1
|
Hashemi N, Nandy S, Aleshkevych P, Chae KH, Najafpour MM. Reaction between Nickel Hydroxide and Cerium(IV) Ammonium Nitrate in Aqueous Solution. Inorg Chem 2023; 62:12157-12165. [PMID: 37462411 DOI: 10.1021/acs.inorgchem.3c01868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cerium(IV) ammonium nitrate (CAN) has been extensively used as a sacrificial oxidant to study water-oxidation catalysts (WOCs). Although nickel hydroxide has been extensively investigated as WOCs, the water-oxidation reaction (WOR) and mechanistic studies in the presence of CAN and nickel hydroxide were rarely performed. Herein, using in situ Raman spectroscopy, in situ X-ray absorption spectroscopy, and in situ electron paramagnetic resonance spectroscopy, WOR in the presence of CAN and β-Ni(OH)2 was investigated. The proposed WOR mechanism involves the oxidation of β-Ni(OH)2 by CAN, leading to the formation of γ-NiO(OH). γ-NiO(OH), in the presence of acidic conditions, evolves oxygen and is reduced to Ni(II). In other words, the role of β-Ni(OH)2 is the storage of four oxidizing equivalents by CAN, and then a four-electron reaction could result in a WOR with low activation energy. β-Ni(OH)2 in CAN at concentrations of 0.10 M shows WOR with a maximum turnover frequency and a turnover number (for 1000 s) of 5.5 × 10-5/s and 2.0 × 10-2 mol (O2)/mol(Ni), respectively. In contrast to β-Ni(OH)2, Ni(OH2)62+ (aq) could not be oxidized to γ-NiO(OH). Indeed, Ni(OH2)62+ (aq) is the decomposition product of β-Ni(OH)2/CAN.
Collapse
Affiliation(s)
- Negah Hashemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Pavlo Aleshkevych
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
2
|
Sa YJ, Kim S, Lee Y, Kim JM, Joo SH. Mesoporous Manganese Oxides with High-Valent Mn Species and Disordered Local Structures for Efficient Oxygen Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37339373 DOI: 10.1021/acsami.3c03358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Active and nonprecious-metal bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are vital components of clean energy conversion devices such as regenerative fuel cells and rechargeable metal-air batteries. Porous manganese oxides (MnOx) are promising electrocatalyst candidates because of their high surface area and the abundance of Mn. MnOx catalysts exhibit various oxidation states and crystal structures, which critically affect their electrocatalytic activity. These effects remain elusive mainly because the synthesis of oxidation-state-controlled porous MnOx with similar structural properties is challenging. In this work, four different mesoporous manganese oxides (m-MnOx) were synthesized and used as model catalysts to investigate the effects of local structures and Mn valence states on the activity toward oxygen electrocatalysis. The following activity trends were observed: m-Mn2O3 > m-MnO2 > m-MnO > m-Mn3O4 for the ORR and m-MnO2 > m-Mn2O3 > m-MnO ≈ m-Mn3O4 for the OER. These activity trends suggest that high-valent Mn species (Mn(III) and Mn(IV)) with disordered atomic arrangements induced by nanostructuring significantly influence electrocatalysis. In situ X-ray absorption spectroscopy was used to analyze the changes in the oxidation states under the ORR and OER conditions, which showed the surface phase transformation and generation of active species during electrocatalysis.
Collapse
Affiliation(s)
- Young Jin Sa
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sohee Kim
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yesol Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Ji Man Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Ali Akbari MS, Nandy S, Chae KH, Bikas R, Kozakiewicz-Piekarz A, Najafpour MM. Water Oxidation by a Copper(II) Complex with 6,6'-Dihydroxy-2,2'-Bipyridine Ligand: Challenges and an Alternative Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5542-5553. [PMID: 37029750 DOI: 10.1021/acs.langmuir.3c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, copper(II) complexes have been extensively investigated as oxygen-evolution reaction (OER) catalysts through a water-oxidation reaction. Herein, new findings regarding OER in the presence of a Cu(II) complex with 6,6'-dihydroxy-2,2'-bipyridine ligand are reported. Using scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, Raman spectroscopy, in situ visible microscopy, in situ visible spectroelectrochemistry, X-ray absorption spectroscopy, and electrochemistry, it is hypothesized that the film formed on the electrode's surface in the presence of this complex causes an appropriated matrix to produce Cu (hydr)oxide. The resulting Cu (hydr)oxide could be a candidate for OER catalysis. The formed film could form Cu (hydr)oxide and stabilize it. Thus, OER activity increases in the presence of this complex.
Collapse
Affiliation(s)
- Mohammad Saleh Ali Akbari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818 Qazvin, Iran
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
4
|
Khosravi M, Mohammadi MR. Trends and progress in application of cobalt-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water splitting. PHOTOSYNTHESIS RESEARCH 2022; 154:329-352. [PMID: 36195743 DOI: 10.1007/s11120-022-00965-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
There has been a growing interest in water oxidation in recent two decades. Along with that, remarkable discovery of formation of a mysterious catalyst layer upon application of an anodic potential of 1.13 V vs. standard hydrogen electrode (SHE) to an inert indium tin oxide electrode immersed in phosphate buffer containing Co(II) ions by Nocera et.al, has greatly attracted researchers interest. These researches have oriented in two directions; one focuses on obtaining better understanding of the reported mysterious catalyst layer, further modification, and improved performance, and the second approach is about designing coordination complexes of cobalt and investigating their properties toward the application in water splitting. Although there have been critical debates on true catalysts that are responsible for water oxidation in homogeneous systems of coordination complexes of cobalt, and the case is not totally closed, in this short review, our focus will be mainly on recent major progress and developments in the design and the application of cobalt oxide-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water oxidation reaction, which have been reported since pioneering report of Nocera in 2008 (Kanan Matthew and Nocera Daniel in Science 321:1072-1075, 2008).
Collapse
Affiliation(s)
- Mehdi Khosravi
- Department of Physics, University of Sistan and Baluchestan, Zahedan, 98167-45845, Iran
| | | |
Collapse
|
5
|
Shaghaghi Z, Bikas R, Heshmati-Sharabiani Y, Trzybiński D, Woźniak K. Investigation of electrocatalytic activity of a new mononuclear Mn(II) complex for water oxidation in alkaline media. PHOTOSYNTHESIS RESEARCH 2022; 154:369-381. [PMID: 35763236 DOI: 10.1007/s11120-022-00931-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Water splitting is a promising way to alleviate the energy crisis. In nature, water oxidation is done by a tetranuclear manganese cluster in photosystem II. Therefore, the study of water oxidation by Mn complexes is attractive in water splitting systems. In this report, a new mononuclear Mn(II) complex, MnL2 (HL = (E)-3-hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide) was prepared and characterized by spectroscopic techniques and single-crystal X-ray diffraction. Crystallographic analysis indicated that the geometry around the Mn(II) ion is distorted octahedral. The MnN4O2 coordination moiety is achieved by bounding of oxygen and two nitrogen donor atoms of two hydrazone ligands. The synthesized complex was also investigated for electrochemical water oxidation using electrochemical techniques, scanning electron microscopy, energy dispersive spectrometry, and PXRD analysis. Linear sweep voltammetry experiment showed that the modified carbon paste electrode by the complex displays high activity for water oxidation reaction with an overpotential of 565 mV at a current density of 10 mA cm-2 and Tafel slope of 105 mV dec-1 in an alkaline solution. It was found that the complex structure finally changes during the reaction and converts to Mn oxide nanoparticles which act as active catalytic species and oxidize the water.
Collapse
Affiliation(s)
- Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, 34148-96818, Iran.
| | - Yahya Heshmati-Sharabiani
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Damian Trzybiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
6
|
Najafpour MM. Candidate for Catalyst during Water-Oxidation Reaction in the Presence of Manganese Compounds, from Nanosized Particles to Impurities: Sleep with One Eye Open. Acc Chem Res 2022; 55:2260-2270. [PMID: 35881838 DOI: 10.1021/acs.accounts.2c00277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Water-oxidation reaction (WOR) catalysts are critical for energy conversion. WOR is a four-electron oxidation and sluggish reaction. WOR needs a high thermodynamic driving force; it is also a kinetically slow reaction. Different compounds have been used for WOR; among these compounds, Mn materials have proven to be interesting because Mn is low-cost and also nontoxic, at least compared to many transition metals. Naturally, it has also been used in the biological water-oxidizing complex (WOC). Indeed, WOR has occurred on a huge scale in natural photosynthesis.For a long time, efforts have been made to design and synthesize various ligands and generate Mn compounds toward WOR catalysts. However, the addition or removal of electrons inside Mn compounds during harsh WOR conditions can lead to the formation or the breakage of bonds and result in the conversion of a precatalyst to a catalyst.Here, our findings on the conversion of Mn compounds to catalysts during WOR are presented. Many Mn compounds have been claimed to be catalysts for WOR in the presence of various chemical oxidants or under electrophotochemical conditions. Currently, the advances in characterization techniques and different spectroscopic methods have enabled a better understanding of catalysts. Different conversions such as that of the Mn complex to Mn oxide and Mn salts to Mn oxide during WOR have been explained. Indeed, the morphology and size of the Mn oxide formed depend on several factors such as the origin compounds, pH, ligands, and conditions. Thus, different Mn compounds show different activities toward WOR. The biomimetic models with Mn-Ca clusters are also decomposed during WOR. On the other hand, stable Mn complexes such as Mn phthalocyanines, which are very stable in the absence of potential, are easily decomposed during WOR. It is noted that for many of these Mn compounds, two steps result in the formation of Mn oxide during WOR: (i) Mn(II) or (III) leaching into the electrolyte and (ii) deposition of the leached Mn ions into the solution.Considering these steps, it can be seen that challenges remain in the area of Mn compounds, given the fact that even in the catalytic cycle at low oxidation numbers no Mn(II) or (III) should be leached to the electrolyte.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Center of Climate Change and Global Warming, and Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
7
|
Mousazade Y, Nandy S, Bikas R, Aleshkevych P, Chae KH, Siczek M, Lis T, Allakhverdiev SI, Najafpour MM. A copper(II) coordination compound under water-oxidation reaction at neutral conditions: decomposition on the counter electrode. Dalton Trans 2022; 51:12170-12180. [PMID: 35876690 DOI: 10.1039/d2dt01572b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of energy storage, the oxygen-evolution reaction (OER, 2H2O → O2 + 4H+ + 4e-) through the water-oxidation reaction is a thermodynamically uphill reaction in overall water splitting. In recent years, copper(II) coordination compounds have been extensively used for the OER. However, challenges remain in finding the mechanism of the OER in the presence of these metal coordination compounds. Herein, the electrochemical OER activity is investigated in the presence of a copper(II) coordination compound at pH ≈ 7. While the investigations on finding true catalysts for the OER are focused on the working electrode, herein, for the first time, the focus is on the decomposition of copper(II) coordination compound (CuL3, L: 2,2'-bipyridine N,N'-dioxide) during the OER on the counter electrode toward the precipitation of copper(I) oxide and metallic Cu.
Collapse
Affiliation(s)
- Younes Mousazade
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran
| | - Pavlo Aleshkevych
- Institute of Physics, Polish Academy of Sciences, Warsaw, 02-668, Poland
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Milosz Siczek
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Suleyman I Allakhverdiev
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia.
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
8
|
Akbari MSA, Zand Z, Aleshkevych P, Jagličić Z, Najafpour MM. Finding the True Catalyst for Water Oxidation at Low Overpotential in the Presence of a Metal Complex. Inorg Chem 2022; 61:3801-3810. [PMID: 35179022 DOI: 10.1021/acs.inorgchem.2c00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The design of molecular-based catalysts for oxygen-evolution reaction (OER) requires more investigations for the true catalyst to be found. First-row transition metal complexes are extensively investigated for OER, but the role of these metal complexes as a true catalyst is doubtful. Some doubts have been expressed about the role of first-row transition metal complexes for OER at high overpotentials (η > 450). Generally, the detection of the true catalyst has so far been focused on high overpotentials (η > 450) because at low overpotentials (η < 450), many methods are not sensitive enough to detect small amounts of heterogeneous catalysts on the electrode surface during the first seconds of the reaction. Ni(II) phthalocyanine-tetra sulfonate tetrasodium (1) is in moderate conditions (at 20-50 °C and pH 5-13) in the absence of electrochemical driving forces, which could make it noteworthy for OER. Herein, the results of OER in the presence of 1 at low overpotentials under alkaline conditions are presented. In addition, in the presence of Ni complexes, using an Fe ion is introduced as a new method for detecting Ni (hydr)oxide under OER. Our experiments indicate that in the presence of a homogeneous OER (pre)catalyst, a deep investigation is necessary to rule out the heterogeneous catalysts formed. Our approach is a roadmap in the field of catalysis to understand the OER mechanism in the presence of a molecular Ni-based catalyst design. Our results shown in this study are likely to open up new perspectives and discussion on many molecular catalysts in a considerable part of the chemistry community.
Collapse
Affiliation(s)
- Mohammad Saleh Ali Akbari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Zahra Zand
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Pavlo Aleshkevych
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Zvonko Jagličić
- Faculty of Civil and Geodetic Engineering & Institute of Mathematics, Physics, and Mechanics, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
9
|
Delcey MG, Lindblad R, Timm M, Bülow C, Zamudio-Bayer V, von Issendorff B, Lau JT, Lundberg M. Soft x-ray signatures of ionic manganese-oxo systems, including a high-spin manganese(V) complex. Phys Chem Chem Phys 2022; 24:3598-3610. [DOI: 10.1039/d1cp03667j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese-oxo species catalyze key reactions, including C–H bond activation or dioxygen formation in natural photosynthesis. To better understand relevant reaction intermediates, we characterize electronic states and geometric structures of [MnOn]+...
Collapse
|
10
|
Valizadeh A, Bikas R, Nandy S, Lis T, Chae KH, Najafpour MM. Homogeneous or heterogeneous electrocatalysis: reinvestigation of a cobalt coordination compound for water oxidation. Dalton Trans 2021; 51:220-230. [PMID: 34881752 DOI: 10.1039/d1dt03036a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A cobalt coordination compound with azo-ligand linkers combined with linked bisulfonate moieties has been argued to be an efficient catalyst for the oxygen-evolution reaction (OER) (H.-T. Shi, X.-X. Li, F.-H. Wu and W.-B. Yu, Dalton Trans., 2017, 46, 16321.). In the previously published report, this cobalt compound (compound 1) was believed to display a high turnover frequency (5 s-1) at η = 720 mV at pH 9. Herein, the OER in the presence of compound 1 is reinvestigated. The nanosized oxide-based particles formed after the OER in the presence of compound 1 were tracked by electrochemical methods, scanning electron microscopy (SEM), energy dispersive spectrometry (EDX), X-ray diffraction studies (XRD), (High-resolution) transmission electron microscopy ((HR)TEM), Raman spectroscopy, X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). Based on these experiments, it is proposed that a candidate for the true catalyst of the OER in the presence of compound 1 is cobalt oxide. During the OER and using chronoamperometry, the oxidation state of Co ions for the formed Co oxide is (III), but after consecutive CVs the oxidation states of Co ions for the formed Co oxide are (II) and (III). The results shed new light on the role of Co oxide nanoparticles formed in the presence of this Co coordination compound during the OER. Our experimental data also show that for the OER in the presence of a homogeneous (pre)catalyst, careful analyses to find the role of metal oxides are necessary for informed progress. The present findings also might help to find the mechanism of the OER in the presence of coordination compounds.
Collapse
Affiliation(s)
- Amirreza Valizadeh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
11
|
Barman K, Wang X, Jia R, Askarova G, Hu G, Mirkin MV. Voltage-Driven Molecular Catalysis of Electrochemical Reactions. J Am Chem Soc 2021; 143:17344-17347. [PMID: 34644499 DOI: 10.1021/jacs.1c07934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterogeneous electrocatalysis and molecular redox catalysis have developed over several decades as two distinct ways to facilitate charge-transfer processes essential for energy conversion and storage. Whereas electrocatalytic reactions are driven by the applied voltage, molecular catalytic processes are driven by the difference between standard potentials of the catalyst and the reactant. Here, we demonstrate that the rate of electron transfer between a dissolved reactant and a molecular catalyst immobilized directly on the surface of a carbon nanoelectrode is governed by combination of chemical driving force and electrostatic potential drop across the double layer. DFT calculations show that varying the applied voltage alters the potential drop between the surface-bound and dissolved redox species. These results suggest a new route for designing next-generation hybrid molecular/electrocatalysts.
Collapse
Affiliation(s)
- Koushik Barman
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
| | - Xiang Wang
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Rui Jia
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Guoxiang Hu
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
12
|
Kondo M, Tatewaki H, Masaoka S. Design of molecular water oxidation catalysts with earth-abundant metal ions. Chem Soc Rev 2021; 50:6790-6831. [PMID: 33977932 DOI: 10.1039/d0cs01442g] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The four-electron oxidation of water (2H2O → O2 + 4H+ + 4e-) is considered the main bottleneck in artificial photosynthesis. In nature, this reaction is catalysed by a Mn4CaO5 cluster embedded in the oxygen-evolving complex of photosystem II. Ruthenium-based complexes have been successful artificial molecular catalysts for mimicking this reaction. However, for practical and large-scale applications in the future, molecular catalysts that contain earth-abundant first-row transition metal ions are preferred owing to their high natural abundance, low risk of depletion, and low costs. In this review, the frontier of water oxidation reactions mediated by first-row transition metal complexes is described. Special attention is paid towards the design of molecular structures of the catalysts and their reaction mechanisms, and these factors are expected to serve as guiding principles for creating efficient and robust molecular catalysts for water oxidation using ubiquitous elements.
Collapse
Affiliation(s)
- Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan and JST, PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan
| | - Hayato Tatewaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Amini M, Mousazade Y, Zand Z, Bagherzadeh M, Najafpour MM. Ultra-small and highly dispersive iron oxide hydroxide as an efficient catalyst for oxidation reactions: a Swiss-army-knife catalyst. Sci Rep 2021; 11:6642. [PMID: 33758240 PMCID: PMC7988159 DOI: 10.1038/s41598-021-85672-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 03/04/2021] [Indexed: 11/09/2022] Open
Abstract
Ultra-small and highly dispersive (< 10 nm) iron oxide hydroxide is characterized by some methods. The compound is an efficient and stable catalyst for alcohol oxidation, organic sulfide oxidation, and epoxidation of alkenes in the presence of H2O2. The electrochemical oxygen-evolution reaction of the iron oxide hydroxide is also tested under acidic, neutral, and alkaline conditions. In the presence of the iron oxide hydroxide, excellent conversions (75–100%) and selectivities of substrates (92–97%), depending on the nature of the sulfide, were obtained. Benzylalcohols having electron-donating and-withdrawing substituents in the aromatic ring were oxidized to produce the corresponding aldehydes with excellent conversion (65–89%) and selectivity (96–100%) using this iron oxide hydroxide. The conversion of styrene and cyclooctene toward the epoxidation in the presence of this catalyst are 60 and 53%, respectively. Water oxidation for the catalysts was investigated at pH 2, 6.7, 12, and 14. The onset of OER at pH 14 is observed with a 475 mV overpotential. At 585 mV overpotential, a current density of more than 0.18 mA/cm2 and a turnover frequency of 1.5/h is observed. Operando high-resolution visible spectroscopy at pH 14, similar to previously reported investigations, shows that Fe(IV)=O is an intermediate for water oxidation.
Collapse
Affiliation(s)
- Mojtaba Amini
- Department of Chemistry, Faculty of Science, University of Maragheh, Golshahr, P.O. Box. 55181-83111731, Maragheh, Iran. .,Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Younes Mousazade
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Zahra Zand
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Mojtaba Bagherzadeh
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615, Tehran, Iran
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
14
|
Mousazade Y, Mohammadi MR, Bagheri R, Bikas R, Chernev P, Song Z, Lis T, Siczek M, Noshiranzadeh N, Mebs S, Dau H, Zaharieva I, Najafpour MM. A synthetic manganese-calcium cluster similar to the catalyst of Photosystem II: challenges for biomimetic water oxidation. Dalton Trans 2020; 49:5597-5605. [PMID: 32282002 DOI: 10.1039/d0dt00536c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis, characterization, crystal structure, density functional theory calculations, and water-oxidizing activity of a pivalate Mn-Ca cluster. All of the manganese atoms in the cluster are Mn(iv) ions and have a distorted MnO6 octahedral geometry. Three Mn(iv) ions together with a Ca(ii) ion and four-oxido groups form a cubic Mn3CaO4 unit which is similar to the Mn3CaO4 cluster in the water-oxidizing complex of Photosystem II. Using scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometry, extended X-ray absorption spectroscopy, chronoamperometry, and electrochemical methods, a conversion into nano-sized Mn-oxide is observed for the cluster in the water-oxidation reaction.
Collapse
Affiliation(s)
- Younes Mousazade
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | | | - Robabeh Bagheri
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201, China
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran.
| | - Petko Chernev
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany and Uppsala University, Department of Chemistry - Ångströmlaboratoriet, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Zhenlun Song
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201, China
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wrocław, 14. Joliot-Curie, 50-383, Wrocław, Poland
| | - Milosz Siczek
- Faculty of Chemistry, University of Wrocław, 14. Joliot-Curie, 50-383, Wrocław, Poland
| | - Nader Noshiranzadeh
- Department of Chemistry, Faculty of Science, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Stefan Mebs
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Holger Dau
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Ivelina Zaharieva
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. and Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran and Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
15
|
Mousazade Y, Mohammadi MR, Chernev P, Bagheri R, Song Z, Dau H, Najafpour MM. Revisiting Metal–Organic Frameworks for Oxygen Evolution: A Case Study. Inorg Chem 2020; 59:15335-15342. [DOI: 10.1021/acs.inorgchem.0c02305] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Younes Mousazade
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731 Zanjan, Iran
| | | | - Petko Chernev
- Department of Chemistry − Ångströmlaboratoriet, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Robabeh Bagheri
- School of Physical Science and Technology, College of Energy, Soochow Institute for Energy and Materials Innovations and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Zhenlun Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Holger Dau
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731 Zanjan, Iran
| |
Collapse
|
16
|
Yin X, Yang L, Gao Q. Core-shell nanostructured electrocatalysts for water splitting. NANOSCALE 2020; 12:15944-15969. [PMID: 32761000 DOI: 10.1039/d0nr03719b] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As the cornerstone of the hydrogen economy, water electrolysis consisting of the hydrogen and oxygen evolution reactions (HER and OER) greatly needs cost-efficient electrocatalysts that can decrease the dynamic overpotential and save on energy consumption. Over past years, observable progress has been made by constructing core-shell structures free from or with few noble-metals. They afford particular merits, e.g., a highly-exposed active surface, modulated electronic configurations, strain effects, interfacial synergy, or reinforced stability, to promote the kinetics and electrocatalytic performance of the HER, OER and overall water splitting. So far, a large variety of inorganics (carbon and transition-metal related components) have been introduced into core-shell electrocatalysts. Herein, representative efforts and progress are summarized with a clear classification of core and shell components, to access comprehensive insights into electrochemical processes that proceed on surfaces or interfaces. Finally, a perspective on the future development of core-shell electrocatalysts is offered. The overall aim is to shed some light on the exploration of emerging materials for energy conversion and storage.
Collapse
Affiliation(s)
- Xing Yin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | | | | |
Collapse
|
17
|
|
18
|
Balaghi SE, Triana CA, Patzke GR. Molybdenum-Doped Manganese Oxide as a Highly Efficient and Economical Water Oxidation Catalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.9b02718] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- S. Esmael Balaghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - C. A. Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R. Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
19
|
Sarvi B, Hosseini SM, Deljoo B, El-Sawy A, Shirazi Amin A, Aindow M, Suib SL, Najafpour MM. New findings and current controversies in the reaction of ruthenium red and ammonium cerium( iv) nitrate: focus on the precipitated compound. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02499a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
During water-oxidation reaction in the presence of RuR and CAN, a heterogeneous nano-sized Ru-Ce compound is detected, which is formed by the interaction of [(NH3)5RuORu(NH3)4ORu(NH3)5],6+/7+ nitrate ions, and the products of the reduction of CAN.
Collapse
Affiliation(s)
- Bahram Sarvi
- Department of Chemistry
- Institute for Advanced Studies in Basic Science (IASBS)
- Zanjan
- Iran
| | | | - Bahareh Deljoo
- Institute of Materials Science
- University of Connecticut
- Storrs
- USA
- Department of Materials Science and Engineering
| | | | | | - Mark Aindow
- Institute of Materials Science
- University of Connecticut
- Storrs
- USA
- Department of Materials Science and Engineering
| | - Steven L. Suib
- Institute of Materials Science
- University of Connecticut
- Storrs
- USA
- Department of Materials Science and Engineering
| | - Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Science (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| |
Collapse
|
20
|
Zhang J, Cao X, Guo M, Wang H, Saunders M, Xiang Y, Jiang SP, Lu S. Unique Ni Crystalline Core/Ni Phosphide Amorphous Shell Heterostructured Electrocatalyst for Hydrazine Oxidation Reaction of Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19048-19055. [PMID: 31062967 DOI: 10.1021/acsami.9b00878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is highly attractive but challenging to develop transition-metal electrocatalysts for direct hydrazine fuel cells (DHzFCs). In this work, a nickel crystalline core@nickel phosphide amorphous shell heterostructured electrocatalyst supported by active carbon (Ni@NiP/C) is developed. Ni@NiP/C with a P/Ni molar ratio of 3:100, Ni@NiP3.0/C, exhibits outstanding catalytic activity for the hydrazine oxidation reaction (HzOR) in alkaline solution, achieving a much better catalytic activity (2675.1 A gNi-1@0.25 V vs RHE) and high stability, as compared to Ni nanoparticles supported on carbon (Ni/C) and Pt/C catalysts. The results indicate that formation of the NiP amorphous shell effectively inhibits the passivation of the Ni core active sites and enhances the adsorption of hydrazine on Ni by improving the adsorption energy, leading to high electrochemical activity and stability of the Ni@NiP3.0/C catalysts for HzOR. The density functional theory calculation confirms the structural and electrocatalytic effect of the core-shell heterostructure on the stability and activity of Ni active sites for HzOR. The unique crystalline core/amorphous shell-structured Ni@NiP/C demonstrates promising potential as an effective electrocatalyst for DHzFCs.
Collapse
Affiliation(s)
- Jin Zhang
- Beijing Key Laboratory of Bio-inspired Materials and Devices & School of Space and Environment , Beihang University , Beijing 100191 , China
| | - Xinyue Cao
- Beijing Key Laboratory of Bio-inspired Materials and Devices & School of Space and Environment , Beihang University , Beijing 100191 , China
| | - Min Guo
- Beijing Key Laboratory of Bio-inspired Materials and Devices & School of Space and Environment , Beihang University , Beijing 100191 , China
| | - Haining Wang
- Beijing Key Laboratory of Bio-inspired Materials and Devices & School of Space and Environment , Beihang University , Beijing 100191 , China
| | - Martin Saunders
- Center for Microscopy, Characterization and Analysis (CMCA) , The University of Western Australia , Perth WA6009 , Australia
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Materials and Devices & School of Space and Environment , Beihang University , Beijing 100191 , China
| | - San Ping Jiang
- Fuels and Energy Technology Institute & Western Australia School of Mines: Mineral, Energy and Chemical Engineering , Curtin University , Perth WA6102 , Australia
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Materials and Devices & School of Space and Environment , Beihang University , Beijing 100191 , China
| |
Collapse
|
21
|
Heidari S, Singh JP, Feizi H, Bagheri R, Chae KH, Song Z, Khatamian M, Najafpour MM. Electrochemical water oxidation by simple manganese salts. Sci Rep 2019; 9:7749. [PMID: 31123332 PMCID: PMC6533286 DOI: 10.1038/s41598-019-44001-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 05/07/2019] [Indexed: 12/04/2022] Open
Abstract
Recently, it has been great efforts to synthesize an efficient water-oxidizing catalyst. However, to find the true catalyst in the harsh conditions of the water-oxidation reaction is an open area in science. Herein, we showed that corrosion of some simple manganese salts, MnCO3, MnWO4, Mn3(PO4)2 · 3H2O, and Mn(VO3)2 · xH2O, under the water-electrolysis conditions at pH = 6.3, gives an amorphous manganese oxide. This conversion was studied with X-ray absorption spectroscopy (XAS), as well as, scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), spectroelectrochemistry and electrochemistry methods. When using as a water-oxidizing catalyst, such results are important to display that long-term water oxidation can change the nature of the manganese salts.
Collapse
Affiliation(s)
- Sima Heidari
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Jitendra Pal Singh
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hadi Feizi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Robabeh Bagheri
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo, 315201, China
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Zhenlun Song
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo, 315201, China
| | - Maasoumeh Khatamian
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
22
|
Najafpour MM, Feizi H. A new decomposition mechanism for metal complexes under water-oxidation conditions. Sci Rep 2019; 9:7483. [PMID: 31097740 PMCID: PMC6522543 DOI: 10.1038/s41598-019-43953-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/01/2019] [Indexed: 11/15/2022] Open
Abstract
Herein, water-oxidation reaction by cobalt(II) phthalocyanine, N,N′-bis (salicylidene) ethylenediamino cobalt(II), nickel(II) Schiff base (N,N′-bis (salicylidene)ethylenediamino nickel(II), nickel(II)) phthalocyanine-tetrasulfonate tetrasodium, manganese(II) phthalocyanine, 5,10,15,20-Tetraphenyl-21H,23H-porphine manganese(III) chloride, manganese(III) 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine chloride tetrakis(methochloride) was investigated using electrochemistry, UV-vis spectroscopy and spectroelectrochemistry. According to our results, a new decomposition pathway for these metal complexes under water-oxidation conditions was proposed. The produced metal oxide obtained by decomposition of metal complex under water -oxidation conditions not only catalyzes water-oxidation reaction but this metal oxide also accelerates decomposition of the corresponding complex to form higher amounts of the metal oxide. We hypothesize that such a mechanism could be investigated for many metal complexes under different oxidation or reduction reactions.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Hadi Feizi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
23
|
Feizi H, Bagheri R, Jagličić Z, Singh JP, Chae KH, Song Z, Najafpour MM. A nickel(ii) complex under water-oxidation reaction: what is the true catalyst? Dalton Trans 2019; 48:547-557. [DOI: 10.1039/c8dt03990a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A Ni(ii) complex as a water-oxidizing catalyst under electrochemical conditions was studied and the role of Ni oxide as a true catalyst was investigated.
Collapse
Affiliation(s)
- Hadi Feizi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Robabeh Bagheri
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Zvonko Jagličić
- Institute of Mathematics
- Physics and Mechanics & Faculty of Civil and Geodetic Engineering
- University of Ljubljana
- SI-1000 Ljubljana
- Slovenia
| | - Jitendra Pal Singh
- Advanced Analysis Center
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Republic of Korea
| | - Zhenlun Song
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| |
Collapse
|
24
|
Mousazade Y, Najafpour MM, Bagheri R, Jagličić Z, Singh JP, Chae KH, Song Z, Rodionova MV, Voloshin RA, Shen JR, Ramakrishna S, Allakhverdiev SI. A manganese(ii) phthalocyanine under water-oxidation reaction: new findings. Dalton Trans 2019; 48:12147-12158. [DOI: 10.1039/c9dt01790a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The decomposition reaction for a manganese complex under water oxidation was investigated.
Collapse
|
25
|
Wang Y, Song Y, Zhu G, Zhang D, Liu X. Highly biocompatible BSA-MnO2 nanoparticles as an efficient near-infrared photothermal agent for cancer therapy. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Walter C, Menezes PW, Loos S, Dau H, Driess M. Facile Formation of Nanostructured Manganese Oxide Films as High-Performance Catalysts for the Oxygen Evolution Reaction. CHEMSUSCHEM 2018; 11:2554-2561. [PMID: 29888534 DOI: 10.1002/cssc.201800493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/08/2018] [Indexed: 06/08/2023]
Abstract
The development of inexpensive, earth abundant, and bioinspired oxygen evolution electrocatalysts that are easily accessible and scalable is a principal requirement with regard to the feasibility of water splitting for large-scale chemical energy storage. A unique, versatile, and scalable approach has been developed to fabricate manganese oxide films from single layers to multilayers with a controlled thickness and high reproducibility. The produced MnOx films are composed of small nanostructures that are assembled closely in the form of porous sponge-like layers. The films were investigated for the electrochemical oxygen evolution reaction in alkaline media and demonstrate a remarkable activity as well as a superior stability of over 60 h. To elucidate the catalytically active species, as well as the striking structural characteristics, the films were further examined in depth by using SEM, TEM, and X-ray photoelectron spectroscopy, as well as quasi in situ extended X-ray absorption fine structure and X-ray absorption near edge structure analysis. The MnOx catalyst films excel because of a favorably high fraction of Mn3+ ions that are retained even after operation at oxidizing potentials. Upon exposure to oxidizing potentials in strongly alkaline aqueous electrolyte, the catalyst material maintains its structural integrity at the nanostructural, morphological, and atomic level.
Collapse
Affiliation(s)
- Carsten Walter
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Stefan Loos
- Fachbereich Physik, Freie Universität, Arnimallee 14, 14195, Berlin, Germany), E-mail: mailto
| | - Holger Dau
- Fachbereich Physik, Freie Universität, Arnimallee 14, 14195, Berlin, Germany), E-mail: mailto
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
27
|
Panda C, Menezes PW, Driess M. Nanoskalige anorganische Energiematerialien aus molekularen Vorstufen bei tiefer Temperatur. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chakadola Panda
- Institut für Chemie, Metallorganische Chemie und anorganische Materialien; Technische Universität Berlin; Straße des 17. Juni 135, Sekr. C2 10623 Berlin Deutschland
| | - Prashanth W. Menezes
- Institut für Chemie, Metallorganische Chemie und anorganische Materialien; Technische Universität Berlin; Straße des 17. Juni 135, Sekr. C2 10623 Berlin Deutschland
| | - Matthias Driess
- Institut für Chemie, Metallorganische Chemie und anorganische Materialien; Technische Universität Berlin; Straße des 17. Juni 135, Sekr. C2 10623 Berlin Deutschland
| |
Collapse
|
28
|
Panda C, Menezes PW, Driess M. Nano-Sized Inorganic Energy-Materials by the Low-Temperature Molecular Precursor Approach. Angew Chem Int Ed Engl 2018; 57:11130-11139. [PMID: 29733547 DOI: 10.1002/anie.201803673] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 12/24/2022]
Abstract
The low-temperature synthesis of inorganic materials and their interfaces at the atomic and molecular level provides numerous opportunities for the design and improvement of inorganic materials in heterogeneous catalysis for sustainable chemical energy conversion or other energy-saving areas. Using suitable molecular precursors for functional inorganic nanomaterial synthesis allows for facile control over uniform particle size distribution, stoichiometry, and leads to desired chemical and physical properties. This Minireview outlines some advantages of the molecular precursor approach in light of selected recent developments of molecule-to-nanomaterials synthesis for renewable energy applications, relevant for the oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water-splitting.
Collapse
Affiliation(s)
- Chakadola Panda
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
29
|
Han Q, Ding Y. Recent advances in the field of light-driven water oxidation catalyzed by transition-metal substituted polyoxometalates. Dalton Trans 2018; 47:8180-8188. [PMID: 29808188 DOI: 10.1039/c8dt01291a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transition-metal (TM) substituted polyoxometalates (POMs) have been demonstrated to be excellent water oxidation catalysts (WOCs) under visible light due to their unique structural features, tunable band gap structures and high stability. Herein, we present a brief review on recent developments in the field of TM substituted POM water oxidation catalysts (TSPWOCs) including both homogeneous and heterogeneous TSPWOCs. We systematically highlight the composition and structure of these different materials for higher photochemical performances and summarize recent advancements, which will provide readers valuable guidance for further discovery and improvements in efficient and robust TSPWOCs in future.
Collapse
Affiliation(s)
- Qing Han
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | | |
Collapse
|
30
|
Najafpour MM, Moghaddam NJ, Hassani L, Bagheri R, Song Z, Allakhverdiev SI. Toward Escherichia coli bacteria machine for water oxidation. PHOTOSYNTHESIS RESEARCH 2018; 136:257-267. [PMID: 29589334 DOI: 10.1007/s11120-018-0499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Nature uses a Mn oxide-based catalyst for water oxidation in plants, algae, and cyanobacteria. Mn oxides are among major candidates to be used as water-oxidizing catalysts. Herein, we used two straightforward and promising methods to form Escherichia coli bacteria/Mn oxide compounds. In one of the methods, the bacteria template was intact after the reaction. The catalysts were characterized by X-ray photoelectron spectroscopy, visible spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy, Raman spectroscopy, and X-ray diffraction spectrometry. Electrochemical properties of the catalysts were studied, and attributed redox potentials were assigned. The water oxidation of the compounds was examined under electrochemical condition. Linear sweep voltammetry showed that the onsets of water oxidation in our experimental condition for bacteria and Escherichia coli bacteria/Mn oxide were 1.68 and 1.56 V versus the normal hydrogen electrode (NHE), respectively. Thus, the presence of Mn oxide in the catalyst significantly decreased (~ 120 mV) the overpotential needed for water oxidation.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Navid Jameei Moghaddam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Leila Hassani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45195-1159, Iran
| | - Robabeh Bagheri
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo, 315201, China
| | - Zhenlun Song
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo, 315201, China
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, 142290, Russia.
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia.
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russia.
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, 1073, Baku, Azerbaijan.
| |
Collapse
|
31
|
Zhang Y, Wang X, Hu D, Xue C, Wang W, Yang H, Li D, Wu T. Monodisperse Ultrasmall Manganese-Doped Multimetallic Oxysulfide Nanoparticles as Highly Efficient Oxygen Reduction Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13413-13424. [PMID: 29613757 DOI: 10.1021/acsami.7b19498] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The highly efficient and cheap non-Pt-based electrocatalysts such as transition-based catalysts prepared via facile methods for oxygen reduction reaction (ORR) are desirable for large-scale practical industry applications in energy conversion and storage systems. Herein, we report a straightforward top-down synthesis of monodisperse ultrasmall manganese-doped multimetallic (ZnGe) oxysulfide nanoparticles (NPs) as an efficient ORR electrocatalyst by simple ultrasonic treatment of the Mn-doped Zn-Ge-S chalcogenidometalate crystal precursors in H2O/EtOH for only 1 h at room temperature. Thus obtained ultrasmall monodisperse Mn-doped oxysulfide NPs with ultralow Mn loading level (3.92 wt %) not only exhibit comparable onset and half-wave potential (0.92 and 0.86 V vs reversible hydrogen electrode, respectively) to the commercial 20 wt % Pt/C but also exceptionally high metal mass activity (189 mA/mg at 0.8 V) and good methanol tolerance. A combination of transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical analysis demonstrated that the homogenous distribution of a large amount of Mn(III) on the surface of NPs mainly accounts for the high ORR activity. We believe that this simple synthesis of Mn-doped multimetallic (ZnGe) oxysulfide NPs derived from chalcogenidometalates will open a new route to explore the utilization of discrete-cluster-based chalcogenidometalates as novel non-Pt electrocatalysts for energy applications and provide a facile way to realize the effective reduction of the amount of catalyst while keeping desired catalytic performances.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xiang Wang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Dandan Hu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Chaozhuang Xue
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Wei Wang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Huajun Yang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Dongsheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials , China Three Gorges University , Yichang , Hubei 443002 , China
| | - Tao Wu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
32
|
Johnson BA, Bhunia A, Ott S. Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal-organic framework thin film. Dalton Trans 2018; 46:1382-1388. [PMID: 27845800 DOI: 10.1039/c6dt03718f] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A molecular water oxidation catalyst, [Ru(tpy)(dcbpy)(OH2)](ClO4)2 (tpy = 2,2':6',2''-terpyridine, dcbpy = 2,2'-bipyridine-5,5'-dicarboxylic acid) [1], has been incorporated into FTO-grown thin films of UiO-67 (UiO = University of Oslo), by post-synthetic ligand exchange. Cyclic voltammograms (0.1 M borate buffer at pH = 8.4) of the resulting UiO67-[RuOH2]@FTO show a reversible wave associated with the RuIII/II couple in the anodic scan, followed by a large current response that arises from electrocatalytic water oxidation beyond 1.1 V vs. Ag/AgCl. Water oxidation can be observed at an applied potential of 1.5 V over the timescale of hours with a current density of 11.5 μA cm-2. Oxygen evolution was quantified in situ over the course of the experiment, and the Faradaic efficiency was calculated as 82%. Importantly, the molecular integrity of [1] during electrocatalytic water oxidation is maintained even on the timescale of hours under turnover conditions and applied voltage, as evidenced by the persistence of the wave associated with the RuIII/II couple in the CV. This experiment highlights the capability of metal organic frameworks like UiO-67 to stabilize the molecular structure of catalysts that are prone to form higher clusters in homogenous phase.
Collapse
Affiliation(s)
- Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Asamanjoy Bhunia
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| |
Collapse
|
33
|
Walter C, Menezes PW, Orthmann S, Schuch J, Connor P, Kaiser B, Lerch M, Driess M. A Molecular Approach to Manganese Nitride Acting as a High Performance Electrocatalyst in the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2018; 57:698-702. [DOI: 10.1002/anie.201710460] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Carsten Walter
- Department of Chemistry, Metalorganics and Inorganic MaterialsTechnische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Prashanth W. Menezes
- Department of Chemistry, Metalorganics and Inorganic MaterialsTechnische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Steven Orthmann
- Department of ChemistrySolid State ChemistryTechnische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Jona Schuch
- Institute of Material ScienceTechnische Universität Darmstadt Jovanka-Bontschits-Straße 2 64287 Darmstadt Germany
| | - Paula Connor
- Institute of Material ScienceTechnische Universität Darmstadt Jovanka-Bontschits-Straße 2 64287 Darmstadt Germany
| | - Bernhard Kaiser
- Institute of Material ScienceTechnische Universität Darmstadt Jovanka-Bontschits-Straße 2 64287 Darmstadt Germany
| | - Martin Lerch
- Department of ChemistrySolid State ChemistryTechnische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic MaterialsTechnische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
34
|
Najafpour MM, Mehrabani S, Mousazade Y, Hołyńska M. Water oxidation by a copper(ii) complex: new findings, questions, challenges and a new hypothesis. Dalton Trans 2018; 47:9021-9029. [DOI: 10.1039/c8dt01876f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose that an uncomplexed Cu(ii) ion or oxide is a candidate as a contributor to the observed catalysis in the presence of a Cu(ii) complex under water oxidation.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Somayeh Mehrabani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Younes Mousazade
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| |
Collapse
|
35
|
Mousazade Y, Mohammadi MR, Chernev P, Bikas R, Bagheri R, Song Z, Lis T, Dau H, Najafpour MM. Water oxidation by a manganese–potassium cluster: Mn oxide as a kinetically dominant “true” catalyst for water oxidation. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01151f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a manganese–potassium cluster was investigated for electrochemical water oxidation to find the true, kinetically dominant, catalyst.
Collapse
Affiliation(s)
- Younes Mousazade
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | | | - Petko Chernev
- Fachbereich Physik
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Department of Chemistry - Ångströmlaboratoriet
| | - Rahman Bikas
- Department of Chemistry
- Faculty of Science
- Imam Khomeini International University
- Qazvin
- Iran
| | - Robabeh Bagheri
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Zhenlun Song
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Tadeusz Lis
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Holger Dau
- Fachbereich Physik
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| |
Collapse
|
36
|
Zand Z, Najafpour MM, Bagheri R, Song Z. Nanosized silver bromide: an efficient catalyst for alcohol oxidation in the presence of a multinuclear silver complex. NEW J CHEM 2018. [DOI: 10.1039/c8nj02288g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We detected AgBr as a true catalyst for alcohol oxidation in the presence of a silver complex.
Collapse
Affiliation(s)
- Zahra Zand
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Robabeh Bagheri
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Zhenlun Song
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| |
Collapse
|
37
|
Heidari S, Najafpour MM, Hołyńska M, Singh JP, Chae KH, Khatamian M. Water oxidation by simple manganese salts in the presence of cerium(iv) ammonium nitrate: towards a complete picture. Dalton Trans 2018; 47:1557-1565. [DOI: 10.1039/c7dt04143h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, using some methods, we showed that under the water-oxidation conditions and in the presence of cerium(iv) ammonium nitrate, some manganese salts are converted to Mn oxide.
Collapse
Affiliation(s)
- Sima Heidari
- Department of Inorganic Chemistry
- Faculty of Chemistry
- University of Tabriz
- 5166616471 Tabriz
- Iran
| | - Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | - Jitendra Pal Singh
- Advanced Analysis Center
- Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center
- Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Masoumeh Khatamian
- Department of Inorganic Chemistry
- Faculty of Chemistry
- University of Tabriz
- 5166616471 Tabriz
- Iran
| |
Collapse
|
38
|
Najafpour MM, Feizi H. Water oxidation catalyzed by two cobalt complexes: new challenges and questions. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02602a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, two cobalt complexes as true catalysts for water oxidation were investigated.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Hadi Feizi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|
39
|
Feizi H, Shiri F, Bagheri R, Singh JP, Chae KH, Song Z, Najafpour MM. The application of a nickel(ii) Schiff base complex in water oxidation: the importance of nanosized materials. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00582f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of Ni oxide in the electrocatalytic water oxidation of a nickel(ii) Schiff base (N,N′-bis (salicylidene) ethylenediamino nickel(ii)) is investigated.
Collapse
Affiliation(s)
- Hadi Feizi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Farshad Shiri
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Robabeh Bagheri
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Jitendra Pal Singh
- Advanced Analysis Center
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Republic of Korea
| | - Zhenlun Song
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| |
Collapse
|
40
|
Safdari R, Mohammadi MR, Hołyńska M, Chernev P, Dau H, Najafpour MM. A mononuclear cobalt complex for water oxidation: new controversies and puzzles. Dalton Trans 2018; 47:16668-16673. [DOI: 10.1039/c8dt03147a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein the role of a mononuclear cobalt(iii) complex, [CoIII(DPKOH)2]ClO4 (DPK = di(2-pyridyl)ketone), in the water electrooxidation process is reinvestigated.
Collapse
Affiliation(s)
- Rasoul Safdari
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Mohammad Reza Mohammadi
- Freie Universität Berlin
- Fachbereich Physik
- 14195 Berlin
- Germany
- University of Sistan and Baluchestan
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | - Petko Chernev
- Freie Universität Berlin
- Fachbereich Physik
- 14195 Berlin
- Germany
- Uppsala University
| | - Holger Dau
- Freie Universität Berlin
- Fachbereich Physik
- 14195 Berlin
- Germany
| | - Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| |
Collapse
|
41
|
Najafpour MM, Feizi H. Water oxidation by Ni(1,4,8,11-tetraazacyclotetradecane)2+ in the presence of carbonate: new findings and an alternative mechanism. Dalton Trans 2018; 47:6519-6527. [DOI: 10.1039/c8dt00068a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of nanosized particles or Ni ions on the surface of the electrode under water-oxidation conditions in the presence of Ni(1,4,8,11-tetraazacyclotetradecane)2+ was investigated.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Hadi Feizi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|
42
|
Walter C, Menezes PW, Orthmann S, Schuch J, Connor P, Kaiser B, Lerch M, Driess M. A Molecular Approach to Manganese Nitride Acting as a High Performance Electrocatalyst in the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710460] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Carsten Walter
- Department of Chemistry, Metalorganics and Inorganic MaterialsTechnische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Prashanth W. Menezes
- Department of Chemistry, Metalorganics and Inorganic MaterialsTechnische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Steven Orthmann
- Department of ChemistrySolid State ChemistryTechnische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Jona Schuch
- Institute of Material ScienceTechnische Universität Darmstadt Jovanka-Bontschits-Straße 2 64287 Darmstadt Germany
| | - Paula Connor
- Institute of Material ScienceTechnische Universität Darmstadt Jovanka-Bontschits-Straße 2 64287 Darmstadt Germany
| | - Bernhard Kaiser
- Institute of Material ScienceTechnische Universität Darmstadt Jovanka-Bontschits-Straße 2 64287 Darmstadt Germany
| | - Martin Lerch
- Department of ChemistrySolid State ChemistryTechnische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic MaterialsTechnische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
43
|
Rossini E, Knapp EW. Protonation equilibria of transition metal complexes: From model systems toward the Mn-complex in photosystem II. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Najafpour MM. From manganese complexes to nano-sized manganese oxides as water-oxidizing catalysts for artificial photosynthetic systems: Insights from the Zanjan team. CR CHIM 2017. [DOI: 10.1016/j.crci.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Light-driven electron transfer in a modular assembly of a ruthenium(II) polypyridine sensitiser and a manganese(II) terpyridine unit separated by a redox active linkage. DFT analysis. CR CHIM 2017. [DOI: 10.1016/j.crci.2016.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
A DFT/B3LYP study of the mechanisms of the O 2 formation reaction catalyzed by the [(terpy)(H 2O)Mn III(O) 2Mn IV(OH 2)(terpy)](NO 3) 3 complex: A paradigm for photosystem II. J Inorg Biochem 2017; 171:52-66. [PMID: 28365435 DOI: 10.1016/j.jinorgbio.2017.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/28/2017] [Accepted: 02/17/2017] [Indexed: 11/20/2022]
Abstract
We present a theoretical study of the reaction pathway for dioxygen molecular formation catalyzed by the [(terpy)(H2O)MnIII(O)2MnIV(OH2) (terpy)](NO3)3 (terpy=2,2':6',2″-terpyridine) complex based on DFT-B3LYP calculations. In the initial state of the reaction, a partial oxido radical (0.44 spins) is formed ligated to Mn. This radical is involved in a nucleophylic attack by bulk water in the OO bond reaction formation step, in which the oxido fractional unpaired electron is delocalized toward the outermost Mn of the μ-oxo bridge, instead of the ligated Mn center. The reaction then follows with a series of proton-coupled electron transfer steps, in which the oxidation state, as well as the bond strength of the OO moiety increase, while the OOMn(1) bond gets weaker until O2 is released. In this model, basic acetate ions from the buffer solution capture protons in the proton-transfer steps. In each step there is reduction of the OOMn(1) binding strength, with concomitant increase of the OO bond strength, which culminates with the release of O2 in the last step. This last step is entropy driven, while formation of hydroperoxide and superoxide moieties is enthalpy driven. According with experiments, the rate-limiting step is the double oxidation of Mn(IV,III) or peroxymonosulfate binding, which occur prior to the OO bond formation step. This supports our findings that the barriers of all intermediate steps are below the experimental barrier of 19-21kcal/mol. The implications of these findings for understanding photosynthetic water-splitting catalysis are also discussed.
Collapse
|
47
|
Najafpour MM, Salimi S, Zand Z, Hołyńska M, Tomo T, Singh JP, Chae KH, Allakhverdiev SI. Nanosized manganese oxide/holmium oxide: a new composite for water oxidation. NEW J CHEM 2017. [DOI: 10.1039/c7nj02747h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ho2O3 as a support for nanosized Mn oxide was used for the synthesis of a new water-oxidizing catalyst.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Saeideh Salimi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Zahra Zand
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- Hans-Meerwein-Straße
- D-35032 Marburg
- Germany
| | - Tatsuya Tomo
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Kagurazaka 1-3
- Tokyo
| | - Jitendra Pal Singh
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Botanicheskaya Street 35
- Moscow 127276
| |
Collapse
|
48
|
Kondo M, Masaoka S. Water Oxidation Catalysts Constructed by Biorelevant First-row Metal Complexes. CHEM LETT 2016. [DOI: 10.1246/cl.160639] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Abstract
Water oxidation is a key chemical transformation for the conversion of solar energy into chemical fuels. Our review focuses on recent work on robust earth-abundant heterogeneous catalysts for the oxygen-evolving reaction (OER). We point out that improvements in the performance of OER catalysts will depend critically on the success of work aimed at understanding reaction barriers based on atomic-level mechanisms. We highlight the challenge of obtaining acid-stable OER catalysts, with proposals for elements that could be employed to reach this goal. We suggest that future advances in solar fuels science will be accelerated by the development of new methods for materials synthesis and characterization, along with in-depth investigations of redox mechanisms at catalytic surfaces.
Collapse
Affiliation(s)
- Bryan M Hunter
- Beckman Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology , M/C 139-74, Pasadena, California 91125, United States
| | - Harry B Gray
- Beckman Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology , M/C 139-74, Pasadena, California 91125, United States
| | - Astrid M Müller
- Beckman Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology , M/C 139-74, Pasadena, California 91125, United States
| |
Collapse
|
50
|
Mahdi Najafpour M, Jafarian Sedigh D, Maedeh Hosseini S, Zaharieva I. Treated Nanolayered Mn Oxide by Oxidizable Compounds: A Strategy To Improve the Catalytic Activity toward Water Oxidation. Inorg Chem 2016; 55:8827-32. [DOI: 10.1021/acs.inorgchem.6b01334] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, and Center of
Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Davood Jafarian Sedigh
- Department of Chemistry, and Center of
Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Seyedeh Maedeh Hosseini
- Department of Chemistry, and Center of
Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Ivelina Zaharieva
- Freie Universität Berlin, Fachbereich Physik, Arnimallee
14, D-14195 Berlin, Germany
| |
Collapse
|