a binuclear copper(II) complex. Combining time-dependent high-resolution electrospray mass spectrometry, we propose a possible mechanism for the conversion of bis(8-methoxyquinoline-κ2N,O)bis(thiocyanato-κN)copper(II), [Cu(NCS)2(C10H9NO)2], Cu1, to di-μ-methanolato-κ4O:O-bis[(8-methoxyquinoline-κ2N,O)(thiocyanato-κN)copper(II)], [Cu2(CH3O)2(NCS)2(C10H9NO)2], Cu2, viz. [Cu(SCN)2(L)2] (Cu1) → [Cu(L)2] → [Cu(L)]/L → [Cu2(CH3O)2(NCS)2(L)2] (Cu2). We screened the antitumour activities of L (8-methoxyquinoline), Cu1 and Cu2 and found that the antiproliferative effect of Cu2 on some tumour cells was much greater than that of L and Cu1.
Collapse
Affiliation(s)
- Qian Jun Deng
- School of Material Science and Energy Engineering, Foshan University, Foshan 528000, Guangdong, People's Republic of China
| | - Min Chen
- School of Material Science and Energy Engineering, Foshan University, Foshan 528000, Guangdong, People's Republic of China
| | - Dong Chu Chen
- School of Material Science and Energy Engineering, Foshan University, Foshan 528000, Guangdong, People's Republic of China
| | - Hang Yu Long
- School of Material Science and Energy Engineering, Foshan University, Foshan 528000, Guangdong, People's Republic of China
| | - Chang Ai Chen
- School of Material Science and Energy Engineering, Foshan University, Foshan 528000, Guangdong, People's Republic of China
| |
Collapse
|
7
|
Pectol DC, Khan S, Chupik RB, Elsabahy M, Wooley KL, Darensbourg MY, Lim SM. Toward the Optimization of Dinitrosyl Iron Complexes as Therapeutics for Smooth Muscle Cells. Mol Pharm 2019; 16:3178-3187. [PMID: 31244220 DOI: 10.1021/acs.molpharmaceut.9b00389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, dinitrosyl iron complexes (DNICs) are shown to deliver nitric oxide (NO) into the cytosol of vascular smooth muscle cells (SMCs), which play a major role in vascular relaxation and contraction. Malfunction of SMCs can lead to hypertension, asthma, and erectile dysfunction, among other disorders. For comparison of the five DNIC derivatives, the following protocols were examined: (a) the Griess assay to detect nitrite (derived from NO conversion) in the absence and presence of SMCs; (b) the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay for cell viability; (c) an immunotoxicity assay to establish if DNICs stimulate immune response; and (d) a fluorometric assay to detect intracellular NO from treatment with DNICs. Dimeric Roussin's red ester (RRE)-type {Fe(NO)2}9 complexes containing phenylthiolate bridges, [(μ-SPh)Fe(NO)2]2 or SPhRRE, were found to deliver NO with the lowest effect on cell toxicity (i.e., highest IC50). In contrast, the RRE-DNIC with the biocompatible thioglucose moiety, [(μ-SGlu)Fe(NO)2]2 (SGlu = 1-thio-β-d-glucose tetraacetate) or SGluRRE, delivered a higher concentration of NO to the cytosol of SMCs with a 10-fold decrease in IC50. Additionally, monomeric DNICs stabilized by a bulky N-heterocyclic carbene (NHC), namely, 1,3-bis(2,4,6-trimethylphenyl)imidazolidene (IMes), were synthesized and yielded the DNIC complexes SGluNHC, [IMes(SGlu)Fe(NO)2], and SPhNHC, [IMes(SPh)Fe(NO)2]. These oxidized {Fe(NO)2}9 NHC DNICs have an IC50 of ∼7 μM; however, the NHC-based complexes did not transfer NO into the SMC. Per contra, the reduced, mononuclear {Fe(NO)2}10 neocuproine-based DNIC, neoDNIC, depressed the viability of the SMCs, as well as generated an increase of intracellular NO. Regardless of the coordination environment or oxidation state, all DNICs showed a dinitrosyl iron unit (DNIU)-dependent increase in viability. This study demonstrates a structure-function relationship between the DNIU coordination environment and the efficacy of the DNIC treatments.
Collapse
|
8
|
Cho SL, Liao CJ, Lu TT. Synthetic methodology for preparation of dinitrosyl iron complexes. J Biol Inorg Chem 2019; 24:495-515. [DOI: 10.1007/s00775-019-01668-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022]
|
9
|
Lu TT, Wang YM, Hung CH, Chiou SJ, Liaw WF. Bioinorganic Chemistry of the Natural [Fe(NO)2] Motif: Evolution of a Functional Model for NO-Related Biomedical Application and Revolutionary Development of a Translational Model. Inorg Chem 2018; 57:12425-12443. [DOI: 10.1021/acs.inorgchem.8b01818] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Yun-Ming Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30013, Taiwan
| | | | - Show-Jen Chiou
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | | |
Collapse
|
10
|
Arnet NA, McWilliams SF, DeRosha DE, Mercado BQ, Holland PL. Synthesis and Mechanism of Formation of Hydride-Sulfide Complexes of Iron. Inorg Chem 2017; 56:9185-9193. [PMID: 28726395 DOI: 10.1021/acs.inorgchem.7b01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron-sulfide complexes with hydride ligands provide an experimental precedent for spectroscopically detected hydride species on the iron-sulfur MoFe7S9C cofactor of nitrogenase. In this contribution, we expand upon our recent synthesis of the first iron sulfide hydride complex from an iron hydride and a sodium thiolate ( Arnet, N. A.; Dugan, T. R.; Menges, F. S.; Mercado, B. Q.; Brennessel, W. W.; Bill, E.; Johnson, M. A.; Holland, P. L., J. Am. Chem. Soc. 2015 , 137 , 13220 - 13223 ). First, we describe the isolation of an analogous iron sulfide hydride with a smaller diketiminate supporting ligand, which benefits from easier preparation of the hydride precursor and easier isolation of the product. Second, we describe mechanistic studies on the C-S bond cleavage through which the iron sulfide hydride product is formed. In a key experiment, use of cyclopropylmethanethiolate as the sulfur precursor leads to products from cyclopropane ring opening, implicating an alkyl radical as an intermediate. Combined with the results of isotopic labeling studies, the data are consistent with a mechanism in which homolytic C-S bond cleavage is followed by rebound of the alkyl radical to abstract a hydrogen atom from iron to give the observed alkane and iron-sulfide products.
Collapse
Affiliation(s)
- Nicholas A Arnet
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Sean F McWilliams
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Daniel E DeRosha
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
11
|
Emel’yanova NS, Sanina NA, Aldoshin SM. Quantum chemical approaches to the study of Fe—S bond in Roussin’s red esters: replacement of functional ligands by glutathione. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1534-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
|
13
|
Ovens JS, Leznoff DB. Emissive Heterobimetallic Copper(I) Dicyanoaurate-Based Coordination Polymers. Chempluschem 2016; 81:842-849. [DOI: 10.1002/cplu.201600228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey S. Ovens
- Department of Chemistry; Simon Fraser University; 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Daniel B. Leznoff
- Department of Chemistry; Simon Fraser University; 8888 University Drive Burnaby BC V5A 1S6 Canada
| |
Collapse
|
14
|
Ovens JS, Christensen PR, Leznoff DB. Designing Tunable White-Light Emission from an Aurophilic CuI/AuICoordination Polymer with Thioether Ligands. Chemistry 2016; 22:8234-9. [DOI: 10.1002/chem.201505075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Jeffrey S. Ovens
- Department of Chemistry; Simon Fraser University; 8888 University Drive Burnaby British Columbia V5A 1S6 Canada
| | - Peter R. Christensen
- Department of Chemistry; University of British Columbia; 2329 West Mall Vancouver British Columbia V6T 1Z4 Canada)
| | - Daniel B. Leznoff
- Department of Chemistry; Simon Fraser University; 8888 University Drive Burnaby British Columbia V5A 1S6 Canada
| |
Collapse
|
15
|
Kowalska JK, Hahn AW, Albers A, Schiewer CE, Bjornsson R, Lima FA, Meyer F, DeBeer S. X-ray Absorption and Emission Spectroscopic Studies of [L2Fe2S2](n) Model Complexes: Implications for the Experimental Evaluation of Redox States in Iron-Sulfur Clusters. Inorg Chem 2016; 55:4485-97. [PMID: 27097289 PMCID: PMC5108557 DOI: 10.1021/acs.inorgchem.6b00295] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, a systematic study of [L2Fe2S2](n) model complexes (where L = bis(benzimidazolato) and n = 2-, 3-, 4-) has been carried out using iron and sulfur K-edge X-ray absorption (XAS) and iron Kβ and valence-to-core X-ray emission spectroscopies (XES). These data are used as a test set to evaluate the relative strengths and weaknesses of X-ray core level spectroscopies in assessing redox changes in iron-sulfur clusters. The results are correlated to density functional theory (DFT) calculations of the spectra in order to further support the quantitative information that can be extracted from the experimental data. It is demonstrated that due to canceling effects of covalency and spin state, the information that can be extracted from Fe Kβ XES mainlines is limited. However, a careful analysis of the Fe K-edge XAS data shows that localized valence vs delocalized valence species may be differentiated on the basis of the pre-edge and K-edge energies. These findings are then applied to existing literature Fe K-edge XAS data on the iron protein, P-cluster, and FeMoco sites of nitrogenase. The ability to assess the extent of delocalization in the iron protein vs the P-cluster is highlighted. In addition, possible charge states for FeMoco on the basis of Fe K-edge XAS data are discussed. This study provides an important reference for future X-ray spectroscopic studies of iron-sulfur clusters.
Collapse
Affiliation(s)
- Joanna K Kowalska
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Anselm W Hahn
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Antonia Albers
- Institute of Inorganic Chemistry, Georg-August-University Göttingen , Tammannstraße 4, D-37077 Göttingen, Germany
| | - Christine E Schiewer
- Institute of Inorganic Chemistry, Georg-August-University Göttingen , Tammannstraße 4, D-37077 Göttingen, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frederico A Lima
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, Georg-August-University Göttingen , Tammannstraße 4, D-37077 Göttingen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany.,Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
16
|
Fitzpatrick J, Kim E. Synthetic modeling chemistry of iron-sulfur clusters in nitric oxide signaling. Acc Chem Res 2015. [PMID: 26197209 DOI: 10.1021/acs.accounts.5b00246] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in many physiological and pathological functions. Iron-sulfur proteins are one of the main reaction targets for NO, and the [Fe-S] clusters within these proteins are converted to various iron nitrosyl species upon reaction with NO, of which dinitrosyl iron complexes (DNICs) are the most prevalent. Much progress has been made in identifying the origin of cellular DNIC generation. However, it is not well-understood which other products besides DNICs may form during [Fe-S] cluster degradation nor what effects DNICs and other degradation products can have once they are generated in cells. Even more elusive is an understanding of the manner by which cells cope with unwanted [Fe-S] modifications by NO. This Account describes our synthetic modeling efforts to identify cluster degradation products derived from the [2Fe-2S]/NO reaction in order to establish their chemical reactivity and repair chemistry. Our intent is to use the chemical knowledge that we generate to provide insight into the unknown biological consequences of cluster modification. Our recent advances in three different areas are described. First, new reaction conditions that lead to the formation of previously unrecognized products during the reaction of [Fe-S] clusters with NO are identified. Hydrogen sulfide (H2S), a gaseous signaling molecule, can be generated from the reaction between [2Fe-2S] clusters and NO in the presence of acid or formal H• (e(-)/H(+)) donors. In the presence of acid, a mononitrosyl iron complex (MNIC) can be produced as the major iron-containing product. Second, cysteine analogues can efficiently convert MNICs back to [2Fe-2S] clusters without the need for any other reagents. This reaction is possible for cysteine analogues because of their ability to labilize NO from MNICs and their capacity to undergo C-S bond cleavage, providing the necessary sulfide for [2Fe-2S] cluster formation. Lastly, unique dioxygen reactivity of various types of DNICs has been established. N-bound neutral {Fe(NO)2}(10) DNICs react with O2 to generate low-temperature stable peroxynitrite (ONOO(-)) species, which then carry out nitration chemistry in the presence of phenolic substrates, relevant to tyrosine nitration chemistry. The reaction between S-bound anionic {Fe(NO)2}(9) DNICs and O2 results in the formation of Roussin's red esters (RREs) and thiol oxidation products, chemistry that may be important in biological cysteine oxidation. The N-bound cationic {Fe(NO)2}(9) DNICs can spontaneously release NO, and this property can be utilized in developing a new class of NO-donating agents with anti-inflammatory activity.
Collapse
Affiliation(s)
- Jessica Fitzpatrick
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Eunsuk Kim
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
17
|
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 2015; 115:6491-533. [PMID: 26021768 DOI: 10.1021/acs.chemrev.5b00018] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Toru Shimizu
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
- §Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 983-8551, Japan
| | - Dongyang Huang
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fang Yan
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Martin Stranava
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Martina Bartosova
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Veronika Fojtíková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
18
|
Rhine MA, Sanders BC, Patra AK, Harrop TC. Overview and New Insights into the Thiol Reactivity of Coordinated NO in {MNO}6/7/8 (M = Fe, Co) Complexes. Inorg Chem 2015; 54:9351-66. [DOI: 10.1021/acs.inorgchem.5b00883] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Melody A. Rhine
- Department of Chemistry
and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Brian C. Sanders
- Department of Chemistry
and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Ashis K. Patra
- Department of Chemistry
and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Todd C. Harrop
- Department of Chemistry
and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
19
|
Fitzpatrick J, Kim E. New Synthetic Routes to Iron–Sulfur Clusters: Deciphering the Repair Chemistry of [2Fe–2S] Clusters from Mononitrosyl Iron Complexes. Inorg Chem 2015; 54:10559-67. [DOI: 10.1021/acs.inorgchem.5b00961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jessica Fitzpatrick
- Department
of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Eunsuk Kim
- Department
of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
20
|
Pereira JCM, Iretskii AV, Han RM, Ford PC. Dinitrosyl Iron Complexes with Cysteine. Kinetics Studies of the Formation and Reactions of DNICs in Aqueous Solution. J Am Chem Soc 2014; 137:328-36. [DOI: 10.1021/ja510393q] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- José Clayston Melo Pereira
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, Santa
Barbara, California 93106-9510, United States
- Departamento
de Química Geral e Inorgânica, Instituto de Química
de Araraquara, UNESP − Universidade Estadual Paulista, Araraquara, São Paulo 14801−970, Brazil
| | - Alexei V. Iretskii
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, Santa
Barbara, California 93106-9510, United States
- Department
of Chemistry and Environmental Sciences, Lake Superior State University, Sault Sainte Marie, Michigan 49783, United States
| | - Rui-Min Han
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, Santa
Barbara, California 93106-9510, United States
- Department
of Chemistry, Renmin University of China, 59 ZhongGuanCun St., Beijing, 100872, China
| | - Peter C. Ford
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, Santa
Barbara, California 93106-9510, United States
| |
Collapse
|
21
|
Sanders BC, Hassan SM, Harrop TC. NO2– Activation and Reduction to NO by a Nonheme Fe(NO2)2 Complex. J Am Chem Soc 2014; 136:10230-3. [DOI: 10.1021/ja505236x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Brian C. Sanders
- Department
of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia 30602, United States
| | - Sayed M. Hassan
- College
of Agricultural and Environmental Sciences, The University of Georgia, Athens, Georgia 30605, United States
| | - Todd C. Harrop
- Department
of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|