1
|
Zhuang B, Ramodiharilafy R, Aleksandrov A, Liebl U, Vos MH. Mechanism of ultrafast flavin photoreduction in the active site of flavoenzyme LSD1 histone demethylase. Chem Sci 2024; 16:338-344. [PMID: 39620080 PMCID: PMC11603641 DOI: 10.1039/d4sc06857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
Photoreduction of oxidized flavins has a functional role in photocatalytic and photoreceptor flavoproteins. In flavoproteins without light-dependent physiological functions, ultrafast, reversible flavin photoreduction is supposedly photoprotective by nature, and holds potential for nonnatural photocatalytic applications. In this work, we combine protein mutagenesis, ultrafast spectroscopy, molecular dynamics simulations and quantum mechanics calculations to investigate the nonfunctional flavin photoreduction in a flavoenzyme, lysine-specific demethylase 1 (LSD1) which is pivotal in DNA transcription. LSD1 harbors an oxidized flavin adenine dinucleotide (FAD) cofactor and multiple electron-donating residues in the active site. Upon photoexcitation, the FAD cofactor is photoreduced in <200 fs by electron transfer (ET) from nearby residue(s), and the charge pairs recombine in ca. 2 ps. Site-directed mutagenesis pinpoints a specific tryptophan residue, W751, as the primary electron donor, whereas a tyrosine residue, Y761, despite being located closer to the flavin ring, does not effectively contribute to the process. Based on a hybrid quantum-classical computational approach, we characterize the W751-FAD and Y761-FAD charge-transfer states (CTW751 and CTY761, respectively), as well as the FAD locally excited state (LEFAD), and demonstrate that the coupling between LEFAD and CTW751 is larger than those involving CTY761 by an order of magnitude, rationalizing the experimental observations. More generally, this work highlights the role of the intrinsic protein environment and details of donor-acceptor molecular configurations on the dynamics of short-range ET involving a flavin cofactor and amino acid residue(s).
Collapse
Affiliation(s)
- Bo Zhuang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Rivo Ramodiharilafy
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | - Alexey Aleksandrov
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | - Ursula Liebl
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| |
Collapse
|
2
|
DeOliveira CC, Crane BR. A structural decryption of cryptochromes. Front Chem 2024; 12:1436322. [PMID: 39220829 PMCID: PMC11362059 DOI: 10.3389/fchem.2024.1436322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/β and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.
Collapse
Affiliation(s)
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
3
|
Kretschmer K, Frederiksen A, Reinholdt P, Kongsted J, Solov’yov IA. Understanding the Red Shift in the Absorption Spectrum of the FAD Cofactor in ClCry4 Protein. J Phys Chem B 2024; 128:5320-5326. [PMID: 38805723 PMCID: PMC11163422 DOI: 10.1021/acs.jpcb.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
It is still a puzzle that has not been entirely solved how migratory birds utilize the Earth's magnetic field for biannual migration. The most consistent explanation thus far is rooted in the modulation of the biological function of the cryptochrome 4 (Cry4) protein by an external magnetic field. This phenomenon is closely linked with the flavin adenine dinucleotide (FAD) cofactor that is noncovalently bound in the protein. Cry4 is activated by blue light, which is absorbed by the FAD cofactor. Subsequent electron and proton transfers trigger radical pair formation in the protein, which is sensitive to the external magnetic field. An important long-lasting redox state of the FAD cofactor is the signaling (FADH•) state, which is present after the transient electron transfer steps have been completed. Recent experimental efforts succeeded in crystallizing the Cry4 protein from Columbia livia (ClCry4) with all of the important residues needed for protein photoreduction. This specific crystallization of Cry4 protein so far is the only avian cryptochrome crystal structure available, which, however, has great similarity to the Cry4 proteins of night migratory birds. The previous experimental studies of the ClCry4 protein included the absorption properties of the protein in its different redox states. The absorption spectrum of the FADH• state demonstrated a peculiar red shift compared to the photoabsorption properties of the FAD cofactor in its FADH• state in other Cry proteins from other species. The aim of this study is to understand this red shift by employing the tools of computational microscopy and, in particular, a QM/MM approach that relies on the polarizable embedding approximation.
Collapse
Affiliation(s)
- Katarina Kretschmer
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Anders Frederiksen
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK 5230 Odense, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK 5230 Odense, Denmark
| | - Ilia A. Solov’yov
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory
Science, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky
Str. 9-11, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
López-Ortiz M, Zamora RA, Giannotti MI, Hu C, Croce R, Gorostiza P. Distance and Potential Dependence of Charge Transport Through the Reaction Center of Individual Photosynthetic Complexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104366. [PMID: 34874621 DOI: 10.1002/smll.202104366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Charge separation and transport through the reaction center of photosystem I (PSI) is an essential part of the photosynthetic electron transport chain. A strategy is developed to immobilize and orient PSI complexes on gold electrodes allowing to probe the complex's electron acceptor side, the chlorophyll special pair P700. Electrochemical scanning tunneling microscopy (ECSTM) imaging and current-distance spectroscopy of single protein complex shows lateral size in agreement with its known dimensions, and a PSI apparent height that depends on the probe potential revealing a gating effect in protein conductance. In current-distance spectroscopy, it is observed that the distance-decay constant of the current between PSI and the ECSTM probe depends on the sample and probe electrode potentials. The longest charge exchange distance (lowest distance-decay constant β) is observed at sample potential 0 mV/SSC (SSC: reference electrode silver/silver chloride) and probe potential 400 mV/SSC. These potentials correspond to hole injection into an electronic state that is available in the absence of illumination. It is proposed that a pair of tryptophan residues located at the interface between P700 and the solution and known to support the hydrophobic recognition of the PSI redox partner plastocyanin, may have an additional role as hole exchange mediator in charge transport through PSI.
Collapse
Affiliation(s)
- Manuel López-Ortiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Ricardo A Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Marina Inés Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona, 08028, Spain
| | - Chen Hu
- Biophysics of PhotosynthesisDepartment of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam, 1081 HV, The Netherlands
| | - Roberta Croce
- Biophysics of PhotosynthesisDepartment of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam, 1081 HV, The Netherlands
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
5
|
Deviers J, Cailliez F, de la Lande A, Kattnig DR. Anisotropic magnetic field effects in the re-oxidation of cryptochrome in the presence of scavenger radicals. J Chem Phys 2022; 156:025101. [PMID: 35032990 DOI: 10.1063/5.0078115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The avian compass and many other of nature's magnetoreceptive traits are widely ascribed to the protein cryptochrome. There, magnetosensitivity is thought to emerge as the spin dynamics of radicals in the applied magnetic field enters in competition with their recombination. The first and dominant model makes use of a radical pair. However, recent studies have suggested that magnetosensitivity could be markedly enhanced for a radical triad, the primary radical pair of which undergoes a spin-selective recombination reaction with a third radical. Here, we test the practicality of this supposition for the reoxidation reaction of the reduced FAD cofactor in cryptochrome, which has been implicated with light-independent magnetoreception but appears irreconcilable with the classical radical pair mechanism (RPM). Based on the available realistic cryptochrome structures, we predict the magnetosensitivity of radical triad systems comprising the flavin semiquinone, the superoxide, and a tyrosine or ascorbyl scavenger radical. We consider many hyperfine-coupled nuclear spins, the relative orientation and placement of the radicals, their coupling by the electron-electron dipolar interaction, and spin relaxation in the superoxide radical in the limit of instantaneous decoherence, which have not been comprehensively considered before. We demonstrate that these systems can provide superior magnetosensitivity under realistic conditions, with implications for dark-state cryptochrome magnetoreception and other biological magneto- and isotope-sensitive radical recombination reactions.
Collapse
Affiliation(s)
- Jean Deviers
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Fabien Cailliez
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), 15 avenue Jean Perrin, 91405 Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), 15 avenue Jean Perrin, 91405 Orsay, France
| | - Daniel R Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| |
Collapse
|
6
|
Goett-Zink L, Kottke T. Plant Cryptochromes Illuminated: A Spectroscopic Perspective on the Mechanism. Front Chem 2021; 9:780199. [PMID: 34900940 PMCID: PMC8653763 DOI: 10.3389/fchem.2021.780199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Plant cryptochromes are central blue light receptors for the control of land plant and algal development including the circadian clock and the cell cycle. Cryptochromes share a photolyase homology region with about 500 amino acids and bind the chromophore flavin adenine dinucleotide. Characteristic for plant cryptochromes is a conserved aspartic acid close to flavin and an exceptionally long C-terminal extension. The mechanism of activation by excitation and reduction of the chromophore flavin adenine dinucleotide has been controversially discussed for many years. Various spectroscopic techniques have contributed to our understanding of plant cryptochromes by providing high time resolution, ambient conditions and even in-cell approaches. As a result, unifying and differing aspects of photoreaction and signal propagation have been revealed in comparison to members from other cryptochrome subfamilies. Here, we review the insight from spectroscopy on the flavin photoreaction in plant cryptochromes and present the current models on the signal propagation from flavin reduction to dissociation of the C-terminal extension.
Collapse
Affiliation(s)
- Lukas Goett-Zink
- Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Tilman Kottke
- Department of Chemistry, Bielefeld University, Bielefeld, Germany.,Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Abstract
Hole hopping through tryptophan/tyrosine chains enables rapid unidirectional charge transport over long distances. We have elucidated structural and dynamical factors controlling hopping speed and efficiency in two modified azurin constructs that include a rhenium(I) sensitizer, Re(His)(CO)3(dmp)+, and one or two tryptophans (W1, W2). Experimental kinetics investigations showed that the two closely spaced (3 to 4 Å) intervening tryptophans dramatically accelerated long-range electron transfer (ET) from CuI to the photoexcited sensitizer. In our theoretical work, we found that time-dependent density-functional theory (TDDFT) quantum mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) trajectories of low-lying triplet excited states of ReI(His)(CO)3(dmp)+-W1(-W2) exhibited crossings between sensitizer-localized (*Re) and charge-separated [ReI(His)(CO)3(dmp•-)/(W1 •+ or W2 •+)] (CS1 or CS2) states. Our analysis revealed that the distances, angles, and mutual orientations of ET-active cofactors fluctuate in a relatively narrow range in which the cofactors are strongly coupled, enabling adiabatic ET. Water-dominated electrostatic field fluctuations bring *Re and CS1 states to a crossing where *Re(CO)3(dmp)+←W1 ET occurs, and CS1 becomes the lowest triplet state. ET is promoted by solvation dynamics around *Re(CO)3(dmp)+(W1); and CS1 is stabilized by Re(dmp•-)/W1 •+ electron/hole interaction and enhanced W1 •+ solvation. The second hop, W1 •+←W2, is facilitated by water fluctuations near the W1/W2 unit, taking place when the electrostatic potential at W2 drops well below that at W1 •+ Insufficient solvation and reorganization around W2 make W1 •+←W2 ET endergonic, shifting the equilibrium toward W1 •+ and decreasing the charge-separation yield. We suggest that multiscale TDDFT/MM/MD is a suitable technique to model the simultaneous evolution of photogenerated excited-state manifolds.
Collapse
|
8
|
Pirisi K, Nag L, Fekete Z, Iuliano JN, Tolentino Collado J, Clark IP, Pécsi I, Sournia P, Liebl U, Greetham GM, Tonge PJ, Meech SR, Vos MH, Lukacs A. Identification of the vibrational marker of tyrosine cation radical using ultrafast transient infrared spectroscopy of flavoprotein systems. Photochem Photobiol Sci 2021; 20:369-378. [PMID: 33721272 DOI: 10.1007/s43630-021-00024-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
Tryptophan and tyrosine radical intermediates play crucial roles in many biological charge transfer processes. Particularly in flavoprotein photochemistry, short-lived reaction intermediates can be studied by the complementary techniques of ultrafast visible and infrared spectroscopy. The spectral properties of tryptophan radical are well established, and the formation of neutral tyrosine radicals has been observed in many biological processes. However, only recently, the formation of a cation tyrosine radical was observed by transient visible spectroscopy in a few systems. Here, we assigned the infrared vibrational markers of the cationic and neutral tyrosine radical at 1483 and 1502 cm-1 (in deuterated buffer), respectively, in a variant of the bacterial methyl transferase TrmFO, and in the native glucose oxidase. In addition, we studied a mutant of AppABLUF blue-light sensor domain from Rhodobacter sphaeroides in which only a direct formation of the neutral radical was observed. Our studies highlight the exquisite sensitivity of transient infrared spectroscopy to low concentrations of specific radicals.
Collapse
Affiliation(s)
- Katalin Pirisi
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary
| | - Lipsa Nag
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | | | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0QX, Oxon, UK
| | - Ildikó Pécsi
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary
| | - Pierre Sournia
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Ursula Liebl
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0QX, Oxon, UK
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Marten H Vos
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary.
| |
Collapse
|
9
|
Emmerich HJ, Saft M, Schneider L, Kock D, Batschauer A, Essen LO. A topologically distinct class of photolyases specific for UV lesions within single-stranded DNA. Nucleic Acids Res 2021; 48:12845-12857. [PMID: 33270891 PMCID: PMC7736829 DOI: 10.1093/nar/gkaa1147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 11/30/2022] Open
Abstract
Photolyases are ubiquitously occurring flavoproteins for catalyzing photo repair of UV-induced DNA damages. All photolyases described so far have a bilobal architecture with a C-terminal domain comprising flavin adenine dinucleotide (FAD) as catalytic cofactor and an N-terminal domain capable of harboring an additional antenna chromophore. Using sequence-similarity network analysis we discovered a novel subgroup of the photolyase/cryptochrome superfamily (PCSf), the NewPHLs. NewPHL occur in bacteria and have an inverted topology with an N-terminal catalytic domain and a C-terminal domain for sealing the FAD binding site from solvent access. By characterizing two NewPHL we show a photochemistry characteristic of other PCSf members as well as light-dependent repair of CPD lesions. Given their common specificity towards single-stranded DNA many bacterial species use NewPHL as a substitute for DASH-type photolyases. Given their simplified architecture and function we suggest that NewPHL are close to the evolutionary origin of the PCSf.
Collapse
Affiliation(s)
- Hans-Joachim Emmerich
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Martin Saft
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Leonie Schneider
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Dennis Kock
- Department of Biology, Philipps University Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| | - Alfred Batschauer
- Department of Biology, Philipps University Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany.,Center of Synthetic Microbiology, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| |
Collapse
|
10
|
Abstract
Cryptochromes (CRYs) are evolutionarily conserved photoreceptors that mediate various light-induced responses in bacteria, plants, and animals. Plant cryptochromes govern a variety of critical growth and developmental processes including seed germination, flowering time and entrainment of the circadian clock. CRY's photocycle involves reduction of their flavin adenine dinucleotide (FAD)-bound chromophore, which is completely oxidized in the dark and semi to fully reduced in the light signaling-active state. Despite the progress in characterizing cryptochromes, important aspects of their photochemistry, regulation, and light-induced structural changes remain to be addressed. In this study, we determine the crystal structure of the photosensory domain of Arabidopsis CRY2 in a tetrameric active state. Systematic structure-based analyses of photo-activated and inactive plant CRYs elucidate distinct structural elements and critical residues that dynamically partake in photo-induced oligomerization. Our study offers an updated model of CRYs photoactivation mechanism as well as the mode of its regulation by interacting proteins.
Collapse
|
11
|
Regulatory Impact of the C-Terminal Tail on Charge Transfer Pathways in Drosophila Cryptochrome. Molecules 2020; 25:molecules25204810. [PMID: 33086760 PMCID: PMC7587983 DOI: 10.3390/molecules25204810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 01/02/2023] Open
Abstract
Interconnected transcriptional and translational feedback loops are at the core of the molecular mechanism of the circadian clock. Such feedback loops are synchronized to external light entrainment by the blue light photoreceptor cryptochrome (CRY) that undergoes conformational changes upon light absorption by an unknown photoexcitation mechanism. Light-induced charge transfer (CT) reactions in Drosophila CRY (dCRY) are investigated by state-of-the-art simulations that reveal a complex, multi-redox site nature of CT dynamics on the microscopic level. The simulations consider redox-active chromophores of the tryptophan triad (Trp triad) and further account for pathways mediated by W314 and W422 residues proximate to the C-terminal tail (CTT), thus avoiding a pre-bias to specific W-mediated CT pathways. The conducted dissipative quantum dynamics simulations employ microscopically derived model Hamiltonians and display complex and ultrafast CT dynamics on the picosecond timescale, subtly balanced by the electrostatic environment of dCRY. In silicio point mutations provide a microscopic basis for rationalizing particular CT directionality and demonstrate the degree of electrostatic control realized by a discrete set of charged amino acid residues. The predicted participation of CT states in proximity to the CTT relates the directionality of CT reactions to the spatial vicinity of a linear interaction motif. The results stress the importance of CTT directional charge transfer in addition to charge transfer via the Trp triad and call for the use of full-length CRY models including the interactions of photolyase homology region (PHR) and CTT domains.
Collapse
|
12
|
Ma L, Wang X, Guan Z, Wang L, Wang Y, Zheng L, Gong Z, Shen C, Wang J, Zhang D, Liu Z, Yin P. Structural insights into BIC-mediated inactivation of Arabidopsis cryptochrome 2. Nat Struct Mol Biol 2020; 27:472-479. [PMID: 32398826 DOI: 10.1038/s41594-020-0410-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/09/2020] [Indexed: 02/04/2023]
Abstract
Cryptochromes (CRYs) are blue-light receptors in plants that harbor FAD as a cofactor and regulate various physiological responses. Photoactivated CRYs undergo oligomerization, which increases the binding affinity to downstream signaling partners. Despite decades of research on the activation of CRYs, little is known about how they are inactivated. Binding of blue-light inhibitors of cryptochromes (BICs) to CRY2 suppresses its photoactivation, but the underlying mechanism remains unknown. Here, we report crystal structures of CRY2N (CRY2 PHR domain) and the BIC2-CRY2N complex with resolutions of 2.7 and 2.5 Å, respectively. In the BIC2-CRY2N complex, BIC2 exhibits an extremely extended structure that sinuously winds around CRY2N. In this way, BIC2 not only restrains the transfer of electrons and protons from CRY2 to FAD during photoreduction but also interacts with the CRY2 oligomer to return it to the monomer form. Uncovering the mechanism of CRY2 inactivation lays a solid foundation for the investigation of cryptochrome protein function.
Collapse
Affiliation(s)
- Ling Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Xiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Lixia Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yidong Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Le Zheng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Zhou Gong
- Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, China
| | - Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Abstract
Cryptochromes are blue-light receptors that mediate photoresponses in plants. The genomes of most land plants encode two clades of cryptochromes, CRY1 and CRY2, which mediate distinct and overlapping photoresponses within the same species and between different plant species. Photoresponsive protein-protein interaction is the primary mode of signal transduction of cryptochromes. Cryptochromes exist as physiologically inactive monomers in the dark; the absorption of photons leads to conformational change and cryptochrome homooligomerization, which alters the affinity of cryptochromes interacting with cryptochrome-interacting proteins to form various cryptochrome complexes. These cryptochrome complexes, collectively referred to as the cryptochrome complexome, regulate transcription or stability of photoresponsive proteins to modulate plant growth and development. The activity of cryptochromes is regulated by photooligomerization; dark monomerization; cryptochrome regulatory proteins; and cryptochrome phosphorylation, ubiquitination, and degradation. Most of the more than 30 presently known cryptochrome-interacting proteins are either regulated by other photoreceptors or physically interactingwith the protein complexes of other photoreceptors. Some cryptochrome-interacting proteins are also hormonal signaling or regulatory proteins. These two mechanisms enable cryptochromes to integrate blue-light signals with other internal and external signals to optimize plant growth and development.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
14
|
Araguirang GE, Niemann N, Kiontke S, Eckel M, Dionisio-Sese ML, Batschauer A. The Arabidopsis cryptochrome 2 I404F mutant is hypersensitive and shows flavin reduction even in the absence of light. PLANTA 2019; 251:33. [PMID: 31832774 DOI: 10.1007/s00425-019-03323-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
The cryptochrome photoreceptor mutant cry2I404F exhibits hyperactivity in the dark, hypersensitivity in different light conditions, and in contrast to the wild-type protein, its flavin chromophore is reducible even in the absence of light. Plant cryptochromes (cry) are blue-light photoreceptors involved in multiple signaling pathways and various photomorphogenic responses. One biologically hyperactive mutant of a plant cryptochrome that was previously characterized is Arabidopsis cry1L407F (Exner et al. in Plant Physiol 154:1633-1645, 2010). Protein sequence alignments of different cryptochromes revealed that L407 in cry1 corresponds to I404 in cry2. Point mutation of Ile to Phe in cry2 in this position created a novel mutant. The present study provided a baseline data on the elucidation of the properties of cry2I404F. This mutant was still able to bind ATP-triggering conformational changes, as confirmed by partial tryptic digestion and thermo-FAD assays. Surprisingly, the FAD cofactor of cry2I404F was reduced by the addition of reductant even in the absence of light. In vivo, cry2I404F exhibited a cop phenotype in the dark and hypersensitivity to various light conditions compared to cry2 wild type. Overall, these data suggest that the hypersensitivity to red and blue light and hyperactivity of this novel mutant in the dark can be mostly accounted to structural alterations brought forth by the Ile to Phe mutation at position 404 that allows reduction of the flavin chromophore even in the absence of light.
Collapse
Affiliation(s)
- Galileo Estopare Araguirang
- Graduate School, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
- Department of Plant Adaptation, Leibniz-Institut für Gemüse- und Zierpflanzenbau (IGZ), Großbeeren, 14979, Germany
| | - Nils Niemann
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University Marburg, 35032, Marburg, Germany
| | - Stephan Kiontke
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University Marburg, 35032, Marburg, Germany
| | - Maike Eckel
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University Marburg, 35032, Marburg, Germany
| | - Maribel L Dionisio-Sese
- Graduate School, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
- Plant Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Alfred Batschauer
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University Marburg, 35032, Marburg, Germany.
| |
Collapse
|
15
|
Mondal P, Huix-Rotllant M. Theoretical insights into the formation and stability of radical oxygen species in cryptochromes. Phys Chem Chem Phys 2019; 21:8874-8882. [PMID: 30977757 DOI: 10.1039/c9cp00782b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptochrome is a blue-light absorbing flavoprotein containing a flavin adenine dinucleotide (FAD) cofactor. FAD can accept up to two electrons and two protons, which can be subsequently transferred to substrates present in the binding pocket. It is well known that reactive oxygen species are generated when triplet molecular oxygen is present in the cavity. Here, we investigate the formation and stability of radical oxygen species in Drosophila melanogaster cryptochrome using molecular dynamics simulations and electronic structure calculations. We find that the superoxide and hydroxyl radicals in doublet spin states are stabilized in the pocket due to the attractive electrostatic interactions and hydrogen bonding with partially reduced FAD. These findings validate from a molecular dynamics perspective that [FAD˙--HO2˙] or [FADH˙-O2˙-] can be alternative radical pairs at the origin of magnetoreception.
Collapse
|
16
|
Holub D, Lamparter T, Elstner M, Gillet N. Biological relevance of charge transfer branching pathways in photolyases. Phys Chem Chem Phys 2019; 21:17072-17081. [PMID: 31313765 DOI: 10.1039/c9cp01609k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The repair of sun-induced DNA lesions by photolyases is driven by a photoinduced electron transfer from a fully reduced FAD to the damaged DNA. A chain of several aromatic residues connecting FAD to solvent ensures the prior photoreduction of the FAD cofactor. In PhrA, a class III CPD photolyase, two branching tryptophan charge transfer pathways have been characterized. According to previous experiments, both pathways play a role in the FAD photoreduction. To provide a molecular insight to the charge transfer abilities of both pathways, we perform multiscales simulations where the protein motion and the positive charge are simultaneously propagated. Our computational approach reveals that one pathway drives a very fast charge transfer whereas the other pathway provides a very good thermodynamic stabilization of the positive charge. During the simulations, the positive charge firstly moves on the fast triad, while a reorganization of the close FAD˙- environment occurs. Then, backward transfers can lead to the propagation of the positive charge on the second pathway. After one nanosecond, we observe a nearly equal probability to find the charge at ending tryptophan of either pathway; eventually the charge distribution will likely evolve towards a charge stabilization on the last tryptophan of the slowest pathway. Our results highlight the role the protein environment, which manages the association of a kinetic and a thermodynamic pathways to trigger a fast and efficient FAD photoreduction.
Collapse
Affiliation(s)
- Daniel Holub
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany.
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology, Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Marcus Elstner
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany. and Institute of Biological Interfaces (IBG2), Karlsruhe Institute for Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Natacha Gillet
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
17
|
Tazhigulov RN, Gurunathan PK, Kim Y, Slipchenko LV, Bravaya KB. Polarizable embedding for simulating redox potentials of biomolecules. Phys Chem Chem Phys 2019; 21:11642-11650. [PMID: 31116217 PMCID: PMC6611676 DOI: 10.1039/c9cp01533g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Redox reactions play a key role in various biological processes, including photosynthesis and respiration. Quantitative and predictive computational characterization of redox events is therefore highly desirable for enriching our knowledge on mechanistic features of biological redox-active macromolecules. Here, we present a computational protocol exploiting polarizable embedding hybrid quantum-classical approach and resulting in accurate estimates of redox potentials of biological macromolecules. A special attention is paid to fundamental aspects of the theoretical description such as the effects of environment polarization and of the long-range electrostatic interactions on the computed energetic parameters. Environment (protein and the solvent) polarization is shown to be crucial for accurate estimates of the redox potential: hybrid quantum-classical results with and without account for environment polarization differ by 1.4 V. Long-range electrostatic interactions are shown to contribute significantly to the computed redox potential value even at the distances far beyond the protein outer surface. The approach is tested on simulating reduction potential of cryptochrome 1 protein from Arabidopsis thaliana. The theoretical estimate (0.07 V) of the midpoint reduction potential is in good agreement with available experimental data (-0.15 V).
Collapse
Affiliation(s)
- Ruslan N Tazhigulov
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
18
|
Nielsen C, Nørby MS, Kongsted J, Solov'yov IA. Absorption Spectra of FAD Embedded in Cryptochromes. J Phys Chem Lett 2018; 9:3618-3623. [PMID: 29905481 DOI: 10.1021/acs.jpclett.8b01528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The magnetic compass sense utilized by migratory birds for long-distance navigation functions only once light of a certain wavelength is present. This piece of evidence fits partially with the popular hypothesis of chemical magnetoreception in cryptochrome proteins, located in the bird retina. According to this hypothesis a magnetosensitive radical pair is produced after photoexcitation of an FAD cofactor inside cryptochrome, and as such the absorption properties of FAD are of crucial importance for cryptochrome activation. However, we reveal that absorption spectra of FAD show very little variation between six different cryptochromes, suggesting that the electronic transitions are barely affected by the chemical differences in the proteins. This conclusion hints on the presence of a secondary photoreceptor or cofactor that could be necessary to explain green-light-activated magnetoreception in birds.
Collapse
Affiliation(s)
- Claus Nielsen
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Morten S Nørby
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Ilia A Solov'yov
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| |
Collapse
|
19
|
Gupta S, Kumar A, Joshi KB. Study of electron transfer process in aqueous methanol system by using tryptophan based short peptide – Amino acid pairs. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.01.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Günther A, Einwich A, Sjulstok E, Feederle R, Bolte P, Koch KW, Solov’yov IA, Mouritsen H. Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4. Curr Biol 2018; 28:211-223.e4. [DOI: 10.1016/j.cub.2017.12.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 01/07/2023]
|
21
|
Mendive-Tapia D, Mangaud E, Firmino T, de la Lande A, Desouter-Lecomte M, Meyer HD, Gatti F. Multidimensional Quantum Mechanical Modeling of Electron Transfer and Electronic Coherence in Plant Cryptochromes: The Role of Initial Bath Conditions. J Phys Chem B 2017; 122:126-136. [DOI: 10.1021/acs.jpcb.7b10412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Mendive-Tapia
- Institut
Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, CTMM, Université Montpellier, CC 15001, Place Eugène Bataillon, 34095 Montpellier, France
- Theoretische
Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
| | - Etienne Mangaud
- Laboratoire
Collisions Agrégats Réactivité, UMR 5589, IRSAMC, Université Toulouse III Paul Sabatier, F-31062 Toulouse, France
| | - Thiago Firmino
- Laboratoire
de Chimie Physique, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| | - Aurélien de la Lande
- Laboratoire
de Chimie Physique, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| | - Michèle Desouter-Lecomte
- Laboratoire
de Chimie Physique, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| | - Hans-Dieter Meyer
- Theoretische
Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
| | - Fabien Gatti
- Institut
des Sciences Moléculaires d’Orsay, UMR-CNRS 8214, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| |
Collapse
|
22
|
Holub D, Ma H, Krauß N, Lamparter T, Elstner M, Gillet N. Functional role of an unusual tyrosine residue in the electron transfer chain of a prokaryotic (6-4) photolyase. Chem Sci 2017; 9:1259-1272. [PMID: 29675172 PMCID: PMC5887102 DOI: 10.1039/c7sc03386a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/09/2017] [Indexed: 11/21/2022] Open
Abstract
Cryptochromes and photolyases form a flavoprotein family in which the FAD chromophore undergoes light induced changes of its redox state. During this process, termed photoreduction, electrons flow from the surface via conserved amino acid residues to FAD. The bacterial (6-4) photolyase PhrB belongs to a phylogenetically ancient group. Photoreduction of PhrB differs from the typical pattern because the amino acid of the electron cascade next to FAD is a tyrosine (Tyr391), whereas photolyases and cryptochromes of other groups have a tryptophan as direct electron donor of FAD. Mutagenesis studies have identified Trp342 and Trp390 as essential for charge transfer. Trp342 is located at the periphery of PhrB while Trp390 connects Trp342 and Tyr391. The role of Tyr391, which lies between Trp390 and FAD, is however unclear as its replacement by phenylalanine did not block photoreduction. Experiments reported here, which replace Tyr391 by Ala, show that photoreduction is blocked, underlining the relevance of Tyr/Phe at position 391 and indicating that charge transfer occurs via the triad 391-390-342. This raises the question, why PhrB positions a tyrosine at this location, having a less favourable ionisation potential than tryptophan, which occurs at this position in many proteins of the photolyase/cryptochrome family. Tunnelling matrix calculations show that tyrosine or phenylalanine can be involved in a productive bridged electron transfer between FAD and Trp390, in line with experimental findings. Since replacement of Tyr391 by Trp resulted in loss of FAD and DMRL chromophores, electron transfer cannot be studied experimentally in this mutant, but calculations on a mutant model suggest that Trp might participate in the electron transfer cascade. Charge transfer simulations reveal an unusual stabilization of the positive charge on site 391 compared to other photolyases or cryptochromes. Water molecules near Tyr391 offer a polar environment which stabilizes the positive charge on this site, thereby lowering the energetic barrier intrinsic to tyrosine. This opens a second charge transfer channel in addition to tunnelling through the tyrosine barrier, based on hopping and therefore transient oxidation of Tyr391, which enables a fast charge transfer similar to proteins utilizing a tryptophan-triad. Our results suggest that evolution of the first site of the redox chain has just been possible by tuning the protein structure and environment to manage a downhill hole transfer process from FAD to solvent.
Collapse
Affiliation(s)
- Daniel Holub
- Department for Theoretical Chemical Biology , Institute for Physical Chemistry , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany .
| | - Hongju Ma
- Botanical Institute , Karlsruhe Institute for Technology , Fritz Haber Weg 4 , 76131 , Karlsruhe , Germany
| | - Norbert Krauß
- Botanical Institute , Karlsruhe Institute for Technology , Fritz Haber Weg 4 , 76131 , Karlsruhe , Germany
| | - Tilman Lamparter
- Botanical Institute , Karlsruhe Institute for Technology , Fritz Haber Weg 4 , 76131 , Karlsruhe , Germany
| | - Marcus Elstner
- Department for Theoretical Chemical Biology , Institute for Physical Chemistry , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany . .,Institute of Biological Interfaces (IGB2) , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany
| | - Natacha Gillet
- Department for Theoretical Chemical Biology , Institute for Physical Chemistry , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany .
| |
Collapse
|
23
|
Suess CJ, Hirst JD, Besley NA. Quantum chemical calculations of tryptophan → heme electron and excitation energy transfer rates in myoglobin. J Comput Chem 2017; 38:1495-1502. [PMID: 28369976 PMCID: PMC5434924 DOI: 10.1002/jcc.24793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/10/2022]
Abstract
The development of optical multidimensional spectroscopic techniques has opened up new possibilities for the study of biological processes. Recently, ultrafast two-dimensional ultraviolet spectroscopy experiments have determined the rates of tryptophan → heme electron transfer and excitation energy transfer for the two tryptophan residues in myoglobin (Consani et al., Science, 2013, 339, 1586). Here, we show that accurate prediction of these rates can be achieved using Marcus theory in conjunction with time-dependent density functional theory. Key intermediate residues between the donor and acceptor are identified, and in particular the residues Val68 and Ile75 play a critical role in calculations of the electron coupling matrix elements. Our calculations demonstrate how small changes in structure can have a large effect on the rates, and show that the different rates of electron transfer are dictated by the distance between the heme and tryptophan residues, while for excitation energy transfer the orientation of the tryptophan residues relative to the heme is important. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christian J. Suess
- School of ChemistryUniversity of Nottingham, University ParkNottinghamNG7 2RDUnited Kingdom
| | - Jonathan D. Hirst
- School of ChemistryUniversity of Nottingham, University ParkNottinghamNG7 2RDUnited Kingdom
| | - Nicholas A. Besley
- School of ChemistryUniversity of Nottingham, University ParkNottinghamNG7 2RDUnited Kingdom
| |
Collapse
|
24
|
Orth C, Niemann N, Hennig L, Essen LO, Batschauer A. Hyperactivity of the Arabidopsis cryptochrome (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site. J Biol Chem 2017. [PMID: 28634231 DOI: 10.1074/jbc.m117.788869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant cryptochromes (cry) act as UV-A/blue light receptors. The prototype, Arabidopsis thaliana cry1, regulates several light responses during the life cycle, including de-etiolation, and is also involved in regulating flowering time. The cry1 photocycle is initiated by light absorption by its FAD chromophore, which is most likely fully oxidized (FADox) in the dark state and photoreduced to the neutral flavin semiquinone (FADH°) in its lit state. Cryptochromes lack the DNA-repair activity of the closely related DNA photolyases, but they retain the ability to bind nucleotides such as ATP. The previously characterized L407F mutant allele of Arabidopsis cry1 is biologically hyperactive and seems to mimic the ATP-bound state of cry1, but the reason for this phenotypic change is unclear. Here, we show that cry1L407F can still bind ATP, has less pronounced photoreduction and formation of FADH° than wild-type cry1, and has a dark reversion rate 1.7 times lower than that of the wild type. The hyperactivity of cry1L407F is not related to a higher FADH° occupancy of the photoreceptor but is caused by a structural alteration close to the ATP-binding site. Moreover, we show that ATP binds to cry1 in both the dark and the lit states. This binding was not affected by cry1's C-terminal extension, which is important for signal transduction. Finally, we show that a recently discovered chemical inhibitor of cry1, 3-bromo-7-nitroindazole, competes for ATP binding and thereby diminishes FADH° formation, which demonstrates that both processes are important for cry1 function.
Collapse
Affiliation(s)
- Christian Orth
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität, 35032 Marburg, Germany
| | - Nils Niemann
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität, 35032 Marburg, Germany
| | - Lars Hennig
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Lars-Oliver Essen
- Faculty of Chemistry, Department of Biochemistry, Philipps-Universität, 35032 Marburg, Germany
| | - Alfred Batschauer
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität, 35032 Marburg, Germany.
| |
Collapse
|
25
|
Mendive-Tapia D, Firmino T, Meyer HD, Gatti F. Towards a systematic convergence of Multi-Layer (ML) Multi-Configuration Time-Dependent Hartree nuclear wavefunctions: The ML-spawning algorithm. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Ahmad M. Photocycle and signaling mechanisms of plant cryptochromes. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:108-115. [PMID: 27423124 DOI: 10.1016/j.pbi.2016.06.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 05/20/2023]
Abstract
Cryptochromes are flavoprotein blue light receptors that control many aspects of plant growth and development including seedling de-etiolation, elongation growth, the initiation of flowering, and entrainment of the circadian clock. Photon absorption by Arabidopsis cryptochromes cry1 and cry2 initiates electron transfer to the oxidized flavin cofactor (FADox) and formation of the presumed biological signaling state FADH°. Current literature on the nature and formation of the signaling state is reviewed, and potential novel roles for cryptochromes in oxidative stress and as magnetosensors are discussed in light of the cryptochrome photocycle.
Collapse
Affiliation(s)
- Margaret Ahmad
- UMR 8256B B2A, IBPS, Casier 156, Université Pierre et Marie Curie, 7 Quai St. Bernard, 75005 Paris, France; Xavier University, 3800 Victory Parkway, Cincinnati, OH 45207, USA.
| |
Collapse
|
27
|
Niu J, Ben Johny M, Dick IE, Inoue T. Following Optogenetic Dimerizers and Quantitative Prospects. Biophys J 2016; 111:1132-1140. [PMID: 27542508 DOI: 10.1016/j.bpj.2016.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 01/06/2023] Open
Abstract
Optogenetics describes the use of genetically encoded photosensitive proteins to direct intended biological processes with light in recombinant and native systems. While most of these light-responsive proteins were originally discovered in photosynthetic organisms, the past few decades have been punctuated by experiments that not only commandeer but also engineer and enhance these natural tools to explore a wide variety of physiological questions. In addition, the ability to tune dynamic range and kinetic rates of optogenetic actuators is a challenging question that is heavily explored with computational methods devised to facilitate optimization of these systems. Here, we explain the basic mechanisms of a few popular photodimerizing optogenetic systems, discuss applications, compare optogenetic tools against more traditional chemical methods, and propose a simple quantitative understanding of how actuators exert their influence on targeted processes.
Collapse
Affiliation(s)
- Jacqueline Niu
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, Maryland.
| | - Manu Ben Johny
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Ivy E Dick
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Takanari Inoue
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, Maryland; Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland; The Center for Cell Dynamics, Institute for Basic Biomedical Sciences, The Johns Hopkins University, Baltimore, Maryland; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
28
|
Liu B, Yang Z, Gomez A, Liu B, Lin C, Oka Y. Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2016; 129:137-48. [PMID: 26810763 PMCID: PMC6138873 DOI: 10.1007/s10265-015-0782-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
Cryptochromes (CRY) are flavoproteins that direct a diverse array of developmental processes in response to blue light in plants. Conformational changes in CRY are induced by the absorption of photons and result in the propagation of light signals to downstream components. In Arabidopsis, CRY1 and CRY2 serve both distinct and partially overlapping functions in regulating photomorphogenic responses and photoperiodic flowering. For example, both CRY1 and CRY2 regulate the abundance of transcription factors by directly reversing the activity of E3 ubiquitin ligase on CONSTITUTIVE PHOTOMORPHOGENIC 1 and SUPPRESSOR OF PHYA-105 1 complexes in a blue light-dependent manner. CRY2 also specifically governs a photoperiodic flowering mechanism by directly interacting with a transcription factor called CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX. Recently, structure/function analysis of CRY1 revealed that the CONSTITUTIVE PHOTOMORPHOGENIC 1 independent pathway is also involved in CRY1-mediated inhibition of hypocotyl elongation. CRY1 and CRY2 thus not only share a common pathway but also relay light signals through distinct pathways, which may lead to altered developmental programs in plants.
Collapse
Affiliation(s)
- Bobin Liu
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaohe Yang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Adam Gomez
- Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, People's Republic of China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Yoshito Oka
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
29
|
Müller P, Brettel K, Grama L, Nyitrai M, Lukacs A. Photochemistry of Wild-Type and N378D Mutant E. coli DNA Photolyase with Oxidized FAD Cofactor Studied by Transient Absorption Spectroscopy. Chemphyschem 2016; 17:1329-40. [PMID: 26852903 DOI: 10.1002/cphc.201501077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 01/02/2023]
Abstract
DNA photolyases (PLs) and evolutionarily related cryptochrome (CRY) blue-light receptors form a widespread superfamily of flavoproteins involved in DNA photorepair and signaling functions. They share a flavin adenine dinucleotide (FAD) cofactor and an electron-transfer (ET) chain composed typically of three tryptophan residues that connect the flavin to the protein surface. Four redox states of FAD are relevant for the various functions of PLs and CRYs: fully reduced FADH(-) (required for DNA photorepair), fully oxidized FADox (blue-light-absorbing dark state of CRYs), and the two semireduced radical states FAD(.-) and FADH(.) formed in ET reactions. The PL of Escherichia coli (EcPL) has been studied for a long time and is often used as a reference system; however, EcPL containing FADox has so far not been investigated on all relevant timescales. Herein, a detailed transient absorption study of EcPL on timescales from nanoseconds to seconds after excitation of FADox is presented. Wild-type EcPL and its N378D mutant, in which the asparagine facing the N5 of the FAD isoalloxazine is replaced by aspartic acid, known to protonate FAD(.-) (formed by ET from the tryptophan chain) in plant CRYs in about 1.5 μs, are characterized. Surprisingly, the mutant protein does not show this protonation. Instead, FAD(.-) is converted in 3.3 μs into a state with spectral features that are different from both FADH(.) and FAD(.-) . Such a conversion does not occur in wild-type EcPL. The chemical nature and formation mechanism of the atypical FAD radical in N378D mutant EcPL are discussed.
Collapse
Affiliation(s)
- Pavel Müller
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Klaus Brettel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Laszlo Grama
- Department of Biophysics, Medical School, University of Pecs, 12 str. Szigeti, 7624, Pecs, Hungary
| | - Miklos Nyitrai
- Department of Biophysics, Medical School, University of Pecs, 12 str. Szigeti, 7624, Pecs, Hungary
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, 12 str. Szigeti, 7624, Pecs, Hungary.
| |
Collapse
|
30
|
Cailliez F, Müller P, Firmino T, Pernot P, de la Lande A. Energetics of Photoinduced Charge Migration within the Tryptophan Tetrad of an Animal (6–4) Photolyase. J Am Chem Soc 2016; 138:1904-15. [DOI: 10.1021/jacs.5b10938] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fabien Cailliez
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Pavel Müller
- Institute
for Integrative Biology of the Cell (I2BC), CEA, CNRS, University
Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette
cedex, France
| | - Thiago Firmino
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Pascal Pernot
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Aurélien de la Lande
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
31
|
Firmino T, Mangaud E, Cailliez F, Devolder A, Mendive-Tapia D, Gatti F, Meier C, Desouter-Lecomte M, de la Lande A. Quantum effects in ultrafast electron transfers within cryptochromes. Phys Chem Chem Phys 2016; 18:21442-57. [DOI: 10.1039/c6cp02809h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cryptochromes and photolyases are flavoproteins that may undergo ultrafast charge separation upon electronic excitation of their flavin cofactors.
Collapse
Affiliation(s)
- Thiago Firmino
- Laboratoire de Chimie Physique
- CNRS
- Université Paris-Sud
- Université Paris Saclay
- Orsay F-91405
| | - Etienne Mangaud
- Laboratoire de Chimie Physique
- CNRS
- Université Paris-Sud
- Université Paris Saclay
- Orsay F-91405
| | - Fabien Cailliez
- Laboratoire de Chimie Physique
- CNRS
- Université Paris-Sud
- Université Paris Saclay
- Orsay F-91405
| | - Adrien Devolder
- Laboratoire de Chimie Physique
- CNRS
- Université Paris-Sud
- Université Paris Saclay
- Orsay F-91405
| | | | - Fabien Gatti
- CTMM
- Institut Charles Gerhardt UMR 5253
- CNRS/Université de Montpellier
- France
| | - Christoph Meier
- Laboratoire Collisions Agrégats Réactivité
- UMR 5589
- IRSAMC
- Université Toulouse III Paul Sabatier
- Toulouse
| | | | - Aurélien de la Lande
- Laboratoire de Chimie Physique
- CNRS
- Université Paris-Sud
- Université Paris Saclay
- Orsay F-91405
| |
Collapse
|
32
|
de la Lande A, Gillet N, Chen S, Salahub DR. Progress and challenges in simulating and understanding electron transfer in proteins. Arch Biochem Biophys 2015; 582:28-41. [PMID: 26116376 DOI: 10.1016/j.abb.2015.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 11/19/2022]
Abstract
This Review presents an overview of the most common numerical simulation approaches for the investigation of electron transfer (ET) in proteins. We try to highlight the merits of the different approaches but also the current limitations and challenges. The article is organized into three sections. Section 2 deals with direct simulation algorithms of charge migration in proteins. Section 3 summarizes the methods for testing the applicability of the Marcus theory for ET in proteins and for evaluating key thermodynamic quantities entering the reaction rates (reorganization energies and driving force). Recent studies interrogating the validity of the theory due to the presence of non-ergodic effects or of non-linear responses are also described. Section 4 focuses on the tunneling aspects of electron transfer. How can the electronic coupling between charge transfer states be evaluated by quantum chemistry approaches and rationalized? What interesting physics regarding the impact of protein dynamics on tunneling can be addressed? We will illustrate the different sections with examples taken from the literature to show what types of system are currently manageable with current methodologies. We also take care to recall what has been learned on the biophysics of ET within proteins thanks to the advent of atomistic simulations.
Collapse
Affiliation(s)
- Aurélien de la Lande
- Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris Sud. 15, av. Jean Perrin, 91405 Orsay, France.
| | - Natacha Gillet
- Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris Sud. 15, av. Jean Perrin, 91405 Orsay, France
| | - Shufeng Chen
- Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris Sud. 15, av. Jean Perrin, 91405 Orsay, France
| | - Dennis R Salahub
- Department of Chemistry, CMS - Centre for Molecular Simulation and IQST - Institute for Quantum Science and Technology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
33
|
Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1. Proc Natl Acad Sci U S A 2015; 112:9135-40. [PMID: 26106155 DOI: 10.1073/pnas.1504404112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptochromes in different evolutionary lineages act as either photoreceptors or light-independent transcription repressors. The flavin cofactor of both types of cryptochromes can be photoreduced in vitro by electron transportation via three evolutionarily conserved tryptophan residues known as the "Trp triad." It was hypothesized that Trp triad-dependent photoreduction leads directly to photoexcitation of cryptochrome photoreceptors. We tested this hypothesis by analyzing mutations of Arabidopsis cryptochrome 1 (CRY1) altered in each of the three Trp-triad tryptophan residues (W324, W377, and W400). Surprisingly, in contrast to a previous report all photoreduction-deficient Trp-triad mutations of CRY1 remained physiologically and biochemically active in Arabidopsis plants. ATP did not enhance rapid photoreduction of the wild-type CRY1, nor did it rescue the defective photoreduction of the CRY1(W324A) and CRY1(W400F) mutants that are photophysiologically active in vivo. The lack of correlation between rapid flavin photoreduction or the effect of ATP on the rapid flavin photoreduction and the in vivo photophysiological activities of plant cryptochromes argues that the Trp triad-dependent photoreduction is not required for the function of cryptochromes and that further efforts are needed to elucidate the photoexcitation mechanism of cryptochrome photoreceptors.
Collapse
|
34
|
Thöing C, Oldemeyer S, Kottke T. Microsecond Deprotonation of Aspartic Acid and Response of the α/β Subdomain Precede C-Terminal Signaling in the Blue Light Sensor Plant Cryptochrome. J Am Chem Soc 2015; 137:5990-9. [PMID: 25909499 DOI: 10.1021/jacs.5b01404] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant cryptochromes are photosensory receptors that regulate various central aspects of plant growth and development. These receptors consist of a photolyase homology region (PHR) carrying the oxidized flavin adenine dinucleotide (FAD) cofactor, and a cryptochrome C-terminal extension (CCT), which is essential for signaling. Absorption of blue/UVA light leads to formation of the FAD neutral radical as the likely signaling state, and ultimately activates the CCT. Little is known about the signal transfer from the flavin to the CCT. Here, we investigated the photoreaction of the PHR by time-resolved step-scan FT-IR spectroscopy complemented by UV-vis spectroscopy. The first spectrum at 500 ns shows major contributions from the FAD anion radical, which is demonstrated to then be protonated by aspartic acid 396 to the neutral radical within 3.5 μs. The analysis revealed the existence of three intermediates characterized by changes in secondary structure. A marked loss of β-sheet structure is observed in the second intermediate evolving with a time constant of 500 μs. This change is accompanied by a conversion of a tyrosine residue, which is identified as the formation of a tyrosine radical in the UV-vis. The only β-sheet in the PHR is located within the α/β subdomain, ∼25 Å away from the flavin. This subdomain has been previously attributed a role as a putative antenna binding site, but is now suggested to have evolved to a component in the signaling of plant cryptochromes by mediating the interaction with the CCT.
Collapse
Affiliation(s)
- Christian Thöing
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
35
|
Narth C, Gillet N, Cailliez F, Lévy B, de la Lande A. Electron transfer, decoherence, and protein dynamics: insights from atomistic simulations. Acc Chem Res 2015; 48:1090-7. [PMID: 25730126 DOI: 10.1021/ar5002796] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron transfer in biological systems drives the processes of life. From cellular respiration to photosynthesis and enzymatic catalysis, electron transfers (ET) are chemical processes on which essential biological functions rely. Over the last 40 years, scientists have sought understanding of how these essential processes function in biology. One important breakthrough was the discovery that Marcus theory (MT) of electron transfer is applicable to biological systems. Chemists have experimentally collected both the reorganization energies (λ) and the driving forces (ΔG°), two parameters of Marcus theory, for a large variety of ET processes in proteins. At the same time, theoretical chemists have developed computational approaches that rely on molecular dynamics and quantum chemistry calculations to access numerical estimates of λ and ΔG°. Yet another crucial piece in determining the rate of an electron transfer is the electronic coupling between the initial and final electronic wave functions. This is an important prefactor in the nonadiabatic rate expression, since it reflects the probability that an electron tunnels from the electron donor to the acceptor through the intervening medium. The fact that a protein matrix supports electron tunneling much more efficiently than vacuum is now well documented, both experimentally and theoretically. Meanwhile, many chemists have provided examples of the rich physical chemistry that can be induced by protein dynamics. This Account describes our studies of the dynamical effects on electron tunneling. We present our analysis of two examples of natural biological systems through MD simulations and tunneling pathway analyses. Through these examples, we show that protein dynamics sustain efficient tunneling. Second, we introduce two time scales: τcoh and τFC. The former characterizes how fast the electronic coupling varies with nuclear vibrations (which cause dephasing). The latter reflects the time taken by the system to leave the crossing region. In the framework of open quantum systems, τFC is a short time approximation of the characteristic decoherence time of the electronic subsystem in interaction with its nuclear environment. The comparison of the respective values of τcoh and τFC allows us to probe the occurrence of non-Condon effects. We use ab initio MD simulations to analyze how decoherence appears in several biological cofactors. We conclude that we cannot account for its order of magnitude by considering only the atoms or bonds directly concerned with the transfer. Decoherence results from contributions from all atoms of the system appearing with a time delay that increases with the distance from the primarily concerned atoms or bonds. The delay and magnitude of the contributions depend on the chemical nature of the system. Finally, we present recent developments based on constrained DFT for efficient and accurate evaluations of the electronic coupling in ab initio MD simulations. These are promising methods to study the subtle fluctuations of the electronic coupling and the mechanisms of electronic decoherence in biological systems.
Collapse
Affiliation(s)
- Christophe Narth
- Laboratoire
de Chimie Théorique, CNRS UMR 7616, Université Pierre et Marie Curie, case courrier 137. 4, Place Jussieu, 75252 Cedex 05 Paris, France
| | - Natacha Gillet
- Laboratoire
de Chimie-Physique, CNRS UMR 8000, Université Paris Sud, Bâtiment
349 - Campus d’Orsay. 15, avenue Jean Perrin, 91405 Cedex Orsay, France
| | - Fabien Cailliez
- Laboratoire
de Chimie-Physique, CNRS UMR 8000, Université Paris Sud, Bâtiment
349 - Campus d’Orsay. 15, avenue Jean Perrin, 91405 Cedex Orsay, France
| | - Bernard Lévy
- Laboratoire
de Chimie-Physique, CNRS UMR 8000, Université Paris Sud, Bâtiment
349 - Campus d’Orsay. 15, avenue Jean Perrin, 91405 Cedex Orsay, France
| | - Aurélien de la Lande
- Laboratoire
de Chimie-Physique, CNRS UMR 8000, Université Paris Sud, Bâtiment
349 - Campus d’Orsay. 15, avenue Jean Perrin, 91405 Cedex Orsay, France
| |
Collapse
|
36
|
QM/MM calculations with deMon2k. Molecules 2015; 20:4780-812. [PMID: 25786164 PMCID: PMC6272552 DOI: 10.3390/molecules20034780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
The density functional code deMon2k employs a fitted density throughout (Auxiliary Density Functional Theory), which offers a great speed advantage without sacrificing necessary accuracy. Powerful Quantum Mechanical/Molecular Mechanical (QM/MM) approaches are reviewed. Following an overview of the basic features of deMon2k that make it efficient while retaining accuracy, three QM/MM implementations are compared and contrasted. In the first, deMon2k is interfaced with the CHARMM MM code (CHARMM-deMon2k); in the second MM is coded directly within the deMon2k software; and in the third the Chemistry in Ruby (Cuby) wrapper is used to drive the calculations. Cuby is also used in the context of constrained-DFT/MM calculations. Each of these implementations is described briefly; pros and cons are discussed and a few recent applications are described briefly. Applications include solvated ions and biomolecules, polyglutamine peptides important in polyQ neurodegenerative diseases, copper monooxygenases and ultra-rapid electron transfer in cryptochromes.
Collapse
|
37
|
Christie JM, Blackwood L, Petersen J, Sullivan S. Plant flavoprotein photoreceptors. PLANT & CELL PHYSIOLOGY 2015; 56:401-13. [PMID: 25516569 PMCID: PMC4357641 DOI: 10.1093/pcp/pcu196] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/02/2014] [Indexed: 05/18/2023]
Abstract
Plants depend on the surrounding light environment to direct their growth. Blue light (300-500 nm) in particular acts to promote a wide variety of photomorphogenic responses including seedling establishment, phototropism and circadian clock regulation. Several different classes of flavin-based photoreceptors have been identified that mediate the effects of blue light in the dicotyledonous genetic model Arabidopsis thaliana. These include the cryptochromes, the phototropins and members of the Zeitlupe family. In this review, we discuss recent advances, which contribute to our understanding of how these photosensory systems are activated by blue light and how they initiate signaling to regulate diverse aspects of plant development.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lisa Blackwood
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jan Petersen
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stuart Sullivan
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
38
|
Lüdemann G, Solov’yov IA, Kubař T, Elstner M. Solvent Driving Force Ensures Fast Formation of a Persistent and Well-Separated Radical Pair in Plant Cryptochrome. J Am Chem Soc 2015; 137:1147-56. [DOI: 10.1021/ja510550g] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gesa Lüdemann
- Department
for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Ilia A. Solov’yov
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Tomáš Kubař
- Department
for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Department
for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| |
Collapse
|
39
|
Liu XY, Long YT, Tian H. New insight into photo-induced electron transfer with a simple ubiquinone-based triphenylamine model. RSC Adv 2015. [DOI: 10.1039/c5ra09324d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A ubiquinone-based triphenylamine system was designed as a simple model to study the photo-induced electron transfer (PET).
Collapse
Affiliation(s)
- Xiao-Yuan Liu
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
40
|
Müller P, Bouly JP. Searching for the mechanism of signalling by plant photoreceptor cryptochrome. FEBS Lett 2014; 589:189-92. [DOI: 10.1016/j.febslet.2014.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 12/01/2022]
|
41
|
Hense A, Herman E, Oldemeyer S, Kottke T. Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome. J Biol Chem 2014; 290:1743-51. [PMID: 25471375 DOI: 10.1074/jbc.m114.606327] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant cryptochromes regulate the circadian rhythm, flowering time, and photomorphogenesis in higher plants as responses to blue light. In the dark, these photoreceptors bind oxidized FAD in the photolyase homology region (PHR). Upon blue light absorption, FAD is converted to the neutral radical state, the likely signaling state, by electron transfer via a conserved tryptophan triad and proton transfer from a nearby aspartic acid. Here we demonstrate, by infrared and time-resolved UV-visible spectroscopy on the PHR domain, that replacement of the aspartic acid Asp-396 with cysteine prevents proton transfer. The lifetime of the radical is decreased by 6 orders of magnitude. This short lifetime does not permit to drive conformational changes in the C-terminal extension that have been associated with signal transduction. Only in the presence of ATP do both the wild type and mutant form a long-lived radical state. However, in the mutant, an anion radical is formed instead of the neutral radical, as found previously in animal type I cryptochromes. Infrared spectroscopic experiments demonstrate that the light-induced conformational changes of the PHR domain are conserved in the mutant despite the lack of proton transfer. These changes are not detected in the photoreduction of the non-photosensory d-amino acid oxidase to the anion radical. In conclusion, formation of the anion radical is sufficient to generate a protein response in plant cryptochromes. Moreover, the intrinsic proton transfer is required for stabilization of the signaling state in the absence of ATP.
Collapse
Affiliation(s)
- Anika Hense
- From the Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Elena Herman
- From the Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Sabine Oldemeyer
- From the Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Tilman Kottke
- From the Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
42
|
Engelhard C, Wang X, Robles D, Moldt J, Essen LO, Batschauer A, Bittl R, Ahmad M. Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways. THE PLANT CELL 2014; 26:4519-31. [PMID: 25428980 PMCID: PMC4277212 DOI: 10.1105/tpc.114.129809] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cryptochromes are blue light receptors with multiple signaling roles in plants and animals. Plant cryptochrome (cry1 and cry2) biological activity has been linked to flavin photoreduction via an electron transport chain comprising three evolutionarily conserved tryptophan residues known as the Trp triad. Recently, it has been reported that cry2 Trp triad mutants, which fail to undergo photoreduction in vitro, nonetheless show biological activity in vivo, raising the possibility of alternate signaling pathways. Here, we show that Arabidopsis thaliana cry2 proteins containing Trp triad mutations indeed undergo robust photoreduction in living cultured insect cells. UV/Vis and electron paramagnetic resonance spectroscopy resolves the discrepancy between in vivo and in vitro photochemical activity, as small metabolites, including NADPH, NADH, and ATP, were found to promote cry photoreduction even in mutants lacking the classic Trp triad electron transfer chain. These metabolites facilitate alternate electron transfer pathways and increase light-induced radical pair formation. We conclude that cryptochrome activation is consistent with a mechanism of light-induced electron transfer followed by flavin photoreduction in vivo. We further conclude that in vivo modulation by cellular compounds represents a feature of the cryptochrome signaling mechanism that has important consequences for light responsivity and activation.
Collapse
Affiliation(s)
| | - Xuecong Wang
- University of Paris VI, UMR 8256 (B2A), IBPS, 75005 Paris, France
| | - David Robles
- University of Paris VI, UMR 8256 (B2A), IBPS, 75005 Paris, France
| | - Julia Moldt
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University, 35032 Marburg, Germany
| | - Lars-Oliver Essen
- Biomedical Research Centre/Faculty of Chemistry, Philipps-University, 35032 Marburg, Germany
| | - Alfred Batschauer
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University, 35032 Marburg, Germany
| | - Robert Bittl
- Fachbereich Physik, Free University, 14195 Berlin, Germany
| | - Margaret Ahmad
- University of Paris VI, UMR 8256 (B2A), IBPS, 75005 Paris, France Xavier University, Cincinatti, Ohio 45207
| |
Collapse
|