1
|
Zhang H, Chen B, Liu T, Brudvig GW, Wang D, Waegele MM. Infrared Spectroscopic Observation of Oxo- and Superoxo-Intermediates in the Water Oxidation Cycle of a Molecular Ir Catalyst. J Am Chem Soc 2024; 146:878-883. [PMID: 38154046 DOI: 10.1021/jacs.3c11206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Molecular Ir catalysts have emerged as an important class of model catalysts for understanding structure-activity relationships in water oxidation, a reaction that is central to renewable fuel synthesis. Prior efforts have mostly focused on controlling and elucidating the emergence of active species from prepared precursors. However, the development of efficient and stable molecular Ir catalysts also necessitates probing of reaction intermediates. To date, relatively little is known about the key intermediates in the cycles of the molecular Ir catalysts. Herein, we probed the catalytic cycle of a homogeneous Ir catalyst ("blue dimer") at a Au electrode/aqueous electrolyte interface by combining surface-enhanced infrared absorption spectroscopy (SEIRAS) with phase-sensitive detection (PSD). Cyclic voltammograms (CVs) from 1.4 to 1.7 VRHE (RHE = reversible hydrogen electrode) give rise to a band at ∼818 cm-1, whereas CVs from 1.4 to ≥1.85 VRHE generate an additional band at ∼1146 cm-1. Isotope labeling experiments indicate that the bands at ∼818 and ∼1146 cm-1 are attributable to oxo (IrV═O) and superoxo (IrIV-OO•) moieties, respectively. This study establishes PSD-SEIRAS as a sensitive tool for probing water oxidation cycles at electrode/electrolyte interfaces and demonstrates that the relative abundance of two key intermediates can be tuned by the thermodynamic driving force of the reaction.
Collapse
Affiliation(s)
- Hongna Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Boqiang Chen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tianying Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Matthias M Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Bai S, Mou Y, Wan J, Wang Y, Li W, Zhang H, Luo P, Wang Y. Unique amorphous/crystalline heterophase coupling for an efficient oxygen evolution reaction. NANOSCALE 2022; 14:18123-18132. [PMID: 36449014 DOI: 10.1039/d2nr05167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Designing amorphous/crystalline heterophase catalysts is still in the initial stage, and the study of amorphous/crystalline heterophase and carbon-free catalysts has not yet been realized. Herein, we report a unique amorphous/crystalline heterophase catalyst consisting of NiFe alloy nanoparticles (NPs) supported on Ti4O7 (NiFe/Ti4O7) for the first time, which is achieved by a heterophase supporting strategy of dual heat treatment. Surprisingly, the amorphous/crystalline heterophase is flexibly composed of amorphous and crystalline phases of alloy NPs and Ti4O7. The heterophase coupling endows the catalyst with a low overpotential (256 mV at 10 mA cm-2), a small Tafel slope (47 mV dec-1) and excellent endurance stability (over 100 h) in 1 M KOH electrolyte, which already outperforms commercial RuO2 (338 mV and 113 mV dec-1) and exceeds most reported representative carbon-based and titanium-based non-precious metal catalysts. The density functional theory (DFT) calculations and experimental results reveal that the unique amorphous/crystalline heterophase coupling in NiFe/Ti4O7 results in electron transfer between the alloy NPs and Ti4O7, allowing more catalytically active sites and faster interfacial electron transfer dynamics. This work provides insights into the synthesis of amorphous/crystalline heterophase catalysts and can be generalized to the heterophase coupling of other transition metal-based electrocatalysts.
Collapse
Affiliation(s)
- Sitian Bai
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China.
| | - Yiwei Mou
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China.
| | - Jin Wan
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China.
| | - Yanwei Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China.
| | - Weibo Li
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China.
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China.
| | - Ping Luo
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China.
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China.
- The School of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China
| |
Collapse
|
3
|
Wang L, Wang L. Ligands modification strategies for mononuclear water splitting catalysts. Front Chem 2022; 10:996383. [PMID: 36238101 PMCID: PMC9551221 DOI: 10.3389/fchem.2022.996383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Artificial photosynthesis (AP) has been proved to be a promising way of alleviating global climate change and energy crisis. Among various materials for AP, molecular complexes play an important role due to their favorable efficiency, stability, and activity. As a result of its importance, the topic has been extensively reviewed, however, most of them paid attention to the designs and preparations of complexes and their water splitting mechanisms. In fact, ligands design and preparation also play an important role in metal complexes’ properties and catalysis performance. In this review, we focus on the ligands that are suitable for designing mononuclear catalysts for water splitting, providing a coherent discussion at the strategic level because of the availability of various activity studies for the selected complexes. Two main designing strategies for ligands in molecular catalysts, substituents modification and backbone construction, are discussed in detail in terms of their potentials for water splitting catalysts.
Collapse
|
4
|
Zhang X, Chen QF, Deng J, Xu X, Zhan J, Du HY, Yu Z, Li M, Zhang MT, Shao Y. Identifying Metal-Oxo/Peroxo Intermediates in Catalytic Water Oxidation by In Situ Electrochemical Mass Spectrometry. J Am Chem Soc 2022; 144:17748-17752. [PMID: 36149317 DOI: 10.1021/jacs.2c07026] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular catalysis of water oxidation has been intensively investigated, but its mechanism is still not yet fully understood. This study aims at capturing and identifying key short-lived intermediates directly during the water oxidation catalyzed by a cobalt-tetraamido macrocyclic ligand complex using a newly developed an in situ electrochemical mass spectrometry (EC-MS) method. Two key ligand-centered-oxidation intermediates, [(L2-)CoIIIOH] and [(L2-)CoIIIOOH], were directly observed for the first time, and further confirmed by 18O-labeling and collision-induced dissociation studies. These experimental results further confirmed the rationality of the water nucleophilic attack mechanism for the single-site water oxidation catalysis. This work also demonstrated that such an in situ EC-MS method is a promising analytical tool for redox catalytic processes, not only limited to water oxidation.
Collapse
Affiliation(s)
- Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jintao Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyu Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jirui Zhan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao-Yi Du
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meixian Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Bozal-Ginesta C, Rao RR, Mesa CA, Liu X, Hillman SAJ, Stephens IEL, Durrant JR. Redox-State Kinetics in Water-Oxidation IrO x Electrocatalysts Measured by Operando Spectroelectrochemistry. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Carlota Bozal-Ginesta
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Reshma R. Rao
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Camilo A. Mesa
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Xinyi Liu
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Sam A. J. Hillman
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Ifan E. L. Stephens
- Department of Materials, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - James R. Durrant
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
6
|
D’Agostini S, Kottrup KG, Casadevall C, Gamba I, Dantignana V, Bucci A, Costas M, Lloret-Fillol J, Hetterscheid DG. Electrocatalytic Water Oxidation with α-[Fe(mcp)(OTf) 2] and Analogues. ACS Catal 2021; 11:2583-2595. [PMID: 33815893 PMCID: PMC8016111 DOI: 10.1021/acscatal.0c05439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Indexed: 12/02/2022]
Abstract
![]()
The complex α-[Fe(mcp)(OTf)2] (mcp = N,N′-dimethyl-N,N′-bis(pyridin-2-ylmethyl)-cyclohexane-1,2-diamine
and OTf
= trifluoromethanesulfonate anion) was reported in 2011 by some of
us as an active water oxidation (WO) catalyst in the presence of sacrificial
oxidants. However, because chemical oxidants are likely to take part
in the reaction mechanism, mechanistic electrochemical studies are
critical in establishing to what extent previous studies with sacrificial
reagents have actually been meaningful. In this study, the complex
α-[Fe(mcp)(OTf)2] and its analogues were investigated
electrochemically under both acidic and neutral conditions. All the
systems under investigation proved to be electrochemically active
toward the WO reaction, with no major differences in activity despite
the structural changes. Our findings show that WO-catalyzed by mcp–iron
complexes proceeds via homogeneous species, whereas the analogous
manganese complex forms a heterogeneous deposit on the electrode surface.
Mechanistic studies show that the reaction proceeds with a different
rate-determining step (rds) than what was previously proposed in the
presence of chemical oxidants. Moreover, the different kinetic isotope
effect (KIE) values obtained electrochemically at pH 7 (KIE ∼
10) and at pH 1 (KIE = 1) show that the reaction conditions have a
remarkable effect on the rds and on the mechanism. We suggest a proton-coupled
electron transfer (PCET) as the rds under neutral conditions, whereas
at pH 1 the rds is most likely an electron transfer (ET).
Collapse
Affiliation(s)
- Silvia D’Agostini
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | - Carla Casadevall
- Institute of Chemical Research of Catalonia, Spain (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Ilaria Gamba
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Valeria Dantignana
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Alberto Bucci
- Institute of Chemical Research of Catalonia, Spain (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia, Spain (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010 Barcelona, Spain
| | | |
Collapse
|
7
|
Zhang G, Ge H, Zhao L, Liu J, Wang F, Fan S, Li G. NiMn1.5PO4 thin layer supported on Ni foam as a highly efficient bifunctional electrocatalyst for overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Gatto G, De Palo A, Carrasco AC, Pizarro AM, Zacchini S, Pampaloni G, Marchetti F, Macchioni A. Modulating the water oxidation catalytic activity of iridium complexes by functionalizing the Cp*-ancillary ligand: hints on the nature of the active species. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02306j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A comparative study on the behavior of a series of iridium dimeric WOCs with modified Cp* ligands reveals the key role played by the variable substituent.
Collapse
Affiliation(s)
- Giordano Gatto
- Department of Chemistry, Biology and Biotechnology and CIRCC
- University of Perugia
- 06123 Perugia
- Italy
| | - Alice De Palo
- Dipartimento di Chimica e Chimica Industriale University of Pisa
- 56124 Pisa
- Italy
| | | | | | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- 40136 Bologna
- Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale University of Pisa
- 56124 Pisa
- Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale University of Pisa
- 56124 Pisa
- Italy
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology and CIRCC
- University of Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
9
|
Yang S, Hetterscheid DGH. Redefinition of the Active Species and the Mechanism of the Oxygen Evolution Reaction on Gold Oxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shengxiang Yang
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, RA Leiden 2300, Netherlands
| | - Dennis G. H. Hetterscheid
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, RA Leiden 2300, Netherlands
| |
Collapse
|
10
|
Jiang K, Luo M, Peng M, Yu Y, Lu YR, Chan TS, Liu P, de Groot FMF, Tan Y. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nat Commun 2020; 11:2701. [PMID: 32483164 PMCID: PMC7264278 DOI: 10.1038/s41467-020-16558-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/11/2020] [Indexed: 11/09/2022] Open
Abstract
Designing efficient single-atom catalysts (SACs) for oxygen evolution reaction (OER) is critical for water-splitting. However, the self-reconstruction of isolated active sites during OER not only influences the catalytic activity, but also limits the understanding of structure-property relationships. Here, we utilize a self-reconstruction strategy to prepare a SAC with isolated iridium anchored on oxyhydroxides, which exhibits high catalytic OER performance with low overpotential and small Tafel slope, superior to the IrO2. Operando X-ray absorption spectroscopy studies in combination with theory calculations indicate that the isolated iridium sites undergo a deprotonation process to form the multiple active sites during OER, promoting the O-O coupling. The isolated iridium sites are revealed to remain dispersed due to the support effect during OER. This work not only affords the rational design strategy of OER SACs at the atomic scale, but also provides the fundamental insights of the operando OER mechanism for highly active OER SACs.
Collapse
Affiliation(s)
- Kang Jiang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Min Luo
- Department of Physics, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Ming Peng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yaqian Yu
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Pan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Frank M F de Groot
- Inorganic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
11
|
van Dijk B, Rodriguez GM, Wu L, Hofmann JP, Macchioni A, Hetterscheid DGH. The Influence of the Ligand in the Iridium Mediated Electrocatalyic Water Oxidation. ACS Catal 2020; 10:4398-4410. [PMID: 32280560 PMCID: PMC7137537 DOI: 10.1021/acscatal.0c00531] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/13/2020] [Indexed: 12/31/2022]
Abstract
![]()
Electrochemical
water oxidation is the bottleneck of electrolyzers
as even the best catalysts, iridium and ruthenium oxides, have to
operate at significant overpotentials. Previously, the position of
a hydroxyl on a series of hydroxylpicolinate ligands was found to
significantly influence the activity of molecular iridium catalysts
in sacrificial oxidant driven water oxidation. In this study, these
catalysts were tested under electrochemical conditions and benchmarked
to several other known molecular iridium catalysts under the exact
same conditions. This allowed us to compare these catalysts directly
and observe whether structure–activity relationships would
prevail under electrochemical conditions. Using both electrochemical
quartz crystal microbalance experiments and X-ray photoelectron spectroscopy,
we found that all studied iridium complexes form an iridium deposit
on the electrode with binding energies ranging from 62.4 to 62.7 eV
for the major Ir 4f7/2 species. These do not match the
binding energies found for the parent complexes, which have a broader
binding energy range from 61.7 to 62.7 eV and show a clear relationship
to the electronegativity induced by the ligands. Moreover, all catalysts
performed the electrochemical water oxidation in the same order of
magnitude as the maximum currents ranged from 0.2 to 0.6 mA cm–2 once more without clear structure–activity
relationships. In addition, by employing 1H NMR spectroscopy
we found evidence for Cp* breakdown products such as acetate. Electrodeposited
iridium oxide from ligand free [Ir(OH)6]2– or a colloidal iridium oxide nanoparticles solution produces currents
almost 2 orders of magnitude higher with a maximum current of 11 mA
cm–2. Also, this deposited material contains, apart
from an Ir 4f7/2 species at 62.4 eV, an Ir species at 63.6
eV, which is not observed for any deposit formed by the molecular
complexes. Thus, the electrodeposited material of the complexes cannot
be directly linked to bulk iridium oxide. Small IrOx clusters
containing few Ir atoms with partially incorporated ligand residues
are the most likely option for the catalytically active electrodeposit.
Our results emphasize that structure–activity relationships
obtained with sacrificial oxidants do not necessarily translate to
electrochemical conditions. Furthermore, other factors, such as electrodeposition
and catalyst degradation, play a major role in the electrochemically
driven water oxidation and should thus be considered when optimizing
molecular catalysts.
Collapse
Affiliation(s)
- Bas van Dijk
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Gabriel Menendez Rodriguez
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Longfei Wu
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan P. Hofmann
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | |
Collapse
|
12
|
Olivares M, van der Ham CJM, Mdluli V, Schmidtendorf M, Müller‐Bunz H, Verhoeven TWGM, Li M, Niemantsverdriet JW(H, Hetterscheid DGH, Bernhard S, Albrecht M. Relevance of Chemical vs. Electrochemical Oxidation of Tunable Carbene Iridium Complexes for Catalytic Water Oxidation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marta Olivares
- Departement für Chemie und Biochemie Universität Bern Freiestrasse 3, CH ‐3012 Bern Switzerland
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| | | | - Velabo Mdluli
- Department of Chemistry Carnegie Mellon University 15213 Pittsburgh Pennsylvania USA
| | | | - Helge Müller‐Bunz
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| | - Tiny W. G. M. Verhoeven
- Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Mo Li
- Department of Chemistry Carnegie Mellon University 15213 Pittsburgh Pennsylvania USA
| | | | | | - Stefan Bernhard
- Department of Chemistry Carnegie Mellon University 15213 Pittsburgh Pennsylvania USA
| | - Martin Albrecht
- Departement für Chemie und Biochemie Universität Bern Freiestrasse 3, CH ‐3012 Bern Switzerland
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
13
|
Madadkhani S, Allakhverdiev SI, Najafpour MM. An iridium-based nanocomposite prepared from an iridium complex with a hydrocarbon-based ligand. NEW J CHEM 2020. [DOI: 10.1039/d0nj02257h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
For the first time, a chlorobis(cyclooctene)iridium(i) dimer with only a simple hydrocarbon-based ligand is investigated as a heterogeneous catalyst for the oxygen-evolution reaction in the presence of cerium(iv) ammonium nitrate.
Collapse
Affiliation(s)
- Sepideh Madadkhani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow 127276
- Russia
- Institute of Basic Biological Problems
| | - Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| |
Collapse
|
14
|
Arminio‐Ravelo JA, Jensen AW, Jensen KD, Quinson J, Escudero‐Escribano M. Electrolyte Effects on the Electrocatalytic Performance of Iridium‐Based Nanoparticles for Oxygen Evolution in Rotating Disc Electrodes. Chemphyschem 2019; 20:2956-2963. [DOI: 10.1002/cphc.201900902] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/18/2019] [Indexed: 12/19/2022]
Affiliation(s)
| | - Anders W. Jensen
- Nano-Science CenterUniversity of Copenhagen Universitetsparken 5a DK-2100 Copenhagen Ø Denmark
| | - Kim D. Jensen
- Nano-Science CenterUniversity of Copenhagen Universitetsparken 5a DK-2100 Copenhagen Ø Denmark
| | - Jonathan Quinson
- Nano-Science CenterUniversity of Copenhagen Universitetsparken 5a DK-2100 Copenhagen Ø Denmark
| | | |
Collapse
|
15
|
Synthesis of a Half-Sandwich Hydroxidoiridium(III) Complex Bearing a Nonprotic N-Sulfonyldiamine Ligand and Its Transformations Triggered by the Brønsted Basicity. INORGANICS 2019. [DOI: 10.3390/inorganics7100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synthesis and reactivities of a new mononuclear hydroxidoiridium(III) complex with a pentamethylcyclopentadienyl (Cp*) ligand are reported. The hydroxido ligand was introduced into an iridium complex having a nonprotic amine chelate derived from N-mesyl-N’,N’-dimethylethylenediamine by substitution of the chloride ligand using KOH. The resulting hydroxidoiridium complex was characterized by NMR spectroscopy, elemental analysis, and X-ray crystallography. The hydroxido complex was able to deprotonate benzamide and acetonitrile, and showed an ability to accept a hydride from 2-propanol to generate the corresponding hydrido complex quantitatively. In the reaction with mandelonitrile, a cyanide anion was transferred to the iridium center in preference to the hydride transfer. The cyanidoiridium complex was also identified in the reaction with acetone cyanohydrin, and could serve as catalyst species in the transfer hydrocyanation of benzaldehyde.
Collapse
|
16
|
Li P, Liu JB, Han S, Deng W, Yao ZJ. Half-sandwich Ir (III) and Rh (III) complexes as catalysts for water oxidation with double-site. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng Li
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai 201418 China
| | - Jin-Bao Liu
- Department of Science and Technology; Shanghai Urban Construction Vocational College; Shanghai 201415 China
| | - Sheng Han
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai 201418 China
| | - Wei Deng
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai 201418 China
| | - Zi-Jian Yao
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai 201418 China
- State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210023 China
| |
Collapse
|
17
|
Wang Q, Huang H, Wang L, Chen Y. Electrochemical removal of nitrate by Cu/Ti electrode coupled with copper-modified activated carbon particles at a low current density. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17567-17576. [PMID: 31025278 DOI: 10.1007/s11356-019-05043-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Electrochemical reduction is currently one of promising methods for nitrate removal from water, yet most treatment approaches have problems of high cost and energy consumption. In this work, a low current density was applied in electrochemical reduction of nitrate. Copper-modified titanium (Cu/Ti) electrodes with optimal electrochemical activity and fastest kinetics were firstly screened. Thirty minutes of electrodeposition time and neutral pH were found to have the greatest nitrate reduction rate of 83.14%. To further improve the removal of nitrate, activated carbon (AC) and copper-modified activated carbon (Cu/AC) particles were applied to construct three-dimensional reaction systems, with removal rates of nitrate of 88.72% and 96.05%, respectively. The average conversion rates of nitrate to ammonia nitrogen increased from 15.28% to 42.68% and 62.64% in AC- and Cu/AC-based reaction systems, respectively. Oxidation of Cu(0) on surfaces of Cu/Ti cathode and Cu/AC particles to Cu(I) was revealed by X-ray photoelectron spectroscopy (XPS) and Cu LMM spectra analysis. Besides, results of water chemistry characteristics indicated the conversion of AC to carbonate ion. It could be concluded that enhanced nitrate reduction of Cu/Ti-based reaction system was attributed by Cu particle- and AC-mediated electron transfer. This study provided a reference for low-cost electrochemical reduction of nitrate.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Yixing Environmental Research Institute, Nanjing University, Yixing, 214200, Jiangsu, China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Laichun Wang
- Yixing Environmental Research Institute, Nanjing University, Yixing, 214200, Jiangsu, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
18
|
Garoz‐Ruiz J, Perales‐Rondon JV, Heras A, Colina A. Spectroelectrochemical Sensing: Current Trends and Challenges. ELECTROANAL 2019. [DOI: 10.1002/elan.201900075] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jesus Garoz‐Ruiz
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | | | - Aranzazu Heras
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Alvaro Colina
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| |
Collapse
|
19
|
Puerta-Oteo R, Jiménez MV, Pérez-Torrente JJ. Molecular water oxidation catalysis by zwitterionic carboxylate bridge-functionalized bis-NHC iridium complexes. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02306a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carboxylate functionalized bis-NHC ligands allow for the stabilization of high-valent iridium intermediate species involved in homogeneous water oxidation catalysis.
Collapse
Affiliation(s)
- Raquel Puerta-Oteo
- Department of Inorganic Chemistry
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC)
- University of Zaragoza-CSIC
- Facultad de Ciencias
- 50009 Zaragoza
| | - M. Victoria Jiménez
- Department of Inorganic Chemistry
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC)
- University of Zaragoza-CSIC
- Facultad de Ciencias
- 50009 Zaragoza
| | - Jesús J. Pérez-Torrente
- Department of Inorganic Chemistry
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC)
- University of Zaragoza-CSIC
- Facultad de Ciencias
- 50009 Zaragoza
| |
Collapse
|
20
|
Cognigni A, Palvögyi ÁM, Schröder C, Peterlik H, Müllner ARM, Zirbs R, Weil M, Bica K. Surface-Active Ionic Liquids in Catalytic Water Splitting. Aust J Chem 2019. [DOI: 10.1071/ch18104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report the application of surface-active ionic liquids as ligands and optional reaction media in iridium-catalyzed water oxidations. Three novel catalysts with N,N-dialkylimidazolidin-2-ylidene ligands based on amphiphilic imidazolium ionic liquids were synthesized and characterized. Excellent turn-over frequencies of up to 0.92s−1 were obtained in catalytic water splitting, and activity was maintained for five consecutive catalytic cycles, with an overall turn-over number of 8967. The addition of external surface-active ionic liquid showed unexpected behaviour, because strongly enhanced initial reaction rates were observed.
Collapse
|
21
|
Macchioni A. The Middle-Earth between Homogeneous and Heterogeneous Catalysis in Water Oxidation with Iridium. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alceo Macchioni
- Department of Chemistry; Biology and Biotechnology; University of Perugia; Via Elce di Sotto 8 06123 - Perugia Italy
| |
Collapse
|
22
|
|
23
|
Kottrup KG, D’Agostini S, van Langevelde PH, Siegler MA, Hetterscheid DGH. Catalytic Activity of an Iron-Based Water Oxidation Catalyst: Substrate Effects of Graphitic Electrodes. ACS Catal 2018; 8:1052-1061. [PMID: 29430332 PMCID: PMC5805403 DOI: 10.1021/acscatal.7b03284] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/15/2017] [Indexed: 01/23/2023]
Abstract
![]()
The
synthesis, characterization, and electrochemical studies of
the dinuclear complex [(MeOH)Fe(Hbbpya)-μ-O-(Hbbpya)Fe(MeOH)](OTf)4 (1) (with Hbbpya = N,N-bis(2,2′-bipyrid-6-yl)amine)
are described. With the help of online electrochemical mass spectrometry,
the complex is demonstrated to be active as a water oxidation catalyst.
Comparing the results obtained for different electrode materials shows
a clear substrate influence of the electrode, as the complex shows
a significantly lower catalytic overpotential on graphitic working
electrodes in comparison to other electrode materials. Cyclic voltammetry
experiments provide evidence that the structure of complex 1 undergoes reversible changes under high-potential conditions, regenerating
the original structure of complex 1 upon returning to
lower potentials. Results from electrochemical quartz crystal microbalance
experiments rule out that catalysis proceeds via deposition of catalytically
active material on the electrode surface.
Collapse
Affiliation(s)
- Konstantin G. Kottrup
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Silvia D’Agostini
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Phebe H. van Langevelde
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
24
|
Lu Z, Gao Y, Chen H, Liu Z, Chen L, Sun L. Efficient molecular ruthenium catalysts containing anionic ligands for water oxidation. Dalton Trans 2018; 45:18459-18464. [PMID: 27431362 DOI: 10.1039/c6dt02056a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new mononuclear Ru complexes RuII(bipa)(pic)3 (1; H2bipa = 6-(1H-benzo[d]imidazol-2-yl)picolinic acid, pic = 4-picoline) and RuII(pbic)(pic)3 (2; H2pbic = 2-(pyridin-2-yl)-1H-benzo[d]imidazole-7-carboxylic acid, pic = 4-picoline) based on anionic ligands were successfully synthesized, and characterized using NMR spectroscopy, mass spectrometry, and X-ray crystallography. These catalysts showed high activities and stabilities in water oxidation in homogeneous systems with a high turnover number of 2100 and a turnover frequency of 0.21 s-1 for complex 1. The O-O band formation mechanism involved water nucleophilic attack. An active catalytic intermediate, i.e., RuIV-OH, was detected using high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Zhongkai Lu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China.
| | - Yan Gao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China.
| | - Hong Chen
- Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Zhao Liu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China.
| | - Lifang Chen
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China.
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China. and Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
25
|
Espada MF, Esqueda AC, Campos J, Rubio M, López-Serrano J, Álvarez E, Maya C, Carmona E. Cationic (η5-C5Me4R)RhIII Complexes with Metalated Aryl Phosphines Featuring η4-Phosphorus plus Pseudo-Allylic Coordination. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ana C. Esqueda
- Escuela
de Nivel Medio Superior de León, Universidad de Guanajuato, Hermanos Aldama y Blvd. Torres Landa s/n, León, Guanajuato, México CP 37480
| | | | | | | | | | | | | |
Collapse
|
26
|
Massué C, Pfeifer V, van Gastel M, Noack J, Algara‐Siller G, Cap S, Schlögl R. Reactive Electrophilic O I- Species Evidenced in High-Performance Iridium Oxohydroxide Water Oxidation Electrocatalysts. CHEMSUSCHEM 2017; 10:4786-4798. [PMID: 28941180 PMCID: PMC5813174 DOI: 10.1002/cssc.201701291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/29/2017] [Indexed: 05/27/2023]
Abstract
Although quasi-amorphous iridium oxohydroxides have been identified repeatedly as superior electrocatalysts for the oxygen evolution reaction (OER), an exact description of the performance-relevant species has remained a challenge. In this context, we report the characterization of hydrothermally prepared iridium(III/IV) oxohydroxides that exhibit exceptional OER performances. Holes in the O 2p states of the iridium(III/IV) oxohydroxides result in reactive OI- species, which are identified by characteristic near-edge X-ray absorption fine structure (NEXAFS) features. A prototypical titration reaction with CO as a probe molecule shows that these OI- species are highly susceptible to nucleophilic attack at room temperature. Similarly to the preactivated oxygen involved in the biological OER in photosystem II, the electrophilic OI- species evidenced in the iridium(III/IV) oxohydroxides are suggested to be precursors to species involved in the O-O bond formation during the electrocatalytic OER. The CO titration also highlights a link between the OER performance and the surface/subsurface mobility of the OI- species. Thus, the superior electrocatalytic properties of the iridium (III/IV) oxohydroxides are explained by their ability to accommodate preactivated electrophilic OI- species that can migrate within the lattice.
Collapse
Affiliation(s)
- Cyriac Massué
- Department of Inorganic ChemistryFritz Haber Institute of the Max Planck SocietyBerlin14195Germany
- Department of Heterogenous ReactionsMax Planck Institute for Chemical Energy ConversionMülheim an der Ruhr45470Germany
| | - Verena Pfeifer
- Department of Inorganic ChemistryFritz Haber Institute of the Max Planck SocietyBerlin14195Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbHElektronenspeicherring BESSY IIBerlin12489Germany
| | - Maurice van Gastel
- Department of Molecular Theory and SpectroscopyMax Planck Institute for Chemical Energy ConversionMülheim an der Ruhr45470Germany
| | - Johannes Noack
- Department of Inorganic ChemistryFritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Gerardo Algara‐Siller
- Department of Inorganic ChemistryFritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Sébastien Cap
- Department of Inorganic ChemistryFritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Robert Schlögl
- Department of Inorganic ChemistryFritz Haber Institute of the Max Planck SocietyBerlin14195Germany
- Department of Heterogenous ReactionsMax Planck Institute for Chemical Energy ConversionMülheim an der Ruhr45470Germany
| |
Collapse
|
27
|
Wang X, Li C. Interfacial charge transfer in semiconductor-molecular photocatalyst systems for proton reduction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Mahanti B, González Miera G, Martínez-Castro E, Bedin M, Martín-Matute B, Ott S, Thapper A. Homogeneous Water Oxidation by Half-Sandwich Iridium(III) N-Heterocyclic Carbene Complexes with Pendant Hydroxy and Amino Groups. CHEMSUSCHEM 2017; 10:4616-4623. [PMID: 28885785 DOI: 10.1002/cssc.201701370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Herein, we report three IrIII Cp* complexes with hydroxy- or amino-functionalized N-heterocyclic carbene (NHC) ligands that catalyze efficient water oxidation induced by addition of ceric ammonium nitrate (CAN). The pendant hydroxy or amino groups are very important for activity, and the complexes with heteroatom-functionalized NHC ligands show up to 15 times higher rates of oxygen evolution in CAN-induced water oxidation than a reference IrIII Cp* complex without heteroatom functionalization. The formation of molecular high-valent Ir intermediates that are presumably involved in the rate-determining step for water oxidation is established by UV/Vis spectroscopy and ESI-MS under turnover conditions. The hydroxy groups on the NHC ligands, as well as chloride ligands on the iridium center are proposed to structurally stabilize the high-valent species, and thereby improve the catalytic activity. The IrIII complex with a hydroxy-functionalized NHC shows the highest catalytic activity with a TON of 2500 obtained in 3 h and with >90 % yield relative to the amount of oxidant used.
Collapse
Affiliation(s)
- Bani Mahanti
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 75120, Uppsala, Sweden
| | - Greco González Miera
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Elisa Martínez-Castro
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Michele Bedin
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 75120, Uppsala, Sweden
| | - Belén Martín-Matute
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Sascha Ott
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 75120, Uppsala, Sweden
| | - Anders Thapper
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 75120, Uppsala, Sweden
| |
Collapse
|
29
|
Menendez Rodriguez G, Gatto G, Zuccaccia C, Macchioni A. Benchmarking Water Oxidation Catalysts Based on Iridium Complexes: Clues and Doubts on the Nature of Active Species. CHEMSUSCHEM 2017; 10:4503-4509. [PMID: 28994240 DOI: 10.1002/cssc.201701818] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Water oxidation (WO) is a central reaction in the photo- and electro-synthesis of fuels. Iridium complexes have been successfully exploited as water oxidation catalysts (WOCs) with remarkable performances. Herein, we report a systematic study aimed at benchmarking well-known Ir WOCs, when NaIO4 is used to drive the reaction. In particular, the following complexes were studied: cis-[Ir(ppy)2 (H2 O)2 ]OTf (ppy=2-phenylpyridine) (1), [Cp*Ir(H2 O)3 ]NO3 (Cp*=1,2,3,4,5-pentamethyl-cyclopentadienyl anion) (2), [Cp*Ir(bzpy)Cl] (bzpy=2-benzoylpyridine) (3), [Cp*IrCl2 (Me2 -NHC)] (NHC=N-heterocyclic carbene) (4), [Cp*Ir(pyalk)Cl] (pyalk=2-pyridine-isopropanoate) (5), [Cp*Ir(pic)NO3 ] (pic=2-pyridine-carboxylate) (6), [Cp*Ir{(P(O)(OH)2 }3 ]Na (7), and mer-[IrCl3 (pic)(HOMe)]K (8). Their reactivity was compared with that of IrCl3 ⋅n H2 O (9) and [Ir(OH)6 ]2- (10). Most measurements were performed in phosphate buffer (0.2 m), in which 2, 4, 5, 6, 7, and 10 showed very high activity (yield close to 100 %, turnover frequency up to 554 min-1 with 10, the highest ever observed for a WO-driven by NaIO4 ). The found order of activity is: 10>2≈4>6>5>7>1>9>3>8. Clues concerning the molecular nature of the active species were obtained, whereas its exact nature remains doubtfully.
Collapse
Affiliation(s)
- Gabriel Menendez Rodriguez
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Giordano Gatto
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Cristiano Zuccaccia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
30
|
Fernandes A, Royo B. Water-Soluble Iridium N-Heterocyclic Carbene Complexes for the Alkylation of Amines with Alcohols. ChemCatChem 2017. [DOI: 10.1002/cctc.201700678] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ana Fernandes
- ITQB NOVA; Instituto de Tecnologia Química e Biológica António Xavier; Av. da República, 2 780-417 Oeiras Portugal
| | - Beatriz Royo
- ITQB NOVA; Instituto de Tecnologia Química e Biológica António Xavier; Av. da República, 2 780-417 Oeiras Portugal
| |
Collapse
|
31
|
|
32
|
Activation pathways taking place at molecular copper precatalysts for the oxygen evolution reaction. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Wrzolek P, Wahl S, Schwalbe M. Electrocatalytic investigation on the water oxidation ability of a hangman complex based on the [Ru(tpy)(bpy)(OH 2 )] 2+ motif. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Spanos I, Auer AA, Neugebauer S, Deng X, Tüysüz H, Schlögl R. Standardized Benchmarking of Water Splitting Catalysts in a Combined Electrochemical Flow Cell/Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES) Setup. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00632] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ioannis Spanos
- Department
of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Muelheim
an der Ruhr, 45470, Germany
| | - Alexander A. Auer
- Department
of Molecular Theory and Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Muelheim an der Ruhr, 45470, Germany
| | - Sebastian Neugebauer
- Department
of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Muelheim
an der Ruhr, 45470, Germany
| | - Xiaohui Deng
- Department
of Heterogeneous Catalysis and Sustainable Energy, Max Planck Institute für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Muelheim an der Ruhr, 45470, Germany
| | - Harun Tüysüz
- Department
of Heterogeneous Catalysis and Sustainable Energy, Max Planck Institute für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Muelheim an der Ruhr, 45470, Germany
| | - Robert Schlögl
- Department
of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Muelheim
an der Ruhr, 45470, Germany
| |
Collapse
|
35
|
Hetterscheid DGH. In operando studies on the electrochemical oxidation of water mediated by molecular catalysts. Chem Commun (Camb) 2017; 53:10622-10631. [DOI: 10.1039/c7cc04944g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This feature article describes on-line studies regarding the water oxidation reaction mediated by molecular catalysts.
Collapse
|
36
|
Abril P, del Rı́o MP, Tejel C, Verhoeven TWGM, Niemantsverdriet JWH, Van der Ham CJM, Kottrup KG, Hetterscheid DGH. Detangling Catalyst Modification Reactions from the Oxygen Evolution Reaction by Online Mass Spectrometry. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paula Abril
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - M. Pilar del Rı́o
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Cristina Tejel
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Tiny W. G. M. Verhoeven
- Department
of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | - Konstantin G. Kottrup
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | |
Collapse
|
37
|
Koelewijn JM, Lutz M, Detz RJ, Reek JNH. Anode Preparation Strategies for the Electrocatalytic Oxidation of Water Based on Strong Interactions between Multiwalled Carbon Nanotubes and Cationic Acetylammonium Pyrene Moieties in Aqueous Solutions. Chempluschem 2016; 81:1098-1106. [DOI: 10.1002/cplu.201600235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Jacobus M. Koelewijn
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Martin Lutz
- Crystal and Structural Chemistry Bijvoet Center for Biomolecular Research; Utrecht University; Padualaan 8 3584 CH Utrecht The Netherlands
| | - Remko J. Detz
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N. H. Reek
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
38
|
de Ruiter JM, Purchase RL, Monti A, van der Ham CJM, Gullo MP, Joya KS, D’Angelantonio M, Barbieri A, Hetterscheid DGH, de Groot HJM, Buda F. Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J. M. de Ruiter
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - R. L. Purchase
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - A. Monti
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - C. J. M. van der Ham
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - M. P. Gullo
- ISOF-CNR Area della Ricerca di Bologna, Via Pietro Gobetti 101, 40129 Bologna, Italy
| | - K. S. Joya
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2300 RA Leiden, The Netherlands
- Division
of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
| | - M. D’Angelantonio
- ISOF-CNR Area della Ricerca di Bologna, Via Pietro Gobetti 101, 40129 Bologna, Italy
| | - A. Barbieri
- ISOF-CNR Area della Ricerca di Bologna, Via Pietro Gobetti 101, 40129 Bologna, Italy
| | - D. G. H. Hetterscheid
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - H. J. M. de Groot
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - F. Buda
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| |
Collapse
|
39
|
Limburg B, Wermink J, van Nielen SS, Kortlever R, Koper MTM, Bouwman E, Bonnet S. Kinetics of Photocatalytic Water Oxidation at Liposomes: Membrane Anchoring Stabilizes the Photosensitizer. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- B. Limburg
- Leiden University, Leiden
Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - J. Wermink
- Leiden University, Leiden
Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - S. S. van Nielen
- Leiden University, Leiden
Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - R. Kortlever
- Leiden University, Leiden
Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - M. T. M. Koper
- Leiden University, Leiden
Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - E. Bouwman
- Leiden University, Leiden
Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - S. Bonnet
- Leiden University, Leiden
Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
40
|
Iridium-based double perovskites for efficient water oxidation in acid media. Nat Commun 2016; 7:12363. [PMID: 27498694 PMCID: PMC4979062 DOI: 10.1038/ncomms12363] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022] Open
Abstract
The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2. Iridium oxide is an active and stable catalyst for the oxygen evolution reaction, however Ir is very rare, making it unsuitable for large-scale application. Here the authors develop a class of Ir double perovskites containing less Ir than iridium oxide, but exhibiting 3-fold higher activity in acidic media.
Collapse
|
41
|
Limburg B, Bouwman E, Bonnet S. Rate and Stability of Photocatalytic Water Oxidation using [Ru(bpy)3]2+ as Photosensitizer. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00107] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- B. Limburg
- Leiden University, Leiden Institute of Chemistry,
Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - E. Bouwman
- Leiden University, Leiden Institute of Chemistry,
Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - S. Bonnet
- Leiden University, Leiden Institute of Chemistry,
Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
42
|
An artificial photosynthetic system containing an inorganic semiconductor and a molecular catalyst for photocatalytic water oxidation. J Catal 2016. [DOI: 10.1016/j.jcat.2016.02.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Xu J, Wang Z, Yu W, Sun D, Zhang Q, Tung CH, Wang W. Kagóme Cobalt(II)-Organic Layers as Robust Scaffolds for Highly Efficient Photocatalytic Oxygen Evolution. CHEMSUSCHEM 2016; 9:1146-1152. [PMID: 27098180 DOI: 10.1002/cssc.201600101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/06/2016] [Indexed: 06/05/2023]
Abstract
Two Kagóme cobalt(II)-organic layers of [Co3 (μ3 -OH)2 (bdc)2 ]n (1) and [Co3 (μ3 -OH)2 (chdc)2 ]n (2) (bdc=o-benzenedicarboxylate and chdc=1,2-cyclohexanedicarboxylate) that bear bridging OH(-) ligands were explored as water oxidation catalysts (WOCs) for photocatalytic O2 production. The activities of 1 and 2 towards H2 O oxidation were assessed by monitoring the in situ O2 concentration versus time in the reaction medium by utilizing a Clark-type oxygen electrode under photochemical conditions. The oxygen evolution rate (RO2 ) was 24.3 μmol s(-1) g(-1) for 1 and 48.8 μmol s(-1) g(-1) for 2 at pH 8.0. Photocatalytic reaction studies show that 1 and 2 exhibit enhanced activities toward the oxidation of water compared to commercial nanosized Co3 O4 . In scaled-up photoreactions, the pH value of the reaction medium decreased from 8.0 to around 7.0 after 20 min and the O2 production ceased. Based on the amounts of the sacrificial oxidant (K2 S2 O8 ) used, the yield of O2 produced is 49.6 % for 2 and 29.8 % for 1. However, the catalyst can be recycled without a significant loss of catalytic activity. Spectroscopic studies suggest that the structure and composition of recycled 1 and 2 are maintained. In isotope-labeling H2 (18) O (97 % enriched) experiments, the distribution of (16) O(16) O/(16) O(18) O/(18) O(18) O detected was 0:7.55:92.45, which is comparable to the theoretical values of 0.09:5.82:94.09. This work not only provides new catalysts that resemble ligand-protected cobalt oxide materials but also establishes the significance of the existence of OH(-) (or H2 O) binding sites at the metal center in WOCs.
Collapse
Affiliation(s)
- Jiaheng Xu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhi Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Wenguang Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Di Sun
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| | - Qing Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Wenguang Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| |
Collapse
|
44
|
Koelewijn JM, Lutz M, Dzik WI, Detz RJ, Reek JNH. Reaction Progress Kinetic Analysis as a Tool To Reveal Ligand Effects in Ce(IV)-Driven IrCp*-Catalyzed Water Oxidation. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jacobus M. Koelewijn
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Martin Lutz
- Crystal and Structural
Chemistry Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Wojciech I. Dzik
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Remko J. Detz
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Joost N. H. Reek
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
45
|
Yang KR, Matula AJ, Kwon G, Hong J, Sheehan SW, Thomsen JM, Brudvig GW, Crabtree RH, Tiede DM, Chen LX, Batista VS. Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy. J Am Chem Soc 2016; 138:5511-4. [DOI: 10.1021/jacs.6b01750] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ke R. Yang
- Yale
Energy Sciences Institute and Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Adam J. Matula
- Yale
Energy Sciences Institute and Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gihan Kwon
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jiyun Hong
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Stafford W. Sheehan
- Yale
Energy Sciences Institute and Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Julianne M. Thomsen
- Yale
Energy Sciences Institute and Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gary W. Brudvig
- Yale
Energy Sciences Institute and Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Robert H. Crabtree
- Yale
Energy Sciences Institute and Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - David M. Tiede
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Lin X. Chen
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Victor S. Batista
- Yale
Energy Sciences Institute and Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
46
|
Yang B, Jiang X, Guo Q, Lei T, Zhang LP, Chen B, Tung CH, Wu LZ. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O−O Bond Formation Pathways by Different Aggregation Patterns. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Xin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qing Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| |
Collapse
|
47
|
Yang B, Jiang X, Guo Q, Lei T, Zhang LP, Chen B, Tung CH, Wu LZ. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O−O Bond Formation Pathways by Different Aggregation Patterns. Angew Chem Int Ed Engl 2016; 55:6229-34. [DOI: 10.1002/anie.201601653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Xin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qing Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| |
Collapse
|
48
|
Navarro M, Li M, Müller-Bunz H, Bernhard S, Albrecht M. Donor-Flexible Nitrogen Ligands for Efficient Iridium-Catalyzed Water Oxidation Catalysis. Chemistry 2016; 22:6740-5. [DOI: 10.1002/chem.201600875] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Miquel Navarro
- Department of Chemistry & Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
- School of Chemistry and Chemical Biology; University College Dublin; Belfield Dublin 4 Ireland
| | - Mo Li
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Helge Müller-Bunz
- School of Chemistry and Chemical Biology; University College Dublin; Belfield Dublin 4 Ireland
| | - Stefan Bernhard
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Martin Albrecht
- Department of Chemistry & Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
- School of Chemistry and Chemical Biology; University College Dublin; Belfield Dublin 4 Ireland
| |
Collapse
|
49
|
Colic V, Pohl MD, Scieszka D, Bandarenka AS. Influence of the electrolyte composition on the activity and selectivity of electrocatalytic centers. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Liao RZ, Kärkäs MD, Laine TM, Åkermark B, Siegbahn PEM. On the mechanism of water oxidation catalyzed by a dinuclear ruthenium complex: a quantum chemical study. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00083e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of efficient and robust catalysts for water oxidation is an essential element in solar water splitting. In the present paper, the reaction mechanism for a dinuclear Ru water oxidation catalyst has been investigated in detail through quantum chemical calculations.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
| | - Markus D. Kärkäs
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Tanja M. Laine
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Björn Åkermark
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Per E. M. Siegbahn
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
| |
Collapse
|