1
|
Li JQ, Hu JY, Cheng J. Water effect on the band edges of anatase TiO 2 surfaces: A theoretical study on charge migration across surface heterojunctions and facet-dependent photoactivity. Phys Chem Chem Phys 2023; 25:29143-29154. [PMID: 37869989 DOI: 10.1039/d3cp03662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The charge migration mechanism across the surface heterojunction constructed on an anatase TiO2 nanocrystal is still under debate. To solve this longstanding question, we present a systematic study of the band edges (vs. standard hydrogen electrode, SHE) of aqueous TiO2 interfaces with anatase (101), (100) and (001) surfaces, using a combination of density functional theory-based molecular dynamics (DFTMD) and efficient computational SHE (cSHE) methods. Our calculations show that the conduction band minimum (CBM) of the (101) surface is lower than that of (001) and (100) surfaces, which is thermodynamically favorable for electrons migrating to the (101) surface through the surface heterojunction, while the hole preferentially accumulates on the (100) surface due to its highest valence band minimum (VBM). In addition, we qualitatively explore the facet-dependent photocatalytic activity of anatase TiO2. Due to the possession of both the beneficial atomic structure (with 100% undercoordinated Ti5c atoms at the surface) and electronic structure (more strongly oxidizing holes in the VBM and efficient electron-hole spatial separation separation), the (001) surface exhibits the most efficient photocatalytic performance for water oxidation. Furthermore, it is confirmed that the use of simplified theoretical models neglecting the detailed atomic structures of water at the aqueous interface is inadequate to predict the band alignment of semiconductors relative to water redox potentials, so that it may result in substantial errors in evaluating the photocatalytic performance of materials to be used for water splitting.
Collapse
Affiliation(s)
- Jie-Qiong Li
- State Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jin-Yuan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
In situ electrochemical Raman spectroscopy and ab initio molecular dynamics study of interfacial water on a single-crystal surface. Nat Protoc 2023; 18:883-901. [PMID: 36599962 DOI: 10.1038/s41596-022-00782-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023]
Abstract
The dynamics and chemistry of interfacial water are essential components of electrocatalysis because the decomposition and formation of water molecules could dictate the protonation and deprotonation processes on the catalyst surface. However, it is notoriously difficult to probe interfacial water owing to its location between two condensed phases, as well as the presence of external bias potentials and electrochemically induced reaction intermediates. An atomically flat single-crystal surface could offer an attractive platform to resolve the internal structure of interfacial water if advanced characterization tools are developed. To this end, here we report a protocol based on the combination of in situ Raman spectroscopy and ab initio molecular dynamics (AIMD) simulations to unravel the directional molecular features of interfacial water. We present the procedures to prepare single-crystal electrodes, construct a Raman enhancement mode with shell-isolated nanoparticle, remove impurities, eliminate the perturbation from bulk water and dislodge the hydrogen bubbles during in situ electrochemical Raman experiments. The combination of the spectroscopic measurements with AIMD simulation results provides a roadmap to decipher the potential-dependent molecular orientation of water at the interface. We have prepared a detailed guideline for the application of combined in situ Raman and AIMD techniques; this procedure may take a few minutes to several days to generate results and is applicable to a variety of disciplines ranging from surface science to energy storage to biology.
Collapse
|
3
|
Yu VWZ, Govoni M. GPU Acceleration of Large-Scale Full-Frequency GW Calculations. J Chem Theory Comput 2022; 18:4690-4707. [PMID: 35913080 DOI: 10.1021/acs.jctc.2c00241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many-body perturbation theory is a powerful method to simulate electronic excitations in molecules and materials starting from the output of density functional theory calculations. By implementing the theory efficiently so as to run at scale on the latest leadership high-performance computing systems it is possible to extend the scope of GW calculations. We present a GPU acceleration study of the full-frequency GW method as implemented in the WEST code. Excellent performance is achieved through the use of (i) optimized GPU libraries, e.g., cuFFT and cuBLAS, (ii) a hierarchical parallelization strategy that minimizes CPU-CPU, CPU-GPU, and GPU-GPU data transfer operations, (iii) nonblocking MPI communications that overlap with GPU computations, and (iv) mixed precision in selected portions of the code. A series of performance benchmarks has been carried out on leadership high-performance computing systems, showing a substantial speedup of the GPU-accelerated version of WEST with respect to its CPU version. Good strong and weak scaling is demonstrated using up to 25 920 GPUs. Finally, we showcase the capability of the GPU version of WEST for large-scale, full-frequency GW calculations of realistic systems, e.g., a nanostructure, an interface, and a defect, comprising up to 10 368 valence electrons.
Collapse
Affiliation(s)
- Victor Wen-Zhe Yu
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Marco Govoni
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Sundararaman R, Vigil-Fowler D, Schwarz K. Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface. Chem Rev 2022; 122:10651-10674. [PMID: 35522135 PMCID: PMC10127457 DOI: 10.1021/acs.chemrev.1c00800] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Atomistic simulation of the electrochemical double layer is an ambitious undertaking, requiring quantum mechanical description of electrons, phase space sampling of liquid electrolytes, and equilibration of electrolytes over nanosecond time scales. All models of electrochemistry make different trade-offs in the approximation of electrons and atomic configurations, from the extremes of classical molecular dynamics of a complete interface with point-charge atoms to correlated electronic structure methods of a single electrode configuration with no dynamics or electrolyte. Here, we review the spectrum of simulation techniques suitable for electrochemistry, focusing on the key approximations and accuracy considerations for each technique. We discuss promising approaches, such as enhanced sampling techniques for atomic configurations and computationally efficient beyond density functional theory (DFT) electronic methods, that will push electrochemical simulations beyond the present frontier.
Collapse
Affiliation(s)
- Ravishankar Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Derek Vigil-Fowler
- Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kathleen Schwarz
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
5
|
Xiao Y, Vanka S, Pham TA, Dong WJ, Sun Y, Liu X, Navid IA, Varley JB, Hajibabaei H, Hamann TW, Ogitsu T, Mi Z. Crystallographic Effects of GaN Nanostructures in Photoelectrochemical Reaction. NANO LETTERS 2022; 22:2236-2243. [PMID: 35258977 DOI: 10.1021/acs.nanolett.1c04220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tuning the surface structure of the photoelectrode provides one of the most effective ways to address the critical challenges in artificial photosynthesis, such as efficiency, stability, and product selectivity, for which gallium nitride (GaN) nanowires have shown great promise. In the GaN wurtzite crystal structure, polar, semipolar, and nonpolar planes coexist and exhibit very different structural, electronic, and chemical properties. Here, through a comprehensive study of the photoelectrochemical performance of GaN photocathodes in the form of films and nanowires with controlled surface polarities we show that significant photoelectrochemical activity can be observed when the nonpolar surfaces are exposed in the electrolyte, whereas little or no activity is measured from the GaN polar c-plane surfaces. The atomic origin of this fundamental difference is further revealed through density functional theory calculations. This study provides guideline on crystal facet engineering of metal-nitride photo(electro)catalysts for a broad range of artificial photosynthesis chemical reactions.
Collapse
Affiliation(s)
- Yixin Xiao
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Srinivas Vanka
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Tuan Anh Pham
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Wan Jae Dong
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Yi Sun
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Xianhe Liu
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Ishtiaque Ahmed Navid
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Joel B Varley
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Hamed Hajibabaei
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Thomas W Hamann
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Tadashi Ogitsu
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Zetian Mi
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Opoku F, Osei-Bonsu Oppong S, Aniagyei A, Akoto O, Adimado AA. Boosting the photocatalytic H 2 evolution activity of type-II g-GaN/Sc 2CO 2 van der Waals heterostructure using applied biaxial strain and external electric field. RSC Adv 2022; 12:7391-7402. [PMID: 35424662 PMCID: PMC8982186 DOI: 10.1039/d2ra00419d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/26/2022] [Indexed: 01/17/2023] Open
Abstract
Two-dimensional (2D) van der Waals (vdW) heterostructures are a new class of materials with highly tunable bandgap transition type, bandgap energy and band alignment. Herein, we have designed a novel 2D g-GaN/Sc2CO2 heterostructure as a potential solar-driven photocatalyst for the water splitting process and investigate its catalytic stability, interfacial interactions, and optical and electronic properties, as well as the effects of applying an electric field and biaxial strain using first-principles calculation. The calculated lattice mismatch and binding energy showed that g-GaN and Sc2CO2 are in contact and may form a stable vdW heterostructure. Ab initio molecular dynamics and phonon dispersion simulations show thermal and dynamic stability. g-GaN/Sc2CO2 has an indirect bandgap energy with appropriate type-II band alignment relative to the water redox potentials. Meanwhile, the interfacial charge transfer from g-GaN to Sc2CO2 can effectively separate electron-hole pairs. Moreover, a potential drop of 3.78 eV is observed across the interface, inducing a built-in electric field pointing from g-GaN to Sc2CO2. The heterostructure shows improved visible-light optical absorption compared to the isolated g-GaN and Sc2CO2 monolayers. Our study demonstrates that tunable electronic and structural properties can be realised in the g-GaN/Sc2CO2 heterostructure by varying the electric field and biaxial strain. In particular, the compressive strain and negative electric field are more effective for promoting hydrogen production performance. Since it is challenging to tune the electric field and biaxial strain experimentally, our research provides strategies to boost the performance of MXene-based heterojunction photocatalysts in solar harvesting and optoelectronic devices.
Collapse
Affiliation(s)
- Francis Opoku
- Department of Chemistry, Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | | | - Albert Aniagyei
- Department of Basic Sciences, University of Health and Allied Sciences Ho Ghana
| | - Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Anthony Apeke Adimado
- Department of Chemistry, Kwame Nkrumah University of Science and Technology Kumasi Ghana
| |
Collapse
|
7
|
Peterson EA, Debela TT, Gomoro GM, Neaton JB, Asres GA. Electronic structure of strain-tunable Janus WSSe–ZnO heterostructures from first-principles. RSC Adv 2022; 12:31303-31316. [PMID: 36348994 PMCID: PMC9623559 DOI: 10.1039/d2ra05533c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The electronic structure of semiconducting 2D materials such as monolayer transition metal dichalcogenides (TMDs) are known to be tunable via environment and external fields, and van der Waals (vdW) heterostructures consisting of stacks of distinct types of 2D materials offer the possibility to further tune and optimize the electronic properties of 2D materials. In this work, we use density functional theory (DFT) calculations to calculate the structure and electronic properties of a vdW heterostructure of Janus monolayer WSSe with monolayer ZnO, both of which possess out of plane dipole moments. The effects of alignment, biaxial and uniaxial strain, orientation, and electric field on dipole moments and band edge energies of this heterostructure are calculated and examined. We find that the out of plane dipole moment of the ZnO monolayer is highly sensitive to strain, leading to the broad tunability of the heterostructure band edge energies over a range of experimentally-relevant strains. The use of strain-tunable 2D materials to control band offsets and alignment is a general strategy applicable to other vdW heterostructures, one that may be advantageous in the context of clean energy applications, including photocatalytic applications, and beyond. Using strain engineering to optimize novel heterostructure materials to produce hydrogen from water.![]()
Collapse
Affiliation(s)
- E. A. Peterson
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - T. T. Debela
- Institute for Application of Advanced Materials, Jeonju University, Conju, Chonbuk 55069, Republic of Korea
| | - G. M. Gomoro
- Faculty of Engineering and Technology, Mechanical Engineering Department, Assosa University, Assosa, Ethiopia
| | - J. B. Neaton
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Kavli Energy Nanosciences Institute, Berkeley, CA 94720, USA
| | - G. A. Asres
- Center for Materials Engineering, Addis Ababa Institute of Technology, Addis Ababa University, School of Multidisciplinary Engineering, Addis Ababa, 1000, Ethiopia
| |
Collapse
|
8
|
Yang X, Wärnå JP, Wang J, Zhang P, Luo W, Ahuja R. Enhanced overall water splitting under visible light of MoSSe∣WSSe heterojunction by lateral interfacial engineering. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Probing the electronic properties of the electrified silicon/water interface by combining simulations and experiments. Proc Natl Acad Sci U S A 2021; 118:2114929118. [PMID: 34750271 DOI: 10.1073/pnas.2114929118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Silicon (Si) is broadly used in electrochemical and photoelectrochemical devices, where the capacitive and Faradaic reactions at the Si/water interfaces are critical for signal transduction or noise generation. However, probing the electrified Si/water interface at the microscopic level remains a challenging task. Here we focus on hydrogenated Si surfaces in contact with water, relevant to transient electronics and photoelectrochemical modulation of biological cells and tissues. We show that by carrying out first-principles molecular dynamics simulations of the Si(100)/water interface in the presence of an electric field we can realistically correlate the computed flat-band potential and tunneling current images at the interface with experimentally measured capacitive and Faradaic currents. Specifically, we validate our simulations in the presence of bias by performing pulsed chronoamperometry measurements on Si wafers in solution. Consistent with prior experiments, our measurements and simulations indicate the presence of voltage-dependent capacitive currents at the interface. We also find that Faradaic currents are weakly dependent on the applied bias, which we relate to surface defects present in newly prepared samples.
Collapse
|
10
|
Uematsu Y. Electrification of water interface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33. [PMID: 34280896 DOI: 10.1088/1361-648x/ac15d5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/19/2021] [Indexed: 05/04/2023]
Abstract
The surface charge of a water interface determines many fundamental processes in physical chemistry and interface science, and it has been intensively studied for over a hundred years. We summarize experimental methods to characterize the surface charge densities developed so far: electrokinetics, double-layer force measurements, potentiometric titration, surface-sensitive nonlinear spectroscopy, and surface-sensitive mass spectrometry. Then, we elucidate physical ion adsorption and chemical electrification as examples of electrification mechanisms. In the end, novel effects on surface electrification are discussed in detail. We believe that this clear overview of state of the art in a charged water interface will surely help the fundamental progress of physics and chemistry at interfaces in the future.
Collapse
Affiliation(s)
- Yuki Uematsu
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Park H, Lee SH. Review on Interfacial Bonding Mechanism of Functional Polymer Coating on Glass in Atomistic Modeling Perspective. Polymers (Basel) 2021; 13:polym13142244. [PMID: 34301000 PMCID: PMC8309365 DOI: 10.3390/polym13142244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
Atomistic modeling methods are successfully applied to understand interfacial interaction in nanoscale size and analyze adhesion mechanism in the organic-inorganic interface. In this paper, we review recent representative atomistic simulation works, focusing on the interfacial bonding, adhesion strength, and failure behavior between polymer film and silicate glass. The simulation works are described under two categories, namely non-bonded and bonded interaction. In the works for non-bonded interaction, three main interactions, namely van der Waals interaction, polar interaction, and hydrogen bonds, are investigated, and the contributions to interfacial adhesion energy are analyzed. It is revealed that the most dominant interaction for adhesion is hydrogen bonding, but flexibility of the polymer film and modes of adhesion measurement test do affect adhesion and failure behavior. In the case of bonded interactions, the mechanism of covalent silane bond formation through condensation and hydrolysis process is reviewed, and surface reactivity, molecular density, and adhesion properties are calculated with an example of silane functionalized polymer. Besides interfacial interactions, effects of external conditions, such as surface morphology of the glass substrate and relative humidity on the adhesion and failure behavior, are presented, and modeling techniques developed for building interfacial system and calculating adhesion strengths are briefly introduced.
Collapse
|
12
|
A Review of Recent Developments in Molecular Dynamics Simulations of the Photoelectrochemical Water Splitting Process. Catalysts 2021. [DOI: 10.3390/catal11070807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In this review, we provide a short overview of the Molecular Dynamics (MD) method and how it can be used to model the water splitting process in photoelectrochemical hydrogen production. We cover classical non-reactive and reactive MD techniques as well as multiscale extensions combining classical MD with quantum chemical and continuum methods. Selected examples of MD investigations of various aqueous semiconductor interfaces with a special focus on TiO2 are discussed. Finally, we identify gaps in the current state-of-the-art where further developments will be needed for better utilization of MD techniques in the field of water splitting.
Collapse
|
13
|
Jia M, Zhang C, Cheng J. Origin of Asymmetric Electric Double Layers at Electrified Oxide/Electrolyte Interfaces. J Phys Chem Lett 2021; 12:4616-4622. [PMID: 33973792 PMCID: PMC8154876 DOI: 10.1021/acs.jpclett.1c00775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The structure of electric double layers (EDLs) dictates the chemistry and the physics of electrified interfaces, and the differential capacitance is the key property for characterizing EDLs. Here we develop a theoretical model for computing the differential Helmholtz capacitance CH of oxide-electrolyte interfaces using density functional theory-based finite-field molecular dynamics simulations. It is found that the dipole of interfacial adsorbed groups (i.e., water molecule, hydroxyl ion, and proton) at the electrified SnO2(110)/NaCl interfaces significantly modulates the double layer potential which leads to the asymmetric distribution of CH. We also find that the dissociative water adsorption prefers the inner sphere binding of counterions, which in turn leads to a higher Helmholtz capacitance, compared with that of the nondissociative case at the interface. This work provides a molecular interpretation of asymmetric EDLs seen experimentally in a range of metal oxides/hydroxides.
Collapse
Affiliation(s)
- Mei Jia
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| | - Chao Zhang
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvgen 1, P.O. Box 538, 75121 Uppsala, Sweden
| | - Jun Cheng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| |
Collapse
|
14
|
Vu TV, Vi VTT, Phuc HV, Nguyen CV, Poklonski NA, Duque CA, Rai DP, Hoi BD, Hieu NN. Electronic, optical, and thermoelectric properties of Janus In-based monochalcogenides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:225503. [PMID: 33784649 DOI: 10.1088/1361-648x/abf381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Inspired by the successfully experimental synthesis of Janus structures recently, we systematically study the electronic, optical, and electronic transport properties of Janus monolayers In2XY(X/Y= S, Se, Te withX≠Y) in the presence of a biaxial strain and electric field using density functional theory. Monolayers In2XYare dynamically and thermally stable at room temperature. At equilibrium, both In2STe and In2SeTe are direct semiconductors while In2SSe exhibits an indirect semiconducting behavior. The strain significantly alters the electronic structure of In2XYand their photocatalytic activity. Besides, the indirect-direct gap transitions can be found due to applied strain. The effect of the electric field on optical properties of In2XYis negligible. Meanwhile, the optical absorbance intensity of the Janus In2XYmonolayers is remarkably increased by compressive strain. Also, In2XYmonolayers exhibit very low lattice thermal conductivities resulting in a high figure of meritZT, which makes them potential candidates for room-temperature thermoelectric materials.
Collapse
Affiliation(s)
- Tuan V Vu
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Vo T T Vi
- Department of Physics, University of Education, Hue University, Hue 530000, Vietnam
| | - Huynh V Phuc
- Division of Theoretical Physics, Dong Thap University, Cao Lanh 870000, Vietnam
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi 100000, Vietnam
| | - N A Poklonski
- Department of Physics, Belarusian State University, Minsk 220030, Belarus
| | - C A Duque
- Instituto de Física, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - D P Rai
- Physical Sciences Research Center (PSRC), Department of Physics, Pachhunga University College, Mizoram University, Aizawl 796001, India
| | - Bui D Hoi
- Department of Physics, University of Education, Hue University, Hue 530000, Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
15
|
Phillips AW, Parameswaran R, Lichter E, Jeong J, Meng L, Burke M, Koehler K, Lee YV, Tian B. Gold-Decorated Silicon Nanowire Photocatalysts for Intracellular Production of Hydrogen Peroxide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15490-15500. [PMID: 33779140 DOI: 10.1021/acsami.0c23164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogen peroxide (H2O2) plays diverse biological roles, and its effects in part depend on its spatiotemporal presence, in both intra- and extracellular contexts. A full understanding of the physiological effects of H2O2 in both healthy and disease states is hampered by a lack of tools to controllably produce H2O2. Here, we address this issue by showing visible-light-induced production of exogenous H2O2 by free-standing, gold-decorated silicon nanowires internalized in human umbilical vein endothelial cells. We further show that the photocatalytic production of H2O2 is a general phenomenon of gold-silicon hybrid materials and is enhanced upon annealing.
Collapse
Affiliation(s)
- Andrew W Phillips
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ramya Parameswaran
- Medical Scientist Training Program, University of Chicago, Chicago, Illinois 60637, United States
- Department of Biophysical Sciences, University of Chicago, Chicago, Illinois 60637, United States
| | - Emma Lichter
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Junyoung Jeong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael Burke
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Kelliann Koehler
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Youjin V Lee
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Dong SS, Govoni M, Galli G. Machine learning dielectric screening for the simulation of excited state properties of molecules and materials. Chem Sci 2021; 12:4970-4980. [PMID: 34163744 PMCID: PMC8179553 DOI: 10.1039/d1sc00503k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
Accurate and efficient calculations of absorption spectra of molecules and materials are essential for the understanding and rational design of broad classes of systems. Solving the Bethe-Salpeter equation (BSE) for electron-hole pairs usually yields accurate predictions of absorption spectra, but it is computationally expensive, especially if thermal averages of spectra computed for multiple configurations are required. We present a method based on machine learning to evaluate a key quantity entering the definition of absorption spectra: the dielectric screening. We show that our approach yields a model for the screening that is transferable between multiple configurations sampled during first principles molecular dynamics simulations; hence it leads to a substantial improvement in the efficiency of calculations of finite temperature spectra. We obtained computational gains of one to two orders of magnitude for systems with 50 to 500 atoms, including liquids, solids, nanostructures, and solid/liquid interfaces. Importantly, the models of dielectric screening derived here may be used not only in the solution of the BSE but also in developing functionals for time-dependent density functional theory (TDDFT) calculations of homogeneous and heterogeneous systems. Overall, our work provides a strategy to combine machine learning with electronic structure calculations to accelerate first principles simulations of excited-state properties.
Collapse
Affiliation(s)
- Sijia S Dong
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory Lemont IL 60439 USA
- Pritzker School of Molecular Engineering, The University of Chicago Chicago IL 60637 USA
| | - Marco Govoni
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory Lemont IL 60439 USA
- Pritzker School of Molecular Engineering, The University of Chicago Chicago IL 60637 USA
| | - Giulia Galli
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory Lemont IL 60439 USA
- Pritzker School of Molecular Engineering, The University of Chicago Chicago IL 60637 USA
| |
Collapse
|
17
|
Rozsa VF, Galli G. Molecular Polarizabilities in Aqueous Systems from First-Principles. J Phys Chem B 2021; 125:2183-2192. [DOI: 10.1021/acs.jpcb.0c10732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Viktor F. Rozsa
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Chicago, Illinois 60439, United States
| |
Collapse
|
18
|
Idrees M, Nguyen CV, Bui HD, Ahmad I, Amin B. van der Waals heterostructures based on MSSe (M = Mo, W) and graphene-like GaN: enhanced optoelectronic and photocatalytic properties for water splitting. Phys Chem Chem Phys 2020; 22:20704-20711. [PMID: 32901640 DOI: 10.1039/d0cp03434g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The geometric structure, electronic, optical and photocatalytic properties of MSSe-g-GaN (M = Mo, W) van der Waals (vdW) heterostructures are investigated by performing first-principles calculations. We find that the MoSSe-g-GaN heterostructure exhibits type-II band alignment for all stacking patterns. While the WSSe-g-GaN heterostructure forms the type-II or type-I band alignment for the stacking model-I or model II, respectively. The average electrostatic potential shows that the potential of g-GaN is deeper than the MSSe monolayer, leading to the formation of an electrostatic field across the interface, causing the transfer of photogenerated electrons and holes. Efficient interfacial formation of interface and charge transfer reduce the work function of MSSe-g-GaN vdW heterostructures as compared to the constituent monolayer. The difference in the carrier mobility for electrons and holes suggests that these heterostructures could be utilized for hole/electron separation. Absorption spectra demonstrate that strong absorption from infrared to visible light in these vdW heterostructures can be achieved. Appropriate valence and conduction band edge positions with standard redox potentials provide enough force to drive the photogenerated electrons and holes to dissociate water into H+/H2 and O2/H2O at pH = 0.
Collapse
Affiliation(s)
- M Idrees
- Department of Physics, Hazara University, Mansehra 21300, Pakistan
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi 100000, Vietnam.
| | - H D Bui
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Iftikhar Ahmad
- Department of Physics, University of Malakand, Chakdara, 18800, Pakistan
| | - Bin Amin
- Department of Physics, Abbottabad Uniersity of Science and Technology, Abbottabad 22010, Pakistan.
| |
Collapse
|
19
|
Yao Y, Kanai Y. Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on SCAN meta-GGA functional. J Chem Phys 2020; 153:044114. [DOI: 10.1063/5.0012815] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yi Yao
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
20
|
Idrees M, Din HU, Rehman SU, Shafiq M, Saeed Y, Bui HD, Nguyen CV, Amin B. Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides. Phys Chem Chem Phys 2020; 22:10351-10359. [PMID: 32365147 DOI: 10.1039/d0cp01264e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vertical stacking of two-dimensional materials into layered van der Waals heterostructures has recently been considered as a promising candidate for photocatalytic and optoelectronic devices because it can combine the advantages of the individual 2D materials. Janus transition metal dichalcogenides (JTMDCs) have emerged as an appealing photocatalytic material due to the desirable electronic properties. Hence, in this work, we systematically investigate the geometric features, electronic properties, charge density difference, work function, band alignment and photocatalytic properties of ZnO-JTMDC heterostructures using first-principles calculations. Due to the different kinds of chalcogen atoms on both sides of JTMDC monolayers, two different possible stacking patterns of ZnO-JTMDC heterostructures have been constructed and considered. We find that all these stacking patterns of ZnO-JTMDC heterostructures are dynamically and energetically feasible. Moreover, both ZnO-MoSSe and ZnO-WSSe heterostructures are indirect band gap semiconductors and present type-I and type-II band alignments for model-I and model-II, respectively. The Rashba spin polarization of the ZnO-WSSe heterostructure for model-I is greater than that in the others. Furthermore, valence (conduction) band edge potentials are calculated to understand the photocatalytic behavior of these systems. Energetically favorable band edge positions in ZnO-Janus heterostructures make them suitable for water splitting at zero pH. We found that the ZnO-Janus heterostructures are promising candidates for water splitting with conduction and valence band edges positioned just outside of the redox interval.
Collapse
Affiliation(s)
- M Idrees
- Department of Physics, Hazara University, Mansehra 21300, Pakistan
| | - H U Din
- Department of Physics, Hazara University, Mansehra 21300, Pakistan
| | - Shafiq Ur Rehman
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong 518060, China
| | - M Shafiq
- Abbottabad Uniersity of Science and Technology, Abbottabad 22010, Pakistan.
| | - Yasir Saeed
- Abbottabad Uniersity of Science and Technology, Abbottabad 22010, Pakistan.
| | - H D Bui
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi 100000, Vietnam.
| | - Bin Amin
- Abbottabad Uniersity of Science and Technology, Abbottabad 22010, Pakistan.
| |
Collapse
|
21
|
Schwarz K, Sundararaman R. The electrochemical interface in first-principles calculations. SURFACE SCIENCE REPORTS 2020; 75:10.1016/j.surfrep.2020.100492. [PMID: 34194128 PMCID: PMC8240516 DOI: 10.1016/j.surfrep.2020.100492] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
First-principles predictions play an important role in understanding chemistry at the electrochemical interface. Electronic structure calculations are straightforward for vacuum interfaces, but do not easily account for the interfacial fields and solvation that fundamentally change the nature of electrochemical reactions. Prevalent techniques for first-principles prediction of electrochemical processes range from expensive explicit solvation using ab initio molecular dynamics, through a hierarchy of continuum solvation techniques, to neglecting solvation and interfacial field effects entirely. Currently, no single approach reliably captures all relevant effects of the electrochemical double layer in first-principles calculations. This review systematically lays out the relation between all major approaches to first-principles electrochemistry, including the key approximations and their consequences for accuracy and computational cost. Focusing on ab initio methods for thermodynamic properties of aqueous interfaces, we first outline general considerations for modeling electrochemical interfaces, including solvent and electrolyte dynamics and electrification. We then present the specifics of various explicit and implicit models of the solvent and electrolyte. Finally, we discuss the compromise between computational efficiency and accuracy, and identify key outstanding challenges and future opportunities in the wide range of techniques for first-principles electrochemistry.
Collapse
Affiliation(s)
- Kathleen Schwarz
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, Maryland 20899, USA
| | - Ravishankar Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180, USA
| |
Collapse
|
22
|
Iyer A, Kearney K, Ertekin E. Computational Approaches to Photoelectrode Design through Molecular Functionalization for Enhanced Photoelectrochemical Water Splitting. CHEMSUSCHEM 2019; 12:1858-1871. [PMID: 30693653 DOI: 10.1002/cssc.201802514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Photoelectrochemical water splitting is a promising carbon-free approach to produce hydrogen from water. A photoelectrochemical cell consists of a semiconductor photoelectrode in contact with an aqueous electrolyte. Its performance is sensitive to properties of the photoelectrode/electrolyte interface, which may be tuned through functionalization of the photoelectrode surface with organic molecules. This can lead to improvements in the photoelectrode's properties. This Minireview summarizes key computational investigations on using molecular functionalization to modify photoelectrode stability, barrier height, and catalytic activity. It is discussed how first-principles density functional theory, first-principles molecular dynamics, and device modeling simulations can provide predictive insights and complement experimental investigations of functionalized photoelectrodes. Challenges and future directions in the computational modeling of functionalized photoelectrode/electrolyte interfaces within the context of experimental studies are also highlighted.
Collapse
Affiliation(s)
- Ashwathi Iyer
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, Illinois, 61801, USA
- International Institute of Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois, 61801, USA
| | - Kara Kearney
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street, Urbana, Illinois, 61801, USA
- International Institute of Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois, 61801, USA
| | - Elif Ertekin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street, Urbana, Illinois, 61801, USA
- International Institute of Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois, 61801, USA
| |
Collapse
|
23
|
Fan G, Fang T, Wang X, Zhu Y, Fu H, Feng J, Li Z, Zou Z. Interfacial Effects on the Band Edges of Ta 3N 5 Photoanodes in an Aqueous Environment: A Theoretical View. iScience 2019; 13:432-439. [PMID: 30904772 PMCID: PMC6434055 DOI: 10.1016/j.isci.2019.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/29/2019] [Accepted: 02/24/2019] [Indexed: 12/03/2022] Open
Abstract
Ta3N5, as a fascinating photoanode for solar hydrogen production, is expected to split water without any bias, because its band edge potentials straddle H2O redox potentials. Unfortunately, Ta3N5 photoanodes can split water only when a bias of at least 0.6–0.9 V is applied. It means that they exhibit an onset potential as high as 0.6–0.9 VRHE (reversible hydrogen electrode). In this study, density functional theory calculations show that the band edge potentials of Ta3N5 have a shift of approximately −0.42 eV relative to vacuum level when exposed to water. The increased ratio of dissociated water at Ta3N5-water interface will further make the band edge potentials shift −0.85 eV relative to vacuum level, implying the anodic shifts of the onset potential for water oxidation. The findings may reveal the mystery of the unexpectedly high onset potential of Ta3N5, as high as 0.6–0.9 VRHE. We have studied interfacial effects on the band edges of Ta3N5 in an aqueous environment Both water and the hydroxylated surface promote the formation of the interface dipole High onset potentials of Ta3N5 may be ascribed to negative shift of band edge potentials
Collapse
Affiliation(s)
- Guozheng Fan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Tao Fang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Yaodong Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Hongwei Fu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Jianyong Feng
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Zhaosheng Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China; Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, P. R. China.
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China; Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
24
|
Kenmoe S, Lisovski O, Piskunov S, Zhukovskii YF, Spohr E. Electronic and optical properties of pristine, N- and S-doped water-covered TiO2 nanotube surfaces. J Chem Phys 2019; 150:041714. [PMID: 30709322 DOI: 10.1063/1.5050090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- S. Kenmoe
- Department of Theoretical Chemistry, University of Duisburg-Essen, Universitätsstr. 2, D-45141 Essen, Germany
| | - O. Lisovski
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga LV-1063, Latvia
| | - S. Piskunov
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga LV-1063, Latvia
| | - Y. F. Zhukovskii
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga LV-1063, Latvia
| | - E. Spohr
- Department of Theoretical Chemistry, University of Duisburg-Essen, Universitätsstr. 2, D-45141 Essen, Germany
- Center of Computational Science and Simulation, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
25
|
Idrees M, Din HU, Ali R, Rehman G, Hussain T, Nguyen CV, Ahmad I, Amin B. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Phys Chem Chem Phys 2019; 21:18612-18621. [DOI: 10.1039/c9cp02648g] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Janus monolayers and their van der Waals heterostuctures are investigated by hybrid density functional theory calculations.
Collapse
Affiliation(s)
- M. Idrees
- Department of Physics
- Hazara University
- Mansehra 21300
- Pakistan
| | - H. U. Din
- Department of Physics
- Hazara University
- Mansehra 21300
- Pakistan
| | - R. Ali
- The Guo China-US Photonics Laboratory
- Changchun Institute of Optics
- Fine Mechanics and Physics Chinese Academy of Sciences
- Changchun 130033
- P. R. China
| | - G. Rehman
- Department of Physics
- University of Malakand
- Chakdara
- Pakistan
| | - T. Hussain
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| | - C. V. Nguyen
- Institute of Research and Development
- Duy Tan University
- Vietnam
| | - Iftikhar Ahmad
- Department of Physics
- University of Malakand
- Chakdara
- Pakistan
- Department of Physics
| | - B. Amin
- Department of Physics
- Abbottabad University of Science and Technology
- Abbottabad 22010
- Pakistan
| |
Collapse
|
26
|
Gerosa M, Gygi F, Govoni M, Galli G. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. NATURE MATERIALS 2018; 17:1122-1127. [PMID: 30374203 DOI: 10.1038/s41563-018-0192-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Computational screening of materials for solar to fuel conversion technologies has mostly focused on bulk properties, thus neglecting the structure and chemistry of surfaces and interfaces with water. We report a finite temperature study of WO3, a promising anode for photoelectrochemical cells, carried out using first-principles molecular dynamics simulations coupled with many-body perturbation theory. We identified three major factors determining the chemical reactivity of the material interfaced with water: the presence of surface defects, the dynamics of excess charge at the surface, and finite temperature fluctuations of the surface electronic orbitals. These general descriptors are essential for the understanding and prediction of optimal oxide photoabsorbers for water oxidation.
Collapse
Affiliation(s)
- Matteo Gerosa
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Francois Gygi
- Department of Computer Science, University of California, Davis, Davis, California, USA
| | - Marco Govoni
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
- Argonne National Laboratory, Argonne, IL, USA
| | - Giulia Galli
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.
- Argonne National Laboratory, Argonne, IL, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
27
|
Liu J, Zhang JZH, He X. Probing the Ion-Specific Effects at the Water/Air Interface and Water-Mediated Ion Pairing in Sodium Halide Solution with Ab Initio Molecular Dynamics. J Phys Chem B 2018; 122:10202-10209. [PMID: 30351119 DOI: 10.1021/acs.jpcb.8b09513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ion-specific effects at the water/air interface represent a fundamentally essential topic of research, and high-level ab initio simulations are still demanding to reveal the microscopic picture of the interactions between ions and water at the solvation interface. In this work, we present a fragment-based ab initio molecular dynamics (AIMD) simulation of sodium halide solution droplet (in a neutral mixture of Na+, F-, Cl-, and Br- ions) at the MP2/aug-cc-pVDZ level. We show that the studied halide ions exhibit surface preference in the order (F- < Cl- < Br-) which is in accordance with the experimental observation. The resulting potential of mean force (PMF) for Br- produces a distinct minimum at the water/air interface, while the minimum of the PMF for F- appears in the bulk region. The ion-pairing interactions between halide anions and Na+ cations are characterized, and it reveals that the specific solvent-separated ion pairs (SIPs) are more preferred than the direct contact ion pairs (CIPs). The transition between different types of SIPs is observed. Other structural and dynamical properties of ions and ion-hydration shells are investigated. These results provide broader and new physical insights for understanding the ion-specific behavior in interfacial solvation at the atomistic level.
Collapse
Affiliation(s)
- Jinfeng Liu
- State Key Laboratory of Natural Medicines, Department of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing , 210009 , China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai , 200062 , China.,Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai , 200062 , China
| |
Collapse
|
28
|
Ma H, Feng J, Jin F, Wei M, Liu C, Ma Y. Where do photogenerated holes at the g-C 3N 4/water interface go for water splitting: H 2O or OH -? NANOSCALE 2018; 10:15624-15631. [PMID: 30090897 DOI: 10.1039/c8nr04505d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphitic carbon nitride (g-C3N4), a metal-free two-dimensional photocatalyst, has drawn increasing attention due to its application in photocatalytic water splitting. However, its quantum efficiency is limited by the poor performance of the oxygen evolution reaction (OER). Therefore, it is important to clarify the behavior of photogenerated holes in the OER. In this work, we investigate the energy level alignment using the GW method and the exciton properties using the Bethe-Salpeter equation within the ab initio many-body Green's function theory at the g-C3N4/water interface. We found that the g-C3N4 substrate can elevate energy levels of OH- and H2O molecules at the interface by up to 0.6 eV. This effect can make the electronic levels of OH- surpass the valence band maximum (VBM) of g-C3N4. However, orbital energies of H2O molecules remain far below the VBM of g-C3N4. This indicates that a photogenerated hole after exciting g-C3N4 can relax to OH- instead of neutral H2O. Moreover, OH- could be directly oxidized through electron transfer from OH- to g-C3N4 by light near the optical absorption edge of g-C3N4, which is beneficial for efficient carrier separation at the interface.
Collapse
Affiliation(s)
- Huizhong Ma
- School of Chemistry and Chemical Engineering, Shandong University, 250100 China.
| | | | | | | | | | | |
Collapse
|
29
|
Zhang Z, Qian Q, Li B, Chen KJ. Interface Engineering of Monolayer MoS 2/GaN Hybrid Heterostructure: Modified Band Alignment for Photocatalytic Water Splitting Application by Nitridation Treatment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17419-17426. [PMID: 29706066 DOI: 10.1021/acsami.8b01286] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Interface engineering is a key strategy to deal with the two-dimensional (2D)/three-dimensional (3D) hybrid heterostructure, since the properties of this atomic-layer-thick 2D material can easily be impacted by the substrate environment. In this work, the structural, electronic, and optical properties of the 2D/3D heterostructure of monolayer MoS2 on wurtzite GaN surface without and with nitridation interfacial layer are systematically investigated by first-principles calculation and experimental analysis. The nitridation interfacial layer can be introduced into the 2D/3D heterostructure by remote N2 plasma treatment to GaN sample surface prior to stacking monolayer MoS2 on top. The calculation results reveal that the 2D/3D integrated heterostructure is energetically favorable with a negative formation energy. Both interfaces demonstrate indirect band gap, which is a benefit for longer lifetime of the photoexcited carriers. Meanwhile, the conduction band edge and valence band edge of the MoS2 side increases after nitridation treatment. The modification to band alignment is then verified by X-ray photoelectron spectroscopy measurement on MoS2/GaN heterostructures constructed by a modified wet-transfer technique, which indicates that the MoS2/GaN heterostructure without nitridation shows a type-II alignment with a conduction band offset (CBO) of only 0.07 eV. However, by the deployment of interface nitridation, the band edges of MoS2 move upward for ∼0.5 eV as a result of the nitridized substrate property. The significantly increased CBO could lead to better electron accumulation capability at the GaN side. The nitridized 2D/3D heterostructure with effective interface treatment exhibits a clean band gap and substantial optical absorption ability and could be potentially used as practical photocatalyst for hydrogen generation by water splitting using solar energy.
Collapse
Affiliation(s)
- Zhaofu Zhang
- Department of Electronic and Computer Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Qingkai Qian
- Department of Electronic and Computer Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Baikui Li
- College of Optoelectronic and Computer Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Kevin J Chen
- Department of Electronic and Computer Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong
| |
Collapse
|
30
|
Iyer A, Kearney K, Wakayama S, Odoi H, Ertekin E. Design Strategy for the Molecular Functionalization of Semiconductor Photoelectrodes: A Case Study of p-Si(111) Photocathodes for H 2 Generation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2959-2966. [PMID: 29412684 DOI: 10.1021/acs.langmuir.7b03948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Functionalization of semiconductor photoelectrodes is actively pursued as an approach to improve the efficiency of photoelectrochemical reactions by modulating the semiconductor's barrier height, but the selection of molecules for functionalization remains largely empirical. We propose a simple but effective design strategy for the organic functionalization of photocathodes for high-efficiency hydrogen generation based on first-principles density functional theory (DFT) calculations. The surface dipole of the functionalized photocathode determines its barrier height, which can be optimized to enhance charge separation at the semiconductor-electrolyte interface. Focusing on p-Si(111) photocathodes functionalized with different mixed aryl/methyl monolayers, we use DFT to systematically investigate the effect of - the presence and distribution of pi bonds, binding atom (the atom in the functional group that bonds with the Si surface), functional group length, and electrophilic substituent groups - on the surface dipole and charge rearrangement at the functionalized surface. We find that the most important factors affecting the surface dipole are the intrinsic molecular dipole moment of the organic moiety, the presence of electrophilic substituent groups, and the binding atom. Using these findings, a three-step design strategy is proposed for the experimental realization of high-performing functionalized p-Si(111) photocathodes by maximizing the surface dipole.
Collapse
Affiliation(s)
- Ashwathi Iyer
- Department of Physics , University of Illinois , 1110 W Green Street , Urbana , Illinois 61801 , United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Moto-oka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Kara Kearney
- Department of Mechanical Science and Engineering , University of Illinois , 1204 West Green Street , Urbana , Illinois 61801 , United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Moto-oka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Shohei Wakayama
- Department of Mechanical and Aerospace Engineering , Kyushu University , 744 Moto-oka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Hirotoshi Odoi
- Department of Mechanical and Aerospace Engineering , Kyushu University , 744 Moto-oka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Elif Ertekin
- Department of Mechanical Science and Engineering , University of Illinois , 1204 West Green Street , Urbana , Illinois 61801 , United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Moto-oka , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
31
|
Gerosa M, Bottani CE, Di Valentin C, Onida G, Pacchioni G. Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:044003. [PMID: 29087359 DOI: 10.1088/1361-648x/aa9725] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the electronic structure of metal oxide semiconductors is crucial to their numerous technological applications, such as photoelectrochemical water splitting and solar cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk crystals, and must include the effects of surfaces and interfaces, as well as those due to the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. In this review, we present an account of the recent efforts in predicting and understanding the optoelectronic properties of oxides using ab initio theoretical methods. In particular, we discuss the performance of recently developed dielectric-dependent hybrid functionals, providing a comparison against the results of many-body GW calculations, including G 0 W 0 as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize results in the recent literature for the band gap, the band level alignment at surfaces, and optical transition energies in defective oxides, including wide gap oxide semiconductors and transition metal oxides. Correlated transition metal oxides are also discussed. For each method, we describe successes and drawbacks, emphasizing the challenges faced by the development of improved theoretical approaches. The theoretical section is preceded by a critical overview of the main experimental techniques needed to characterize the optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, photoemission, and scanning tunneling spectroscopy (STS).
Collapse
Affiliation(s)
- M Gerosa
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States of America
| | | | | | | | | |
Collapse
|
32
|
Yao Y, Kanai Y. Free Energy Profile of NaCl in Water: First-Principles Molecular Dynamics with SCAN and ωB97X-V Exchange–Correlation Functionals. J Chem Theory Comput 2018; 14:884-893. [DOI: 10.1021/acs.jctc.7b00846] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yi Yao
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
33
|
Pham TA, Zhang X, Wood BC, Prendergast D, Ptasinska S, Ogitsu T. Integrating Ab Initio Simulations and X-ray Photoelectron Spectroscopy: Toward A Realistic Description of Oxidized Solid/Liquid Interfaces. J Phys Chem Lett 2018; 9:194-203. [PMID: 29240441 DOI: 10.1021/acs.jpclett.7b01382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many energy storage and conversion devices rely on processes that take place at complex interfaces, where structural and chemical properties are often difficult to probe under operating conditions. A primary example is solar water splitting using high-performance photoelectrochemical cells, where surface chemistry, including native oxide formation, affects hydrogen generation. In this Perspective, we discuss some of the challenges associated with interrogating interface chemistry, and how they may be overcome by integrating high-level first-principles calculations of explicit interfaces with ambient pressure X-ray photoelectron spectroscopy and direct spectroscopic simulations. We illustrate the benefit of this combined approach toward insights into native oxide chemistry at prototypical InP/water and GaP/water interfaces. This example suggests a more general roadmap for obtaining a realistic and reliable description of the chemistry of complex interfaces by combining state-of-the-art computational and experimental techniques.
Collapse
Affiliation(s)
- Tuan Anh Pham
- Quantum Simulations Group, Lawrence Livermore National Laboratory , Livermore, California 94551, United States
| | - Xueqiang Zhang
- Radiation Laboratory, University of Notre Dame , Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Brandon C Wood
- Quantum Simulations Group, Lawrence Livermore National Laboratory , Livermore, California 94551, United States
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Sylwia Ptasinska
- Radiation Laboratory, University of Notre Dame , Notre Dame, Indiana 46556, United States
- Department of Physics, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Tadashi Ogitsu
- Quantum Simulations Group, Lawrence Livermore National Laboratory , Livermore, California 94551, United States
| |
Collapse
|
34
|
Sundararaman R, Figueiredo MC, Koper MTM, Schwarz KA. Electrochemical Capacitance of CO-Terminated Pt(111) Dominated by the CO-Solvent Gap. J Phys Chem Lett 2017; 8:5344-5348. [PMID: 29040805 PMCID: PMC6052449 DOI: 10.1021/acs.jpclett.7b02383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The distribution of electric fields within the electrochemical double layer depends on both the electrode and electrolyte in complex ways. These fields strongly influence chemical dynamics in the electrode-electrolyte interface but cannot be measured directly with submolecular resolution. We report experimental capacitance measurements for aqueous interfaces of CO-terminated Pt(111). By comparing these measurements with first-principles density functional theory (DFT) calculations, we infer microscopic field distributions and decompose contributions to the inverse capacitance from various spatial regions of the interface. We find that the CO is strongly electronically coupled to the Pt and that most of the interfacial potential difference appears across the gap between the terminating O and water and not across the CO molecule, as previously hypothesized. This "gap capacitance" resulting from hydrophobic termination lowers the overall capacitance of the aqueous Pt-CO interface and makes it less sensitive to electrolyte concentration compared to the bare metal.
Collapse
Affiliation(s)
- Ravishankar Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute , Troy, New York 12189, United States
| | - Marta C Figueiredo
- Department of Chemistry, Nano-Science Center Universitetsparken, University of Copenhagen , 5 2100 Copenhagen, Denmark
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University , P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Kathleen A Schwarz
- Material Measurement Laboratory, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| |
Collapse
|
35
|
Senftle TP, Carter EA. Theoretical Determination of Band Edge Alignments at the Water-CuInS 2(112) Semiconductor Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9479-9489. [PMID: 28544847 DOI: 10.1021/acs.langmuir.7b00668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Knowledge of a semiconductor electrode's band edge alignment is essential for optimizing processes that occur at the semiconductor/electrolyte interface. Photocatalytic processes are particularly sensitive to such alignments, as they govern the transfer of photoexcited electrons or holes from the surface to reactants in the electrolyte solution. Reconstructions of a semiconductor surface during operation, as well as its interaction with the electrolyte solution, must be considered when determining band edge alignment. Here, we employ density functional theory + U theory to assess the stability of reconstructed CuInS2 surfaces, a system which has shown promise for the active and selective photoelectrocatalytic reduction of CO2 to CH3OH. Using many-body Green's function theory combined with calculations of surface work functions, we determine band edge positions of explicitly solvated, reconstructed CuInS2 surfaces. We find that there is a linear relationship between band edge position and net surface dipole, with the most stable solvent/surface structures tending to minimize this dipole because of generally weak interactions between the surface and solvating water molecules. We predict a conduction band minimum (CBM) of the solvated, reconstructed CuInS2 surface of -2.44 eV vs vacuum at the zero-dipole intercept of the dipole/CBM trendline, in reasonable agreement with the experimentally reported CBM position at -2.64 eV vs vacuum. This methodology offers a simplified approach for approximating the band edge positions at complex semiconductor/electrolyte interfaces.
Collapse
Affiliation(s)
- Thomas P Senftle
- Department of Mechanical and Aerospace Engineering and ‡School of Engineering and Applied Science, Princeton University , Princeton, New Jersey 08544-5263, United States
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering and ‡School of Engineering and Applied Science, Princeton University , Princeton, New Jersey 08544-5263, United States
| |
Collapse
|
36
|
Le J, Iannuzzi M, Cuesta A, Cheng J. Determining Potentials of Zero Charge of Metal Electrodes versus the Standard Hydrogen Electrode from Density-Functional-Theory-Based Molecular Dynamics. PHYSICAL REVIEW LETTERS 2017; 119:016801. [PMID: 28731734 DOI: 10.1103/physrevlett.119.016801] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 05/12/2023]
Abstract
We develop a computationally efficient scheme to determine the potentials of zero charge (PZC) of metal-water interfaces with respect to the standard hydrogen electrode. We calculate the PZC of Pt(111), Au(111), Pd(111) and Ag(111) at a good accuracy using this scheme. Moreover, we find that the interface dipole potentials are almost entirely caused by charge transfer from water to the surfaces, the magnitude of which depends on the bonding strength between water and the metals, while water orientation hardly contributes at the PZC conditions.
Collapse
Affiliation(s)
- Jiabo Le
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Marcella Iannuzzi
- Department of Physical Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Angel Cuesta
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| |
Collapse
|
37
|
Pham TA, Govoni M, Seidel R, Bradforth SE, Schwegler E, Galli G. Electronic structure of aqueous solutions: Bridging the gap between theory and experiments. SCIENCE ADVANCES 2017; 3:e1603210. [PMID: 28691091 PMCID: PMC5482551 DOI: 10.1126/sciadv.1603210] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/28/2017] [Indexed: 05/31/2023]
Abstract
Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.
Collapse
Affiliation(s)
- Tuan Anh Pham
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Marco Govoni
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Robert Seidel
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089–0482, USA
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089–0482, USA
| | - Eric Schwegler
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Giulia Galli
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
38
|
Cao Z, Harb M, Lardhi S, Cavallo L. Impact of Interfacial Defects on the Properties of Monolayer Transition Metal Dichalcogenide Lateral Heterojunctions. J Phys Chem Lett 2017; 8:1664-1669. [PMID: 28332394 DOI: 10.1021/acs.jpclett.7b00518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We explored the impact of interfacial defects on the stability and optoelectronic properties of monolayer transition metal dichalcogenide lateral heterojunctions using a density functional theory approach. As a prototype, we focused on the MoS2-WSe2 system and found that even a random alloy-like interface with a width of less than 1 nm has only a minimal impact on the band gap and alignment compared to the defect-less interface. The largest impact is on the evolution of the electrostatic potential across the monolayer. Similar to defect-less interfaces, a small number of defects results in an electrostatic potential profile with a sharp change at the interface, which facilitates exciton dissociation. Differently, a large number of defects results in an electrostatic potential profile switching smoothly across the interface, which is expected to reduce the capability of the heterojunction to promote exciton dissociation. These results are generalizable to other transition metal dichalcogenide lateral heterojunctions.
Collapse
Affiliation(s)
- Zhen Cao
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia
| | - Sheikha Lardhi
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
39
|
Pham TA, Ping Y, Galli G. Modelling heterogeneous interfaces for solar water splitting. NATURE MATERIALS 2017; 16:401-408. [PMID: 28068314 DOI: 10.1038/nmat4803] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/18/2016] [Indexed: 05/17/2023]
Abstract
The generation of hydrogen from water and sunlight offers a promising approach for producing scalable and sustainable carbon-free energy. The key of a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells, which are responsible for absorbing sunlight and driving water splitting reactions. To this end, a detailed understanding and control of heterogeneous interfaces between photoabsorbers, electrolytes and catalysts present in photoelectrochemical cells is essential. Here we review recent progress and open challenges in predicting physicochemical properties of heterogeneous interfaces for solar water splitting applications using first-principles-based approaches, and highlights the key role of these calculations in interpreting increasingly complex experiments.
Collapse
Affiliation(s)
- Tuan Anh Pham
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Yuan Ping
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Giulia Galli
- The Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
40
|
Sundararaman R, Ping Y. First-principles electrostatic potentials for reliable alignment at interfaces and defects. J Chem Phys 2017; 146:104109. [DOI: 10.1063/1.4978238] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
41
|
Blumenthal L, Kahk JM, Sundararaman R, Tangney P, Lischner J. Energy level alignment at semiconductor–water interfaces from atomistic and continuum solvation models. RSC Adv 2017. [DOI: 10.1039/c7ra08357b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Efficient electronic energy level alignment at solid–liquid interfaces with continuum solvation models.
Collapse
Affiliation(s)
- Lars Blumenthal
- Imperial College London
- Department of Physics
- London SW7 2AZ
- UK
- Thomas Young Centre for Theory and Simulation of Materials
| | - Juhan Matthias Kahk
- Imperial College London
- Department of Materials
- Royal School of Mines
- London SW7 2AZ
- UK
| | | | - Paul Tangney
- Imperial College London
- Department of Physics
- London SW7 2AZ
- UK
- Imperial College London
| | - Johannes Lischner
- Imperial College London
- Department of Physics
- London SW7 2AZ
- UK
- Imperial College London
| |
Collapse
|
42
|
Pham TA, Ogitsu T, Lau EY, Schwegler E. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations. J Chem Phys 2016; 145:154501. [DOI: 10.1063/1.4964865] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Tuan Anh Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Tadashi Ogitsu
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Edmond Y. Lau
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Eric Schwegler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| |
Collapse
|
43
|
Leng X, Jin F, Wei M, Ma Y. GW method and Bethe-Salpeter equation for calculating electronic excitations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1265] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xia Leng
- School of Chemistry and Chemical Engineering; Shandong University; Jinan China
| | - Fan Jin
- School of Chemistry and Chemical Engineering; Shandong University; Jinan China
| | - Min Wei
- School of Chemistry and Chemical Engineering; Shandong University; Jinan China
| | - Yuchen Ma
- School of Chemistry and Chemical Engineering; Shandong University; Jinan China
| |
Collapse
|
44
|
Meng AC, Cheng J, Sprik M. Density Functional Theory Calculation of the Band Alignment of (101̅0) In(x)Ga(1-x)N/Water Interfaces. J Phys Chem B 2016; 120:1928-39. [PMID: 26829439 DOI: 10.1021/acs.jpcb.5b09807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conduction band edge (CBE) and valence band edge (VBE) positions of InxGa1-xN photoelectrodes were computed using density functional theory methods. The band edges of fully solvated GaN and InN model systems were aligned with respect to the standard hydrogen electrode using a molecular dynamics hydrogen electrode scheme applied earlier to TiO2/water interfaces. Similar to the findings for TiO2, we found that the Purdew-Burke-Ernzerhof (PBE) functional gives a VBE potential which is too negative by 1 V. This cathodic bias is largely corrected by application of the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional containing a fraction of Hartree-Fock exchange. The effect of a change of composition was investigated using simplified model systems consisting of vacuum slabs covered on both sides by one monolayer of H2O. The CBE was found to vary linearly with In content. The VBE, in comparison, is much less sensitive to composition. The data show that the band edges straddle the hydrogen and oxygen evolution potentials for In fractions less than 47%. The band gap was found to exceed 2 eV for an In fraction less than 54%.
Collapse
Affiliation(s)
- Andrew C Meng
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom.,Department of Materials Science and Engineering, Stanford University , Stanford, California 94305-4034, United States
| | - Jun Cheng
- Department of Chemistry, University of Aberdeen , Aberdeen AB24 3UE, United Kingdom.,Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| | - Michiel Sprik
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
45
|
Blase X, Boulanger P, Bruneval F, Fernandez-Serra M, Duchemin I. GW and Bethe-Salpeter study of small water clusters. J Chem Phys 2016; 144:034109. [DOI: 10.1063/1.4940139] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Fabien Bruneval
- CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette, France
| | - Marivi Fernandez-Serra
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
- Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Ivan Duchemin
- INAC, SP2M/L_Sim, CEA/UJF Cedex 09, 38054 Grenoble, France
| |
Collapse
|
46
|
Lim CH, Holder AM, Hynes JT, Musgrave CB. Catalytic Reduction of CO2 by Renewable Organohydrides. J Phys Chem Lett 2015; 6:5078-5092. [PMID: 26722706 DOI: 10.1021/acs.jpclett.5b01827] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dihydropyridines are renewable organohydride reducing agents for the catalytic reduction of CO2 to MeOH. Here we discuss various aspects of this important reduction. A centerpiece, which illustrates various general principles, is our theoretical catalytic mechanism for CO2 reduction by successive hydride transfers (HTs) and proton transfers (PTs) from the dihydropyridine PyH2 obtained by 1H(+)/1e(-)/1H(+)/1e(-) reductions of pyridine. The Py/PyH2 redox couple is analogous to NADP(+)/NADPH in that both are driven to effect HTs by rearomatization. High-energy radical intermediates and their associated high barriers/overpotentials are avoided because HT involves a 2e(-) reduction. A HT-PT sequence dictates that the reduced intermediates be protonated prior to further reduction for ultimate MeOH formation; these protonations are aided by biased cathodes that significantly lower the local pH. In contrast, cathodes that efficiently reduce H(+) such as Pt and Pd produce H2 and create a high interfacial pH, both obstructing dihydropyridine production and formate protonation and thus ultimately CO2 reduction by HTPTs. The role of water molecule proton relays is discussed. Finally, we suggest future CO2 reduction strategies by organic (photo)catalysts.
Collapse
Affiliation(s)
| | - Aaron M Holder
- National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - James T Hynes
- Chemistry Department, Ecole Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC University Paris 06, CNRS UMR 8640 Pasteur , 24 rue Lhomond, 75005 Paris, France
| | | |
Collapse
|
47
|
Affiliation(s)
- Marco Govoni
- Institute
for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Materials
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Giulia Galli
- Institute
for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Materials
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
48
|
Ping Y, Sundararaman R, Goddard III WA. Solvation effects on the band edge positions of photocatalysts from first principles. Phys Chem Chem Phys 2015; 17:30499-509. [DOI: 10.1039/c5cp05740j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Continuum solvation theories predict large shifts in band positions of photocatalysts from vacuum to solution, in agreement with experiment.
Collapse
Affiliation(s)
- Yuan Ping
- Joint Center for Artificial Photosynthesis
- USA
| | | | | |
Collapse
|