1
|
Lee D, Lee J, Kim W, Suh Y, Park J, Kim S, Kim Y, Kwon S, Jeong S. Systematic Selection of High-Affinity ssDNA Sequences to Carbon Nanotubes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308915. [PMID: 38932669 PMCID: PMC11348070 DOI: 10.1002/advs.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) have gained significant interest for their potential in biomedicine and nanoelectronics. The functionalization of SWCNTs with single-stranded DNA (ssDNA) enables the precise control of SWCNT alignment and the development of optical and electronic biosensors. This study addresses the current gaps in the field by employing high-throughput systematic selection, enriching high-affinity ssDNA sequences from a vast random library. Specific base compositions and patterns are identified that govern the binding affinity between ssDNA and SWCNTs. Molecular dynamics simulations validate the stability of ssDNA conformations on SWCNTs and reveal the pivotal role of hydrogen bonds in this interaction. Additionally, it is demonstrated that machine learning could accurately distinguish high-affinity ssDNA sequences, providing an accessible model on a dedicated webpage (http://service.k-medai.com/ssdna4cnt). These findings open new avenues for high-affinity ssDNA-SWCNT constructs for stable and sensitive molecular detection across diverse scientific disciplines.
Collapse
Affiliation(s)
- Dakyeon Lee
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
- Department of ChemistryPohang University of Science and TechnologyPohang37673Republic of Korea
| | - Jaekang Lee
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| | - Woojin Kim
- Department of Materials Science and EngineeringKookmin UniversitySeoul02707Republic of Korea
| | - Yeongjoo Suh
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| | - Jiwoo Park
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| | - Sungjee Kim
- Department of ChemistryPohang University of Science and TechnologyPohang37673Republic of Korea
| | - YongJoo Kim
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sunyoung Kwon
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
- Center for Artificial Intelligence ResearchPusan National UniversityBusan46241Republic of Korea
| | - Sanghwa Jeong
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| |
Collapse
|
2
|
Ledesma-Durán A, Juárez-Valencia LH. Diffusion coefficients and MSD measurements on curved membranes and porous media. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:70. [PMID: 37578670 DOI: 10.1140/epje/s10189-023-00329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
We study some geometric aspects that influence the transport properties of particles that diffuse on curved surfaces. We compare different approaches to surface diffusion based on the Laplace-Beltrami operator adapted to predict concentration along entire membranes, confined subdomains along surfaces, or within porous media. Our goal is to summarize, firstly, how diffusion in these systems results in different types of diffusion coefficients and mean square displacement measurements, and secondly, how these two factors are affected by the concavity of the surface, the shape of the possible barriers or obstacles that form the available domains, the sinuosity, tortuosity, and constrictions of the trajectories and even how the observation plane affects the measurements of the diffusion. In addition to presenting a critical and organized comparison between different notions of MSD, in this review, we test the correspondence between theoretical predictions and numerical simulations by performing finite element simulations and illustrate some situations where diffusion theory can be applied. We briefly reviewed computational schemes for understanding surface diffusion and finally, discussed how this work contributes to understanding the role of surface diffusion transport properties in porous media and their relationship to other transport processes.
Collapse
Affiliation(s)
- Aldo Ledesma-Durán
- Departmento de Matemáticas, Universidad Autónoma Metropolitana, CDMX, Mexico
| | | |
Collapse
|
3
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
4
|
Asefifeyzabadi N, Das PK, Onorimuo AH, Durocher G, Shamsi MH. DNA interfaces with dimensional materials for biomedical applications. RSC Adv 2021; 11:28332-28341. [PMID: 35480758 PMCID: PMC9038036 DOI: 10.1039/d1ra04917h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
DNA interfaces with nano, micro, and macro materials have gained widespread attention for various applications. Such interfaces exhibit distinct functions and properties not only due to the unique properties of interfacing materials but also sequence- and conformation-dependent characteristics of the DNA. Therefore, DNA interfaces with diverse dimensional materials have advanced our understanding of the interaction mechanisms and the properties of such interfaces. The unique interfacial properties of such novel materials have applications in nanotechnology, biophysics, cell biology, biosensing, and bioelectronics. The field is growing rapidly with the frequent emergence of new interfaces carrying remarkable interfacial character. In this review article, we have classified the DNA interfaces into 0D, 1D, 2D, and 3D categories based on the types of dimensional materials. We review the key efforts made in the last five years and focus on types of interfaces, interfacing mechanisms, and their state-of-the-art applications. This review will draw a general interest because of the diversity in the DNA materials science but also the unique applications that will play a cutting-edge role in biomedical and biosensing research.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Prabhangshu Kumer Das
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Avokerie Hillary Onorimuo
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Grace Durocher
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Mohtashim Hassan Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| |
Collapse
|
5
|
Shahbazi Toloun SS, Pishkar L. Study of the prostate-specific antigen–aptamer stability in the PSA–aptamer-single wall carbon nanotube assembly by docking and molecular dynamics simulation. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1932874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Leila Pishkar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| |
Collapse
|
6
|
Debnath A, Saha S, Li DO, Chu XS, Ulissi ZW, Green AA, Wang QH. Elimination of Multidrug-Resistant Bacteria by Transition Metal Dichalcogenides Encapsulated by Synthetic Single-Stranded DNA. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8082-8094. [PMID: 33570927 DOI: 10.1021/acsami.0c22941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antibiotic-resistant bacteria are a significant and growing threat to human health. Recently, two-dimensional (2D) nanomaterials have shown antimicrobial activity and have the potential to be used as new approaches to treating antibiotic resistant bacteria. In this Research Article, we exfoliate transition metal dichalcogenide (TMDC) nanosheets using synthetic single-stranded DNA (ssDNA) sequences, and demonstrate the broad-spectrum antibacterial activity of MoSe2 encapsulated by the T20 ssDNA sequence in eliminating several multidrug-resistant (MDR) bacteria. The MoSe2/T20 is able to eradicate Gram-positive Escherichia coli and Gram-positive Staphylococcus aureus at much lower concentrations than graphene-based nanomaterials. Eradication of MDR strains of methicillin-resistant S. aureus (MRSA), Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii are shown to occur at at 75 μg mL-1 concentration of MoSe2/T20, and E. coli at 150 μg mL-1. Molecular dynamics simulations show that the thymine bases in the T20 sequence lie flat on the MoSe2 surface and can, thus, form a very good conformal coating and allow the MoSe2 to act as a sharp nanoknife. Electron microscopy shows the MoSe2 nanosheets cutting through the cell membranes, resulting in significant cellular damage and the formation of interior voids. Further assays show the change in membrane potential and reactive oxygen species (ROS) formation as mechanisms of antimicrobial activity of MoSe2/T20. The cellular death pathways are also examined by mRNA expression. This work shows that biocompatible TMDCs, specifically MoSe2/T20, is a potent antimicrobial agent against MDR bacteria and has potential for clinical settings.
Collapse
Affiliation(s)
- Abhishek Debnath
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sanchari Saha
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Duo O Li
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ximo S Chu
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Zachary W Ulissi
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Qing Hua Wang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Vermisoglou E, Panáček D, Jayaramulu K, Pykal M, Frébort I, Kolář M, Hajdúch M, Zbořil R, Otyepka M. Human virus detection with graphene-based materials. Biosens Bioelectron 2020; 166:112436. [PMID: 32750677 PMCID: PMC7375321 DOI: 10.1016/j.bios.2020.112436] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Our recent experience of the COVID-19 pandemic has highlighted the importance of easy-to-use, quick, cheap, sensitive and selective detection of virus pathogens for the efficient monitoring and treatment of virus diseases. Early detection of viruses provides essential information about possible efficient and targeted treatments, prolongs the therapeutic window and hence reduces morbidity. Graphene is a lightweight, chemically stable and conductive material that can be successfully utilized for the detection of various virus strains. The sensitivity and selectivity of graphene can be enhanced by its functionalization or combination with other materials. Introducing suitable functional groups and/or counterparts in the hybrid structure enables tuning of the optical and electrical properties, which is particularly attractive for rapid and easy-to-use virus detection. In this review, we cover all the different types of graphene-based sensors available for virus detection, including, e.g., photoluminescence and colorimetric sensors, and surface plasmon resonance biosensors. Various strategies of electrochemical detection of viruses based on, e.g., DNA hybridization or antigen-antibody interactions, are also discussed. We summarize the current state-of-the-art applications of graphene-based systems for sensing a variety of viruses, e.g., SARS-CoV-2, influenza, dengue fever, hepatitis C virus, HIV, rotavirus and Zika virus. General principles, mechanisms of action, advantages and drawbacks are presented to provide useful information for the further development and construction of advanced virus biosensors. We highlight that the unique and tunable physicochemical properties of graphene-based nanomaterials make them ideal candidates for engineering and miniaturization of biosensors.
Collapse
Affiliation(s)
- Eleni Vermisoglou
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India
| | - Martin Pykal
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Ivo Frébort
- Centre of the Region Haná (CRH), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine (UMTM), Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic.
| |
Collapse
|
8
|
Interfacing DNA with nanoparticles: Surface science and its applications in biosensing. Int J Biol Macromol 2020; 151:757-780. [DOI: 10.1016/j.ijbiomac.2020.02.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
|
9
|
Ahn DH, Park C, Song JW. Predicting whether aromatic molecules would prefer to enter a carbon nanotube: A density functional theory study. J Comput Chem 2020; 41:1261-1270. [PMID: 32058612 DOI: 10.1002/jcc.26173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 01/02/2023]
Abstract
The interaction of a carbon nanotube (CNT) with various aromatic molecules, such as aniline, benzophenone, and diphenylamine, was studied using density functional theory able to compute intermolecular weak interactions (B3LYP-D3). CNTs of varying lengths were used, such as 4-CNT, 6-CNT, and 8-CNT (the numbers denoting relative lengths), with the lengths being chosen appropriately to save computation times. All aromatic molecules were found to exhibit strong intermolecular binding energies with the inner surface of the CNT, rather than the outer surface. Hydrogen bonding between two aromatic molecules that include N and O atoms is shown to further stabilize the intermolecular adsorption process. Therefore, when benzophenone and diphenylamine were simultaneously allowed to interact with a CNT, the aromatic molecules were expected to preferably enter the CNT. Furthermore, additional calculations of the intermolecular adsorption energy for aniline adsorbed on a graphene surface showed that the concavity of graphene-like carbon sheet is in proportion to the intermolecular binding energy between the graphene-like carbon sheet and the aromatic molecule.
Collapse
Affiliation(s)
- Dae-Hwan Ahn
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - Chiyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, Dalseong-Gun, Daegu, South Korea
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea.,Computational Molecular Science Research Team, RIKEN Center for Computaional Science, Kobe, Hyogo, Japan
| |
Collapse
|
10
|
Wolski P, Wojton P, Nieszporek K, Panczyk T. Interaction of Human Telomeric i-Motif DNA with Single-Walled Carbon Nanotubes: Insights from Molecular Dynamics Simulations. J Phys Chem B 2019; 123:10343-10353. [PMID: 31735024 DOI: 10.1021/acs.jpcb.9b07292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work deals with molecular dynamics simulations of human telomeric i-motif DNA interacting with functionalized single-walled carbon nanotubes. We study two kinds of i-motifs differing by the protonation state of cytosines, i.e., unprotonated ones representative to neutral pH and with half of the cytosines protonated and representative to acidic conditions. These i-motifs interact with two kinds of carbon nanotubes differing mainly in chirality (diameter), i.e., (10, 0) and (20, 0). Additionally, these nanotubes were on-tip functionalized by amino groups or by guanine- containing residues. We found that protonated i-motif adsorbs strongly, although not specifically, on the nanotube surfaces with its 3' and 5' ends directed toward the surface and that adsorption does not affect the i-motif shape and hydrogen bonds existing between C:C+ pairs. The functional groups on the nanotube tips have minimal effect either on position of i-motif or on its binding strength. Unprotonated i-motif, in turn, deteriorates significantly during interaction with the nanotubes and its binding strength is rather high as well. We found that (10, 0) nanotubes destroy the i-motif shape faster than (20, 0). Moreover the i-motif either tries to wrap the nanotube or migrates to its tip and becomes immobilized due to interaction with guanine residue localized on the nanotube tip and attempts to incorporate its 3' end into the nanotube interior. No hydrogen bonds exist within the unprotonated i-motif prior to and after adsorption on the nanotube. Thus, carbon nanotubes do not improve the stability of unprotonated i-motif due to simple adsorption or just physical interactions. We hypothesize that the stabilizing effect of carbon nanotubes reported in the literature is due to proton transfer from the functional group in the nanotube to cytosines and subsequent formation of C:C+ pairs.
Collapse
Affiliation(s)
- Pawel Wolski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , ul. Niezapominajek 8 , 30239 Cracow , Poland
| | - Patrycja Wojton
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , ul. Niezapominajek 8 , 30239 Cracow , Poland
| | - Krzysztof Nieszporek
- Department of Chemistry , Maria Curie-Sklodowska University , pl. M. Curie-Sklodowskiej 3 , 20031 Lublin , Poland
| | - Tomasz Panczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , ul. Niezapominajek 8 , 30239 Cracow , Poland
| |
Collapse
|
11
|
Pawlak R, Vilhena JG, Hinaut A, Meier T, Glatzel T, Baratoff A, Gnecco E, Pérez R, Meyer E. Conformations and cryo-force spectroscopy of spray-deposited single-strand DNA on gold. Nat Commun 2019; 10:685. [PMID: 30737410 PMCID: PMC6368621 DOI: 10.1038/s41467-019-08531-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/16/2019] [Indexed: 01/02/2023] Open
Abstract
Cryo-electron microscopy can determine the structure of biological matter in vitrified liquids. However, structure alone is insufficient to understand the function of native and engineered biomolecules. So far, their mechanical properties have mainly been probed at room temperature using tens of pico-newton forces with a resolution limited by thermal fluctuations. Here we combine force spectroscopy and computer simulations in cryogenic conditions to quantify adhesion and intra-molecular properties of spray-deposited single-strand DNA oligomers on Au(111). Sub-nanometer resolution images reveal folding conformations confirmed by simulations. Lifting shows a decay of the measured stiffness with sharp dips every 0.2-0.3 nm associated with the sequential peeling and detachment of single nucleotides. A stiffness of 30-35 N m-1 per stretched repeat unit is deduced in the nano-newton range. This combined study suggests how to better control cryo-force spectroscopy of adsorbed heterogeneous (bio)polymer and to potentially enable single-base recognition in DNA strands only few nanometers long.
Collapse
Affiliation(s)
- Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland.
| | - J G Vilhena
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland.,Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Antoine Hinaut
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Tobias Meier
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Alexis Baratoff
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Enrico Gnecco
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, D-07742, Jena, Germany
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049, Madrid, Spain. .,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049, Madrid, Spain.
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland.
| |
Collapse
|
12
|
Hong T, Wang T, Xu YQ. Direct Measurement of π Coupling at the Single-Molecule Level using a Carbon Nanotube Force Sensor. NANO LETTERS 2018; 18:7883-7888. [PMID: 30457874 DOI: 10.1021/acs.nanolett.8b03690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a carbon nanotube (CNT) force sensor that combines a suspended CNT transistor with dual-trap optical tweezers to explore the interactions between two individual molecules in the near-equilibrium regime with sub-piconewton resolution. The directly measured equilibrium force (1.2 ± 0.5 pN) is likely related to the binding force between a CNT and a single DNA base, where two aromatic rings spontaneously attract to each other due to the noncovalent forces between them. On the basis of our force measurements, the binding free energy per base is calculated (∼0.34 eV), which is in good agreement with theoretical simulations. Moreover, three-dimensional scanning photocurrent microscopy enables us to simultaneously monitor the morphology changes of the CNT, leading to a comprehensive reconstruction of the CNT-DNA binding dynamics. These experimental results shed light on the fundamental understanding of the mechanical coupling between CNTs and DNA molecules and, more importantly, provide a new platform for direct observation of intermolecular interfaces at the single-molecule level.
Collapse
|
13
|
Barbosa MB, Martins EMDN, Teixeira TF, Carvalho RDE, Coelho JP, Resende RR, Oliveira EF, Santos AP, Andrade ASRD, Furtado CA. A carefully designed nanoplatform based on multi walled carbon nanotube wrapped with aptamers. Colloids Surf B Biointerfaces 2018; 175:175-183. [PMID: 30530003 DOI: 10.1016/j.colsurfb.2018.11.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 02/01/2023]
Abstract
The interaction between carbon nanotubes (CNTs) and biological molecules of diagnostic and therapeutic interest, as well as the internalization of the CNTs-biomolecules complexes in different types of cell, has been extensively studied due to the potential use of these nanocomplexes as multifunctional nanoplatforms in a great variety of biomedical applications. The effective use of these nanobiotechnologies requires broad multidisciplinary studies of biocompatibility, regarding, for example, the in vitro and in vivo nanotoxicological assays, the capacity to target specific cells and the evaluation of their biomedical potential. However, the first step to be reached is the careful obtainment of the nanoplatform and the understanding of the actual surface composition and structural integrity of the complex system. In this work, we show the detailed construction of a nanoplatform created by the noncovalent interaction between oxidized multi walled carbon nanotubes (MWCNTs) and a DNA aptamer targeting tumor cells. The excess free aptamer was removed by successive washes, revealing the actual surface of the nanocomplex. The MWCNT-aptamer interaction by π-stacking was evidenced and shown to contribute in obtaining a stable nanocomplex compatible with aqueous media having good cell viability. The nucleotide sequence of the aptamer remained intact after the functionalization, allowing its use in further studies of specificity and binding affinity and for the construction of functional nanoplatforms.
Collapse
Affiliation(s)
| | | | | | | | - João Paulo Coelho
- Centro de Desenvolvimento da Tecnologia Nuclear, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Li Z, Song Y, Li A, Xu W, Zhang W. Direct observation of the wrapping/unwrapping of ssDNA around/from a SWCNT at the single-molecule level: towards tuning the binding mode and strength. NANOSCALE 2018; 10:18586-18596. [PMID: 30259027 DOI: 10.1039/c8nr06150e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Complexation of single-stranded DNA (ssDNA) with a chiral single-walled carbon nanotube (SWCNT) exhibits surprising efficacy in CNT dispersion and sorting, optical sensing, and nanoelectronic device design. Studying the wrapping/unwrapping mechanism is challenging because an in situ method at the single-molecule level is required. Here, we developed a method based on single-molecule force spectroscopy to monitor the unwrapping/wrapping of ssDNA from/around a SWCNT. Our results reveal that the wrapping/unwrapping processes are reversible in water, and these processes occur in an equilibrium manner driven mainly by π-π interactions between DNA bases and CNTs. In phosphate buffered saline, the unwrapping process is loading rate-dependent, and ssDNA wrapping around a CNT undergoes two distinct stages dominated by both π-π interactions and hydrogen bonding. In addition, our results show that salts could further stabilize ssDNA/CNT complexes by blocking the electrostatic interactions between adjacent DNA segments and by catalyzing the formation of hydrogen bonds between DNA bases. The stability of ssDNA/CNT is dependent on the DNA sequence and CNT chirality. These results deepen our understanding of ssDNA-CNT interactions and provide effective means to tune the binding mode and strength.
Collapse
Affiliation(s)
- Zhandong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | | | | | | | | |
Collapse
|
15
|
Umemura K, Sato S. Scanning Techniques for Nanobioconjugates of Carbon Nanotubes. SCANNING 2018; 2018:6254692. [PMID: 30008981 PMCID: PMC6020491 DOI: 10.1155/2018/6254692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/29/2018] [Indexed: 05/17/2023]
Abstract
Nanobioconjugates using carbon nanotubes (CNTs) are attractive and promising hybrid materials. Various biological applications using the CNT nanobioconjugates, for example, drug delivery systems and nanobiosensors, have been proposed by many authors. Scanning techniques such as scanning electron microscopy (SEM) and scanning probe microscopy (SPM) have advantages to characterize the CNT nanobioconjugates under various conditions, for example, isolated conjugates, conjugates in thin films, and conjugates in living cells. In this review article, almost 300 papers are categorized based on types of CNT applications, and various scanning data are introduced to illuminate merits of scanning techniques.
Collapse
Affiliation(s)
- Kazuo Umemura
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| | - Shizuma Sato
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| |
Collapse
|
16
|
Polo E, Nitka TT, Neubert E, Erpenbeck L, Vuković L, Kruss S. Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17693-17703. [PMID: 29708725 DOI: 10.1021/acsami.8b04373] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Integrins are transmembrane receptors that mediate cell-adhesion, signaling cascades and platelet-mediated blood clotting. Most integrins bind to the common short peptide Arg-Gly-Asp (RGD). The conformational freedom of the RGD motif determines how strong and to which integrins it binds. Here, we present a novel approach to tune binding constants by confining RGD peptide motifs via noncovalent adsorption of single-stranded DNA (ssDNA) anchors onto single-walled carbon nanotubes (SWCNTs). Semiconducting SWCNTs display fluorescence in the near-infrared (nIR) region and are versatile fluorescent building blocks for imaging and biosensing. The basic idea of this approach is that the DNA adsorbed on the SWCNT surface determines the conformational freedom of the RGD motif and affects binding affinities. The RGD motif was conjugated to different ssDNA sequences in both linear ssDNA-RGD and bridged ssDNA-RGD-ssDNA geometries. Molecular dynamics (MD) simulations show that the RGD motif in all the synthesized systems is mostly exposed to solvent and thus available for binding, but its flexibility depends on the exact geometry. The affinity for the human platelet integrin αIIbβ3 could be modulated up to 15-fold by changing the ssDNA sequence. IC50 values varied from 309 nM for (C)20-RGD/SWCNT hybrids to 29 nM for (GT)15-RGD/SWCNT hybrids. When immobilized onto surface adhesion of epithelial cells increased 6-fold for (GT)15-RGD/SWCNTs. (GT)15-RGD/SWCNTs also increased the number of adhering human platelets by a factor of 4.8. Additionally, αIIbβ3 integrins on human platelets were labeled in the nIR by incubating them with these ssDNA-peptide/SWCNT hybrids. In summary, we show that ssDNA-peptide hybrid structures noncovalently adsorb onto SWCNTs and serve as recognition units for cell surface receptors such as integrins. The DNA sequence affects the overall RGD affinity, which is a versatile and straightforward approach to tune binding affinities. In combination with the nIR fluorescence properties of SWCNTs, these new hybrid materials promise many applications in integrin targeting and bioimaging.
Collapse
Affiliation(s)
- Elena Polo
- Institute of Physical Chemistry , Göttingen University , Tammanstrasse 6 , 37077 Göttingen , Germany
| | - Tadeusz T Nitka
- Department of Chemistry and Biochemistry , The University of Texas at El Paso , El Paso , Texas 79968 , United States
| | - Elsa Neubert
- Institute of Physical Chemistry , Göttingen University , Tammanstrasse 6 , 37077 Göttingen , Germany
- University Medical Center, Department of Dermatology , Göttingen University , 37077 Göttingen , Germany
| | - Luise Erpenbeck
- University Medical Center, Department of Dermatology , Göttingen University , 37077 Göttingen , Germany
| | - Lela Vuković
- Department of Chemistry and Biochemistry , The University of Texas at El Paso , El Paso , Texas 79968 , United States
| | - Sebastian Kruss
- Institute of Physical Chemistry , Göttingen University , Tammanstrasse 6 , 37077 Göttingen , Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) , 37073 Göttingen , Germany
| |
Collapse
|
17
|
Lee AA, Kostinski SV, Brenner MP. Controlling Polyelectrolyte Adsorption onto Carbon Nanotubes by Tuning Ion-Image Interactions. J Phys Chem B 2018; 122:1545-1550. [PMID: 29338265 DOI: 10.1021/acs.jpcb.7b11398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding and controlling polyelectrolyte adsorption onto carbon nanotubes is a fundamental challenge in nanotechnology. Polyelectrolytes have been shown to stabilize nanotube suspensions through adsorbing onto the nanotube surface, and polyelectrolyte-coated nanotubes are emerging as building blocks for complex and addressable self-assembly. Conventional wisdom suggests that polyelectrolyte adsorption onto nanotubes is driven by specific chemical or van der Waals interactions. We develop a simple mean-field model and show that ion-image attraction significantly effects adsorption onto conducting nanotubes at low salt concentrations. Our theory suggests a simple strategy to selectively and reversibly functionalize carbon nanotubes on the basis of their electronic structures, which in turn modify the ion-image attraction.
Collapse
Affiliation(s)
- Alpha A Lee
- Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, United Kingdom
| | - Sarah V Kostinski
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Michael P Brenner
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
18
|
Hughes ZE, Walsh TR. Structural Disruption of an Adenosine-Binding DNA Aptamer on Graphene: Implications for Aptasensor Design. ACS Sens 2017; 2:1602-1611. [PMID: 29063764 DOI: 10.1021/acssensors.7b00435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report on the predicted structural disruption of an adenosine-binding DNA aptamer adsorbed via noncovalent interactions on aqueous graphene. The use of surface-adsorbed biorecognition elements on device substrates is needed for integration in nanofluidic sensing platforms. Upon analyte binding, the conformational change in the adsorbed aptamer may perturb the surface properties, which is essential for the signal generation mechanism in the sensor. However, at present, these graphene-adsorbed aptamer structure(s) are unknown, and are challenging to experimentally elucidate. Here we use molecular dynamics simulations to investigate the structure and analyte-binding properties of this aptamer, in the presence and absence of adenosine, both free in solution and adsorbed at the aqueous graphene interface. We predict this aptamer to support a variety of stable binding modes, with direct base-graphene contact arising from regions located in the terminal bases, the centrally located binding pockets, and the distal loop region. Considerable retention of the in-solution aptamer structure in the adsorbed state indicates that strong intra-aptamer interactions compete with the graphene-aptamer interactions. However, in some adsorbed configurations the analyte adenosines detach from the binding pockets, facilitated by strong adenosine-graphene interactions.
Collapse
Affiliation(s)
- Zak E. Hughes
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Tiffany R. Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
19
|
Pramanik D, Maiti PK. DNA-Assisted Dispersion of Carbon Nanotubes and Comparison with Other Dispersing Agents. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35287-35296. [PMID: 28905626 DOI: 10.1021/acsami.7b06751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Separation and sorting of pristine carbon nanotubes (CNTs) from bundle geometry is a very challenging task due to the insoluble and nondispersive nature of CNTs in aqueous medium. Recently, many studies have been performed to address this problem using various organic and inorganic solutions, surfactant molecules, and biomolecules as dispersing agents. Recent experimental studies have reported the DNA to be highly efficient in dispersing CNTs from bundle geometry. However, there is no microscopic study and also quantitative estimation of the dispersion efficiency of the DNA. Using all-atom molecular dynamics simulation, we study the structure and stability of single-stranded DNA (ssDNA)-single-walled carbon nanotube (SWNT) (6,5) complex. To quantify the dispersion efficiency of various DNA sequences, we perform potential of mean forces (PMF) calculation between two bare SWNTs as well ssDNA-wrapped CNTs for different base sequences. From the PMF calculation, we find the PMF between two bare (6,5) SWNTs to be approximately -29 kcal/mol. For the ssDNA-wrapped SWNTs, the PMF reduces significantly and becomes repulsive. In the presence of ssDNA of different polynucleotide bases (A, T, G, and C), we present a microscopic picture of the ssDNA-SWNT (6,5) complex and also a quantitative estimate of the interaction strength between nanotubes from PMF calculation. From PMF, we show the sequence of dispersion efficiency for four different nucleic bases to be T > A > C > G. We have also presented a comparison of the dispersion efficiencies of ssDNA, flavin mononucleotide surfactant, and poly(amidoamine) (PAMAM) dendrimer by comparing their respective PMF values.
Collapse
Affiliation(s)
- Debabrata Pramanik
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Prabal K Maiti
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
20
|
Hughes ZE, Wei G, Drew KLM, Colombi Ciacchi L, Walsh TR. Adsorption of DNA Fragments at Aqueous Graphite and Au(111) via Integration of Experiment and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10193-10204. [PMID: 28885033 DOI: 10.1021/acs.langmuir.7b02480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We combine single molecule force spectroscopy measurements with all-atom metadynamics simulations to investigate the cross-materials binding strength trends of DNA fragments adsorbed at the aqueous graphite C(0001) and Au(111) interfaces. Our simulations predict this adsorption at the level of the nucleobase, nucleoside, and nucleotide. We find that despite challenges in making clear, careful connections between the experimental and simulation data, reasonable consistency between the binding trends between the two approaches and two substrates was evident. On C(0001), our simulations predict a binding trend of dG > dA ≈ dT > dC, which broadly aligns with the experimental trend. On Au(111), the simulation-based binding strength trends reveal stronger adsorption for the purines relative to the pyrimadines, with dG ≈ dA > dT ≈ dC. Moreover, our simulations provide structural insights into the origins of the similarities and differences in adsorption of the nucleic acid fragments at the two interfaces. In particular, our simulation data offer an explanation for the differences observed in the relative binding trend between adenosine and guanine on the two substrates.
Collapse
Affiliation(s)
- Zak E Hughes
- Institute for Frontier Materials, Deakin University , Geelong, VIC 3216, Australia
| | - Gang Wei
- Hybrid Materials Interface Group, Faculty of Production Engineering, University of Bremen , D-28359 Bremen, Germany
| | - Kurt L M Drew
- Institute for Frontier Materials, Deakin University , Geelong, VIC 3216, Australia
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interface Group, Faculty of Production Engineering, University of Bremen , D-28359 Bremen, Germany
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University , Geelong, VIC 3216, Australia
| |
Collapse
|
21
|
Calbo J, López-Moreno A, de Juan A, Comer J, Ortí E, Pérez EM. Understanding Noncovalent Interactions of Small Molecules with Carbon Nanotubes. Chemistry 2017; 23:12909-12916. [DOI: 10.1002/chem.201702756] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Joaquín Calbo
- Instituto de Ciencia Molecular; Universidad de Valencia; 46980 Paterna Spain
| | | | - Alberto de Juan
- IMDEA Nanociencia; Ciudad Universitaria de Cantoblanco; 28049 Madrid Spain
| | - Jeffrey Comer
- Department of Anatomy and Physiology; Kansas State University; Manhattan Kansas 66506 USA
| | - Enrique Ortí
- Instituto de Ciencia Molecular; Universidad de Valencia; 46980 Paterna Spain
| | - Emilio M. Pérez
- IMDEA Nanociencia; Ciudad Universitaria de Cantoblanco; 28049 Madrid Spain
| |
Collapse
|
22
|
Jena PV, Safaee MM, Heller DA, Roxbury D. DNA-Carbon Nanotube Complexation Affinity and Photoluminescence Modulation Are Independent. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21397-21405. [PMID: 28573867 PMCID: PMC5839148 DOI: 10.1021/acsami.7b05678] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Short single-stranded DNA (ssDNA) has emerged as the natural polymer of choice for noncovalently functionalizing photoluminescent single-walled carbon nanotubes. In addition, specific empirically identified DNA sequences can be used to separate single species (chiralities) of nanotubes, with an exceptionally high purity. Currently, only limited general principles exist for designing DNA-nanotube hybrids amenable to separation processes, due in part to an incomplete understanding of the fundamental interactions between a DNA sequence and a specific nanotube structure, whereas even less is known in the design of nanotube-based sensors with determined optical properties. We therefore developed a combined experimental and analysis platform on the basis of time-resolved near-infrared fluorescence spectroscopy to extract the complete set of photoluminescence parameters that characterizes DNA-nanotube hybrids. Here, we systematically investigated the affinity of the d(GT)n oligonucleotide family for structurally defined carbon nanotubes by measuring photoluminescence response of the nanotube upon oligonucleotide displacement. We found, surprisingly, that the rate of displacement of the oligonucleotides is independent of the coverage on the nanotube, as inferred through the intrinsic optical properties of the hybrid. The kinetics of intensity modulation is essentially a single-exponential, and the time constants, which quantify the stability of DNA binding, span an order of magnitude. Surprisingly, these time constants do not depend on the intrinsic optical parameters within the hybrids, suggesting that the DNA-nanotube stability is not due to increased nanotube surface coverage by DNA. Further, a principal component analysis of the excitation and emission shifts along with intensity enhancement at equilibrium accurately identified the (8,6) nanotube as the partner chirality to (GT)6 ssDNA. When combined, the chirality-resolved equilibrium and kinetics data can guide the development of the DNA-nanotube pairs, with tunable stability and optical modulation. Additionally, this high-throughput optical platform could function as a primary screen for mapping the DNA-chirality recognition phase space.
Collapse
Affiliation(s)
| | - Mohammad M. Safaee
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Weill-Cornell Medical College, New York, NY 10065
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881
- Corresponding Author.
| |
Collapse
|
23
|
Shearer CJ, Yu L, Fenati R, Sibley AJ, Quinton JS, Gibson CT, Ellis AV, Andersson GG, Shapter JG. Adsorption and Desorption of Single‐Stranded DNA from Single‐Walled Carbon Nanotubes. Chem Asian J 2017; 12:1625-1634. [DOI: 10.1002/asia.201700446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Cameron J. Shearer
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - LePing Yu
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Renzo Fenati
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
- Present Address: School of Chemical and Biomolecular Engineering University of Melbourne, Parkville Victoria 3010 Australia
| | - Alexander J. Sibley
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Jamie S. Quinton
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Christopher T. Gibson
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Amanda V. Ellis
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
- Present Address: School of Chemical and Biomolecular Engineering University of Melbourne, Parkville Victoria 3010 Australia
| | - Gunther G. Andersson
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Joseph G. Shapter
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| |
Collapse
|
24
|
Li Z, Wang Q, Yang X, Wang K, Du S, Zhang H, Gao L, Zheng Y, Nie W. Evaluating the Effect of Lidocaine on the Interactions of C-reactive Protein with Its Aptamer and Antibody by Dynamic Force Spectroscopy. Anal Chem 2017; 89:3370-3377. [PMID: 28231708 DOI: 10.1021/acs.analchem.6b03960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Effects of medicine on the biomolecular interaction have been given extensive attention in biochemistry and biomedicine because of the complexity of the environment in vivo and the increasing opportunity of exposure to medicine. Herein, the effect of lidocaine on the interactions of C-reactive protein (CRP) with its aptamer and antibody under different temperature was investigated through dynamic force spectroscopy (DFS). The results revealed that lidocaine could reduce the binding probabilities and binding affinities of the CRP-aptamer and the CRP-antibody. An interesting discovery was that lidocaine had differential influences on the dynamic force spectra of the CRP-aptamer and the CRP-antibody. The energy landscape of the CRP-aptamer turned from two activation barriers to one after the treatment of lidocaine, while the one activation barrier in energy landscape of the CRP-antibody almost remained unchanged. In addition, similar results were obtained for 25 and 37 °C. In accordance with the result of molecular docking, the reduction of binding probabilities might be due to the binding of lidocaine on CRP. Additionally, the alteration of the dissociation pathway of the CRP-aptamer and the change of binding affinities might be caused by the conformational change of CRP, which was verified through synchronous fluorescence spectroscopy. Furthermore, differential effects of lidocaine on the interactions of CRP-aptamer and CRP-antibody might be attributed to the different dissociation processes and binding sites of the CRP-aptamer and the CRP-antibody and different structures of the aptamer and the antibody. This work indicated that DFS provided information for further research and comprehensive applications of biomolecular interaction, especially in the design of biosensors in complex systems.
Collapse
Affiliation(s)
- Zhiping Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Shasha Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Lei Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Wenyan Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| |
Collapse
|
25
|
Li RS, Yuan B, Liu JH, Liu ML, Gao PF, Li YF, Li M, Huang CZ. Boron and nitrogen co-doped single-layered graphene quantum dots: a high-affinity platform for visualizing the dynamic invasion of HIV DNA into living cells through fluorescence resonance energy transfer. J Mater Chem B 2017; 5:8719-8724. [DOI: 10.1039/c7tb02356a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
B and N co-doped graphene quantum dots could act as an effective donor in the process of FRET for visualizing the dynamic invasion of HIV DNA into cells.
Collapse
Affiliation(s)
- Rong Sheng Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| | - Binfang Yuan
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
- Department of Chemistry and Chemical Engineering
| | - Jia Hui Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| | - Meng Li Liu
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Peng Fei Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| | - Yuan Fang Li
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| |
Collapse
|
26
|
Lu C, Huang PJJ, Liu B, Ying Y, Liu J. Comparison of Graphene Oxide and Reduced Graphene Oxide for DNA Adsorption and Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10776-10783. [PMID: 27668805 DOI: 10.1021/acs.langmuir.6b03032] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fluorescently labeled DNA adsorbed on graphene oxide (GO) is a well-established sensing platform for detecting a diverse range of analytes. GO is a loosely defined material and its oxygen content may vary depending on the condition of preparation. Sometimes, a further reduction step is intentionally performed to decrease the oxygen content, and the resulting material is called reduced GO (rGO). In this study, DNA adsorption and desorption from GO and rGO is systematically compared. Under the same salt concentration, DNA adsorbs slightly faster with a 2.6-fold higher capacity on rGO. At the same time, DNA adsorbed on rGO is more resistant to desorption induced by temperature, pH, urea, and organic solvents. Various lengths and sequences of DNA probes have been tested. When its complementary DNA is added as a model target analyte, the rGO sample has a higher signal-to-background and signal-to-noise ratio, whereas the GO sample has a slightly higher absolute signal increase and faster signaling kinetics. DNAs adsorbed on GO or rGO are still susceptible to nonspecific displacement by other DNA and proteins. Overall, although rGO adsorbs DNA more tightly, it allows efficient DNA sensing with an extremely low background fluorescence signal.
Collapse
Affiliation(s)
- Chang Lu
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
27
|
Umemura K, Izumi K, Oura S. Probe Microscopic Studies of DNA Molecules on Carbon Nanotubes. NANOMATERIALS 2016; 6:nano6100180. [PMID: 28335308 PMCID: PMC5245195 DOI: 10.3390/nano6100180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 01/21/2023]
Abstract
Hybrids of DNA and carbon nanotubes (CNTs) are promising nanobioconjugates for nanobiosensors, carriers for drug delivery, and other biological applications. In this review, nanoscopic characterization of DNA-CNT hybrids, in particular, characterization by scanning probe microscopy (SPM), is summarized. In many studies, topographical imaging by atomic force microscopy has been performed. However, some researchers have demonstrated advanced SPM operations in order to maximize its unique and valuable functions. Such sophisticated approaches are attractive and will have a significant impact on future studies of DNA-CNT hybrids.
Collapse
Affiliation(s)
- Kazuo Umemura
- Biophysics Section, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| | - Katsuki Izumi
- Biophysics Section, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| | - Shusuke Oura
- Biophysics Section, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| |
Collapse
|
28
|
Ghosh S, Chakrabarti R. Spontaneous Unzipping of Xylonucleic Acid Assisted by a Single-Walled Carbon Nanotube: A Computational Study. J Phys Chem B 2016; 120:3642-52. [DOI: 10.1021/acs.jpcb.6b02035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soumadwip Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 40076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 40076, India
| |
Collapse
|
29
|
Liang L, Chen EY, Shen JW, Wang Q. Molecular modelling of translocation of biomolecules in carbon nanotubes: method, mechanism and application. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2015.1107184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Li Q, Zhang T, Pan Y, Ciacchi LC, Xu B, Wei G. AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv 2016. [DOI: 10.1039/c5ra22841g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AFM-based force spectroscopy shows wide bio-related applications especially for bioimaging and biosensing.
Collapse
Affiliation(s)
- Qing Li
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Tong Zhang
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Yangang Pan
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Bingqian Xu
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Gang Wei
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| |
Collapse
|
31
|
de Juan A, López-Moreno A, Calbo J, Ortí E, Pérez EM. Determination of association constants towards carbon nanotubes. Chem Sci 2015; 6:7008-7014. [PMID: 29861939 PMCID: PMC5947526 DOI: 10.1039/c5sc02916c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/07/2015] [Indexed: 01/29/2023] Open
Abstract
We describe a simple procedure for the determination of association constants between soluble molecules and insoluble and heterogeneous carbon nanotube samples.
Single-walled carbon nanotubes (SWNTs) are one of the most promising nanomaterials and their supramolecular chemistry has attracted a lot of attention. However, despite well over a decade of research, there is no standard method for the quantification of their noncovalent chemistry in solution/suspension. Here, we describe a simple procedure for the determination of association constants (Ka) between soluble molecules and insoluble and heterogeneous carbon nanotube samples. To test the scope of the method, we report binding constants between five different hosts and two types of SWNTs in four solvents. We have determined numeric values of Ka in the range of 1–104 M–1. Solvent effects as well as structural changes in both the host and guest result in noticeable changes of Ka. The results obtained experimentally were validated through state-of-the-art DFT calculations. The generalization of quantitative and comparable association constants data should significantly help advance the supramolecular chemistry of carbon nanotubes.
Collapse
Affiliation(s)
- Alberto de Juan
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain .
| | - Alejandro López-Moreno
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain .
| | - Joaquín Calbo
- Instituto de Ciencia Molecular , Universidad de Valencia , 46980 Paterna , Spain .
| | - Enrique Ortí
- Instituto de Ciencia Molecular , Universidad de Valencia , 46980 Paterna , Spain .
| | - Emilio M Pérez
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain .
| |
Collapse
|
32
|
Kilina S, Kilin D, Tretiak S. Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chem Rev 2015; 115:5929-78. [DOI: 10.1021/acs.chemrev.5b00012] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Svetlana Kilina
- Chemistry
and Biochemistry Department, North Dakota State University, Fargo, North Dakota 5810, United States
| | - Dmitri Kilin
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Sergei Tretiak
- Theoretical
Division, Center for Nonlinear Studies (CNLS) and Center for Integrated
Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
33
|
Umemura K. Hybrids of Nucleic Acids and Carbon Nanotubes for Nanobiotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:321-350. [PMID: 28347014 PMCID: PMC5312852 DOI: 10.3390/nano5010321] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022]
Abstract
Recent progress in the combination of nucleic acids and carbon nanotubes (CNTs) has been briefly reviewed here. Since discovering the hybridization phenomenon of DNA molecules and CNTs in 2003, a large amount of fundamental and applied research has been carried out. Among thousands of papers published since 2003, approximately 240 papers focused on biological applications were selected and categorized based on the types of nucleic acids used, but not the types of CNTs. This survey revealed that the hybridization phenomenon is strongly affected by various factors, such as DNA sequences, and for this reason, fundamental studies on the hybridization phenomenon are important. Additionally, many research groups have proposed numerous practical applications, such as nanobiosensors. The goal of this review is to provide perspective on biological applications using hybrids of nucleic acids and CNTs.
Collapse
Affiliation(s)
- Kazuo Umemura
- Biophysics Section, Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan.
| |
Collapse
|
34
|
Fu H, Chipot C, Shao X, Cai W. Why do the structural properties of complexes formed by glucans and carbon nanotubes differ so much? RSC Adv 2015. [DOI: 10.1039/c5ra17472d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Effect of glycosidic bond linkage on the structural properties of complexes formed by glucans and carbon nanotubes.
Collapse
Affiliation(s)
- Haohao Fu
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
- Tianjin Key Laboratory of Molecular Recognition and Biosensing
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign
- Unité Mixte de Recherche No. 7565
- Université de Lorraine
- 54506 Vandœuvre-lès-Nancy Cedex
- France
| | - Xueguang Shao
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
- Tianjin Key Laboratory of Molecular Recognition and Biosensing
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Wensheng Cai
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
- Tianjin Key Laboratory of Molecular Recognition and Biosensing
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
35
|
Abstract
A concise tutorial review on the basic concepts of π–π interactions involving fullerenes, carbon nanotubes, and graphene.
Collapse
Affiliation(s)
- Emilio M. Pérez
- IMDEA Nanociencia, C/Faraday 9
- Ciudad Universitaria de Cantoblanco
- Madrid
- Spain
| | - Nazario Martín
- IMDEA Nanociencia, C/Faraday 9
- Ciudad Universitaria de Cantoblanco
- Madrid
- Spain
- Departamento de Química Orgánica
| |
Collapse
|