1
|
Zhang X, Chang M, Ni T, Zhang X, Zhao Q, Li W, Li T. Dehydrogenative [4 + 2] Annulation of 1-Indanones with Alkynes Enabled by In-Situ-Generated Nickel Hydride. Org Lett 2024; 26:6619-6624. [PMID: 39072679 DOI: 10.1021/acs.orglett.4c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A practical and effective nickel-catalyzed dehydrogenative [4 + 2] annulation of 1-indanones with alkynes was reported. In this protocol, nickel-catalyzed desaturation of 1-indanones and nickel hydride catalyzed coupling with alkynes were first incorporated. A cyclopentadiene-type nickel hydride species was generated in situ via β-H elimination, and they subsequently reacted with a wide variety of alkynes to afford various benzo[a]fluorenone derivatives in good yields and regioselectivity.
Collapse
Affiliation(s)
- Xu Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Mengfan Chang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Tongtong Ni
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xuhan Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qiang Zhao
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wenguang Li
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ting Li
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
2
|
McWilliams SF, Mercado BQ, MacLeod KC, Fataftah MS, Tarrago M, Wang X, Bill E, Ye S, Holland PL. Dynamic effects on ligand field from rapid hydride motion in an iron(ii) dimer with an S = 3 ground state. Chem Sci 2023; 14:2303-2312. [PMID: 36873832 PMCID: PMC9977447 DOI: 10.1039/d2sc06412j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Hydride complexes are important in catalysis and in iron-sulfur enzymes like nitrogenase, but the impact of hydride mobility on local iron spin states has been underexplored. We describe studies of a dimeric diiron(ii) hydride complex using X-ray and neutron crystallography, Mössbauer spectroscopy, magnetism, DFT, and ab initio calculations, which give insight into the dynamics and the electronic structure brought about by the hydrides. The two iron sites in the dimer have differing square-planar (intermediate-spin) and tetrahedral (high-spin) iron geometries, which are distinguished only by the hydride positions. These are strongly coupled to give an S total = 3 ground state with substantial magnetic anisotropy, and the merits of both localized and delocalized spin models are discussed. The dynamic nature of the sites is dependent on crystal packing, as shown by changes during a phase transformation that occurs near 160 K. The change in dynamics of the hydride motion leads to insight into its influence on the electronic structure. The accumulated data indicate that the two sites can trade geometries by rotating the hydrides, at a rate that is rapid above the phase transition temperature but slow below it. This small movement of the hydrides causes large changes in the ligand field because they are strong-field ligands. This suggests that hydrides could be useful in catalysis not only due to their reactivity, but also due to their ability to rapidly modulate the local electronic structure and spin states at metal sites.
Collapse
Affiliation(s)
| | | | - K Cory MacLeod
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Majed S Fataftah
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Maxime Tarrago
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
| | - Xiaoping Wang
- Neutron Sciences Directorate, Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
| | - Shengfa Ye
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | | |
Collapse
|
3
|
Gu NX, Oyala PH, Peters JC. H 2 Evolution from a Thiolate-Bound Ni(III) Hydride. J Am Chem Soc 2020; 142:7827-7835. [PMID: 32249575 DOI: 10.1021/jacs.0c00712] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Terminal NiIII hydrides are proposed intermediates in proton reduction catalyzed by both molecular electrocatalysts and metalloenzymes, but well-defined examples of paramagnetic nickel hydride complexes are largely limited to bridging hydrides. Herein, we report the synthesis of an S = 1/2, terminally bound thiolate-NiIII-H complex. This species and its terminal hydride ligand in particular have been thoroughly characterized by vibrational and EPR techniques, including pulse EPR studies. Corresponding DFT calculations suggest appreciable spin leakage onto the thiolate ligand. The hyperfine coupling to the terminal hydride ligand of the thiolate-NiIII-H species is comparable to that of the hydride ligand proposed for the Ni-C hydrogenase intermediate (NiIII-H-FeII). Upon warming, the featured thiolate-NiIII-H species undergoes bimolecular reductive elimination of H2. Associated kinetic studies are discussed and compared with a structurally related FeIII-H species that has also recently been reported to undergo bimolecular H-H coupling.
Collapse
Affiliation(s)
- Nina X Gu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Arnett CH, Agapie T. Activation of an Open Shell, Carbyne-Bridged Diiron Complex Toward Binding of Dinitrogen. J Am Chem Soc 2020; 142:10059-10068. [DOI: 10.1021/jacs.0c01896] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Charles H. Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Hickey AK, Greer SM, Valdez-Moreira JA, Lutz SA, Pink M, DeGayner JA, Harris TD, Hill S, Telser J, Smith JM. A Dimeric Hydride-Bridged Complex with Geometrically Distinct Iron Centers Giving Rise to an S = 3 Ground State. J Am Chem Soc 2019; 141:11970-11975. [PMID: 31283232 DOI: 10.1021/jacs.9b04389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural and spectroscopic characterization of the dimeric iron hydride complex [Ph2B(tBuIm)2FeH]2 reveals an unusual structure in which a tetrahedral iron(II) site (S = 2) is connected to a square planar iron(II) site (S = 1) by two bridging hydride ligands. Magnetic susceptibility reveals strong ferromagnetic coupling between iron centers, with a coupling constant of J = +110(12) cm-1, to give an S = 3 ground state. High-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy confirms this model. A qualitative molecular orbital analysis of the electronic structure, as supported by electronic structure calculations, reveals that the observed spin configuration results from the orthogonal alignment of two geometrically distinct four-coordinate iron fragments held together by highly covalent hydride ligands.
Collapse
Affiliation(s)
- Anne K Hickey
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Samuel M Greer
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Juan A Valdez-Moreira
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Sean A Lutz
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Maren Pink
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Jordan A DeGayner
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - T David Harris
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Stephen Hill
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences , Roosevelt University , Chicago , Illinois 60605 , United States
| | - Jeremy M Smith
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
6
|
Xue B, Sun H, Ren S, Li X, Fuhr O. Vinyl/Phenyl Exchange Reaction within Vinyl Nickel Complexes Bearing Chelate [P, S]-Ligands. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjing Xue
- School
of Chemistry and Chemical Engineering, Key Laboratory of Special Functional
Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250199 Jinan, P. R. China
| | - Hongjian Sun
- School
of Chemistry and Chemical Engineering, Key Laboratory of Special Functional
Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250199 Jinan, P. R. China
| | - Shishuai Ren
- School
of Chemistry and Chemical Engineering, Key Laboratory of Special Functional
Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250199 Jinan, P. R. China
| | - Xiaoyan Li
- School
of Chemistry and Chemical Engineering, Key Laboratory of Special Functional
Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250199 Jinan, P. R. China
| | - Olaf Fuhr
- Institut
für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility
(KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Synthesis, Structure and Reactivity of Cyclometalated Nickel(II) Complexes: A Review and Perspective. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2016. [DOI: 10.1007/s40010-016-0289-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Affiliation(s)
- Nathan A. Eberhardt
- Department
of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department
of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
9
|
Chakraborty U, Urban F, Mühldorf B, Rebreyend C, de Bruin B, van Velzen N, Harder S, Wolf R. Accessing the CpArNi(I) Synthon: Reactions with N-Heterocyclic Carbenes, TEMPO, Sulfur, and Selenium. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00084] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Uttam Chakraborty
- Institute
of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Franziska Urban
- Institute
of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Bernd Mühldorf
- Institute
of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Christophe Rebreyend
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| | - Niels van Velzen
- Stratingh Institute for Chemistry Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sjoerd Harder
- Stratingh Institute for Chemistry Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Chair
of Inorganic and Organometallic Chemistry University of Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Robert Wolf
- Institute
of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
10
|
Takashita K, Matsumoto T, Yatabe T, Nakai H, Suzuki M, Ogo S. A Water-soluble Ni Dihydrido Complex That Reduces O2 to H2O in Water. CHEM LETT 2016. [DOI: 10.1246/cl.150935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Keisuke Takashita
- Center for Small Molecule Energy, Kyushu University
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| | - Takahiro Matsumoto
- Center for Small Molecule Energy, Kyushu University
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| | - Takeshi Yatabe
- Center for Small Molecule Energy, Kyushu University
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| | - Hidetaka Nakai
- Center for Small Molecule Energy, Kyushu University
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| | - Masatatsu Suzuki
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| | - Seiji Ogo
- Center for Small Molecule Energy, Kyushu University
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| |
Collapse
|
11
|
Zhou H, Sun H, Zheng T, Zhang S, Li X. Synthesis of Vinylnickel and Nickelacyclopropane Complexes Containing a Chelate [P,Se]-Ligand. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Yao SA, Martin-Diaconescu V, Infante I, Lancaster KM, Götz AW, DeBeer S, Berry JF. Electronic Structure of Ni2E2 Complexes (E = S, Se, Te) and a Global Analysis of M2E2 Compounds: A Case for Quantized E2n– Oxidation Levels with n = 2, 3, or 4. J Am Chem Soc 2015; 137:4993-5011. [DOI: 10.1021/ja511607j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shu A. Yao
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Vlad Martin-Diaconescu
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470, Mülheim/Ruhr, Germany
| | - Ivan Infante
- Kimika Fakultatea,
Euskal Herriko Unibertsitatea, and Donostia International Physics
Center (DIPC), P. K. 1072, 20080 Donostia, Euskadi, Spain
| | - Kyle M. Lancaster
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Andreas W. Götz
- San
Diego Supercomputer Center, University of California—San Diego, La
Jolla, California 92093, United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470, Mülheim/Ruhr, Germany
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - John F. Berry
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|