1
|
Blaha I, Weber S, Dülger R, Veiros LF, Kirchner K. Alkene Isomerization Catalyzed by a Mn(I) Bisphosphine Borohydride Complex. ACS Catal 2024; 14:13174-13180. [PMID: 39263541 PMCID: PMC11385370 DOI: 10.1021/acscatal.4c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
An additive-free manganese-catalyzed isomerization of terminal alkenes to internal alkenes is described. This reaction is implementing an inexpensive nonprecious metal catalyst. The most efficient catalyst is the borohydride complex cis-[Mn(dippe)(CO)2(κ2-BH4)]. This catalyst operates at room temperature, with a catalyst loading of 2.5 mol %. A variety of terminal alkenes is effectively and selectively transformed into the respective internal E-alkenes. Preliminary results show chain-walking isomerization at an elevated temperature. Mechanistic studies were carried out, including stoichiometric reactions and in situ NMR analysis. These experiments are flanked by computational studies. Based on these, the catalytic process is initiated by the liberation of "BH3" as a THF adduct. The catalytic process is initiated by double bond insertion into an M-H species, leading to an alkyl metal intermediate, followed by β-hydride elimination at the opposite position to afford the isomerization product.
Collapse
Affiliation(s)
- Ines Blaha
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Stefan Weber
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Robin Dülger
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| |
Collapse
|
2
|
Scaringi S, Leforestier B, Mazet C. Remote Functionalization by Pd-Catalyzed Isomerization of Alkynyl Alcohols. J Am Chem Soc 2024; 146:18606-18615. [PMID: 38941513 PMCID: PMC11240579 DOI: 10.1021/jacs.4c05136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024]
Abstract
In recent years, progress has been made in the development of catalytic methods that allow remote functionalizations based on alkene isomerization. In contrast, protocols based on alkyne isomerization are comparatively rare. Herein, we report a general Pd-catalyzed long-range isomerization of alkynyl alcohols. Starting from aryl-, heteroaryl-, or alkyl-substituted precursors, the optimized system provides access preferentially to the thermodynamically more stable α,β-unsaturated aldehydes and is compatible with potentially sensitive functional groups. We showed that the migration of both π-components of the carbon-carbon triple bond can be sustained over several methylene units. Computational investigations served to shed light on the key elementary steps responsible for the reactivity and selectivity. These include an unorthodox phosphine-assisted deprotonation rather than a more conventional β-hydride elimination in the final tautomerization event.
Collapse
Affiliation(s)
| | | | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Zhong J, Wang X, Luo M, Zeng X. Chromium-Catalyzed Alkene Isomerization with Switchable Selectivity. Org Lett 2024; 26:3124-3129. [PMID: 38592221 DOI: 10.1021/acs.orglett.4c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We report a single additive-responsive chromium-catalyzed system for selectively producing either of two different internal alkene isomers. The chromium catalyst, in the presence of HBpin/LiOtBu, enables the isomerization of alkenes over multiple carbon atoms to give the most thermodynamically stable isomers. The same catalyst allows for the selective isomerization of terminal alkenes over one carbon atom without an additive, exhibiting efficient and controllable alkene transposition selectivity.
Collapse
Affiliation(s)
- Jiaoyue Zhong
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xuelan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Meiming Luo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
4
|
Muto K, Hatanaka M, Kakiuchi F, Kochi T. Conformational Isomerization as a Process to Determine Selectivity over Reaction Pathways: Effect of Alkene Rotation in Chain Walking via Cis Alkene Intermediates. J Org Chem 2024; 89:4712-4721. [PMID: 38526974 DOI: 10.1021/acs.joc.3c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In organic reactions, bond-forming and bond-cleaving processes are generally considered to be more important than other processes such as conformational isomerization. We report herein an example where a conformational isomerization process, propeller-like alkene rotation, is considered to determine the selectivity over the reaction pathways. The transition state with the highest energy barrier in some alkylpalladium isomerization (chain walking) events was theoretically indicated to correspond to alkene rotation, while transition states for bond-cleaving β-hydride elimination and bond-forming migratory insertion were not even observed. It was also suggested both theoretically and experimentally that the palladium chain walking over internal carbons in alkyl chains proceeds via cis alkene intermediates rather than thermodynamically more stable trans alkene intermediates, due to their relative difficulty to undergo alkene rotation.
Collapse
Affiliation(s)
- Kazuma Muto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Miho Hatanaka
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
5
|
Zhou J, He Y, Liu Z, Wang Y, Zhu S. Ligand Relay Catalysis Enables Asymmetric Migratory Hydroarylation for the Concise Synthesis of Chiral α-(Hetero)Aryl-Substituted Amines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306447. [PMID: 38419384 DOI: 10.1002/advs.202306447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/19/2023] [Indexed: 03/02/2024]
Abstract
Complementary to the design of a single structurally complex chiral ligand to promote each step in transition-metal catalysis, multiligand relay catalysis through dynamic ligand exchange with each step in the catalytic cycle promoted by its best ligand provides an attractive approach to enhance the whole reaction reactivity and selectivity. Herein, a regio- and enantioselective NiH-catalyzed migratory hydroarylation process with a simple combination of a chain-walking ligand and an asymmetric arylation ligand, producing high-value chiral α-(hetero)aryl-substituted amines and their derivatives under mild conditions, is reported. The potential synthetic applications of this transformation are demonstrated by the concise synthesis of (S)-nicotine and a CDK8 inhibitor.
Collapse
Affiliation(s)
- Junqian Zhou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yuli He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Zihao Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Shen GB, Qian BC, Luo GZ, Fu YH, Zhu XQ. Thermodynamic Evaluations of Amines as Hydrides or Two Hydrogen Ions Reductants and Imines as Protons or Two Hydrogen Ions Acceptors, as Well as Their Application in Hydrogenation Reactions. ACS OMEGA 2023; 8:31984-31997. [PMID: 37692224 PMCID: PMC10483529 DOI: 10.1021/acsomega.3c03804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Since the hydrogenation of imines (X) and the dehydrogenation of amines (XH2) generally involve the two hydrogen ions (H- + H+) transfer, the thermodynamic abilities of various amines releasing hydrides or two hydrogen ions as well as various imines accepting protons or two hydrogen ions are important and characteristic physical parameters. In this work, the pKa values of 84 protonated imines (XH+) in acetonitrile were predicted. Combining Gibbs free energy changes of amines releasing hydrides in acetonitrile from our previous work with the pKa(XH+) values, the Gibbs free energy changes of amines releasing two hydrogen ions and imines accepting two hydrogen ions were derived using Hess's law by constructing thermochemical cycles, and the thermodynamic evaluations of amines as hydrides or two hydrogen ions reductants and imines as protons or two hydrogen ions acceptors are well compared and discussed. Eventually, the practical application of thermodynamic data for amines and imines on hydrogenation feasibility, mechanism, and possible elementary steps was shown and discussed in this paper from the point of thermodynamics.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Guang-Ze Luo
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yan-Hua Fu
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiao-Qing Zhu
- The
State Key Laboratory of Elemento-Organic Chemistry, Department of
Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Chen XX, Luo H, Chen YW, Liu Y, He ZT. Enantioselective Palladium-Catalyzed Directed Migratory Allylation of Remote Dienes. Angew Chem Int Ed Engl 2023; 62:e202307628. [PMID: 37387558 DOI: 10.1002/anie.202307628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
Chain walking has been an efficient route to realize the functionalization of inert C(sp3 )-H bonds, but this strategy is limited to mono-olefin migration and functionalization. Herein, we demonstrate the feasibility of tandem directed simultaneous migrations of remote olefins and stereoselective allylation for the first time. The adoption of palladium hydride catalysis and secondary amine morpholine as solvent is critical for achieving high substrate compatibility and stereochemical control with this method. The protocol is also applicable to the functionalization of three vicinal C(sp3 )-H bonds and thus construct three continuous stereocenters along a propylidene moiety via a short synthetic process. Preliminary mechanistic experiments corroborated the design of simultaneous walking of remote dienes.
Collapse
Affiliation(s)
- Xian-Xiao Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hao Luo
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye-Wei Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
8
|
Gao Y, Hong G, Yang BM, Zhao Y. Enantioconvergent transformations of secondary alcohols through borrowing hydrogen catalysis. Chem Soc Rev 2023; 52:5541-5562. [PMID: 37519093 DOI: 10.1039/d3cs00424d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Direct substitution of readily available alcohols is recognized as a key research area in green chemical synthesis. Starting from simple racemic secondary alcohols, the achievement of catalytic enantioconvergent transformations of the substrates will be highly desirable for efficient access to valuable enantiopure compounds. To accomplish such attractive yet challenging transformations, the strategy of the enantioconvergent borrowing hydrogen methodology has proven to be uniquely effective and versatile. This review aims to provide an overview of the impressive progress made on this topic of research that has only thrived in the past decade. In particular, the conversion of racemic secondary alcohols to enantioenriched chiral amines, N-heterocycles, higher-order alcohols and ketones will be discussed in detail.
Collapse
Affiliation(s)
- Yaru Gao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| |
Collapse
|
9
|
Youmans DD, Tran HN, Stanley LM. Nickel-Catalyzed Isomerization of Homoallylic Alcohols. Org Lett 2023; 25:3559-3563. [PMID: 37154573 DOI: 10.1021/acs.orglett.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nickel-catalyzed isomerizations of homoallylic alcohols and a bishomoallylic alcohol are presented. These isomerization reactions occur in the presence of a simple nickel catalyst that does not require addition of an exogenous ligand. The corresponding ketone products are generated in ≤98% yield.
Collapse
Affiliation(s)
- Dustin D Youmans
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Hai N Tran
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Levi M Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
10
|
Wu L, Qu J, Chen Y. Merging Alkene Isomerization Enables Difunctionalization of Cyclic Enamines toward Ring-Fused Aminal Synthesis. Org Lett 2023; 25:992-997. [PMID: 36746651 DOI: 10.1021/acs.orglett.3c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here we report a Pd-catalyzed isomerization of alicyclic allyl amine to achieve the unprecedented α,β-difunctionalization of synthetically inaccessible trisubstituted cyclic enamine. The dual role of in situ formed enamine intermediate allows for the intermolecular formal [4 + 2] reaction with acrylamide or isatoic anhydride to simultaneously construct the C-C bond and C-N bond, thus realizing the expedient construction of [4.3.0]-aminal with excellent diastereoselectivity and high atom economy.
Collapse
Affiliation(s)
- Licheng Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
11
|
Zhang M, Liu Z, Zhao W. Rhodium-Catalyzed Remote Borylation of Alkynes and Vinylboronates. Angew Chem Int Ed Engl 2023; 62:e202215455. [PMID: 36445794 DOI: 10.1002/anie.202215455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Remote functionalization involving a fascinating chain-walking process has emerged as a powerful strategy for the rapid access to value-added functional molecules from readily available feedstocks. However, the scope of current methods is predominantly limited to mono- and di-substituted alkenes. The remote functionalization of multi- and heteroatom-substituted alkenes is challenging, and the use of alkynes in the chain walking is unexplored. We herein report a rhodium catalyzed remote borylation of internal alkynes, offering an unprecedented reaction mode of alkynes for the preparation of synthetically valuable 1,n-diboronates. The regioselective distal migratory hydroboration of sterically hindered tri- and tetra-substituted vinylboronates is also demonstrated to furnish various multi-boronic esters. Synthetic utilities are highlighted through the selective manipulation of the two boryl groups in products such as the regioselective cross coupling, oxidation, and amination.
Collapse
Affiliation(s)
- Minghao Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| | - Zheming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| |
Collapse
|
12
|
Duhamel T, Scaringi S, Leforestier B, Poblador-Bahamonde AI, Mazet C. Assisted Tandem Pd Catalysis Enables Regiodivergent Heck Arylation of Transiently Generated Substituted Enol Ethers. JACS AU 2023; 3:261-274. [PMID: 36711081 PMCID: PMC9875267 DOI: 10.1021/jacsau.2c00645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Two complementary regiodivergent Pd-catalyzed assisted tandem [isomerization/Heck arylation] reactions are reported. They provide access to a broad array of acyclic trisubstituted vinyl ethers starting from readily available alkenyl ethers. In both cases, the isomerization is conducted with a [Pd-H] precatalyst supported by tris-tert-butyl phosphine ligands. When the catalyst is modified by the addition of a chelating bisphosphine ligand (dppp), an organic base (Cy2NMe), sodium acetate, and aryl triflates are used as electrophiles, the α-arylation pathway is promoted preferentially. The β-arylation pathway is favored for electron-deficient and electron-neutral aryl halides when the catalyst is simply modified by the addition of an excess of an organic base (Et3N) after completion of the isomerization reaction. Electron-rich aryl halides lead to reduced levels of regiocontrol. The moderate stereoselectivity obtained are proposed to reflect the absence of stereocontrol in the isomerization step. Computational analyses suggest that migratory insertion is selectivity-determining for both the arylations. For the β-selective arylation, an energy decomposition analysis underscored that electronic factors favor α-regioselectivity and steric effects favor β-regioselectivity. Preliminary investigations show that high levels of stereoselectivity can be achieved for the α-selective arylation by ligand control. Complementarily, reaction conditions for postcatalytic stereo-correction have also been identified for each catalytic system.
Collapse
Affiliation(s)
| | | | | | | | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
13
|
Kong S, Zhang M, Wang S, Wu H, Zou H, Huang G. Mechanism and Origins of Diastereo- and Regioselectivities of Palladium-Catalyzed Remote Diborylative Cyclization of Dienes via Chain-Walking Strategy. Chem Asian J 2023; 18:e202201057. [PMID: 36415038 DOI: 10.1002/asia.202201057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Density functional theory calculations have been performed to investigate the palladium-catalyzed remote diborylative cyclization of dienes. The computations reveal that the reaction proceeds through a rarely explored Pd(II)/Pd(IV) catalytic cycle, and the formal σ-bond metathesis between the alkylpalladium intermediate and B2 pin2 occurs via the pathway of the B-B oxidative addition/C-B reductive elimination involving the high-valent Pd(IV) species. The diastereoselectivity is determined by the migratory insertion into the Pd-C bond, which is mainly due to the combination of the torsional strain effect, steric repulsion and C-H-O hydrogen-bonding interaction. The steric hindrance around the reacting carbon group in the C-B reductive elimination turns out to be a key factor to provide the driving force of the chain walking of the Pd center to the terminal primary carbon position, enabling the experimentally observed remote regioselectivity.
Collapse
Affiliation(s)
- Shuqi Kong
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Mengyao Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyu Wang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongli Wu
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongyan Zou
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
14
|
Jiang X, Sheng FT, Zhang Y, Deng G, Zhu S. Ligand Relay Catalysis Enables Asymmetric Migratory Reductive Acylation of Olefins or Alkyl Halides. J Am Chem Soc 2022; 144:21448-21456. [DOI: 10.1021/jacs.2c10785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xiaoli Jiang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Feng-Tao Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Yao Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Gao Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang453007, China
| |
Collapse
|
15
|
Zachilas I, Kidonakis M, Karapanou MI, Stratakis M. Substitution-Dependent Ring-Opening Hydrosilylation or Dehydrogenative Hydrosilylation of Cyclopropyl Aldehydes and Ketones Catalyzed by Au Nanoparticles. J Org Chem 2022; 87:15914-15924. [DOI: 10.1021/acs.joc.2c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ioannis Zachilas
- Department of Chemistry, University of Crete,
Voutes, Heraklion 71003, Greece
| | - Marios Kidonakis
- Department of Chemistry, University of Crete,
Voutes, Heraklion 71003, Greece
| | | | - Manolis Stratakis
- Department of Chemistry, University of Crete,
Voutes, Heraklion 71003, Greece
| |
Collapse
|
16
|
Luo Z, Zhang X, Liu ZQ, Hong CM, Li QH, Liu TL. Ruthenium-Catalyzed 1,3-Aryl Redox Isomerization of Allylic Alcohols. Org Lett 2022; 24:8072-8076. [DOI: 10.1021/acs.orglett.2c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
17
|
Hong CM, Xiong SQ, Zhang X, Ma KX, Li QH, Liu TL. Sliver-Catalyzed 1,3-Aza-Benzyl Migration of Allyl Alcohol. Org Lett 2022; 24:7712-7716. [PMID: 36201425 DOI: 10.1021/acs.orglett.2c02809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbon migration of alkenyl alcohols has been recognized as an increasingly viable methodology in organic synthesis. Herein, we disclose a silver-catalyzed 1,3-aza-benzyl migration of allyl alcohols by utilizing chelation-assisted selective cleavage of an unstrained C(sp3)-C(sp3) bond. This approach provides an available, efficient, high atom-economic, and environmentally benign procedure, leading to alkylation products with broad substrate scopes and excellent yields. The migration proceeds via a one-pot, two-step process involving a free-state alkyl metal species.
Collapse
Affiliation(s)
- Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Si-Qi Xiong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Kai-Xian Ma
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
18
|
(NHC)Pd(II) hydride-catalyzed dehydroaromatization by olefin chain-walking isomerization and transfer-dehydrogenation. Nat Commun 2022; 13:5507. [PMID: 36127352 PMCID: PMC9489721 DOI: 10.1038/s41467-022-33163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
Transition-metal-catalyzed homogeneous dehydrogenation and isomerization are common organic molecular activation reactions. Palladium hydrides are good olefin isomerization catalysts but are usually short-lived species under redox-active dehydrogenation conditions. Here, we show that Pd-H in the presence of an N-heterocyclic carbene ligand and an alkene regulator enables transfer-dehydroaromatization, avoiding the homo-disproportionation pathway. The desired product is obtained with up to 99:1 selectivity, and the exo-to-endo olefin isomerization can be carried out in one pot. In contrast to previously reported methods that rely on the efficient removal of Pd-H, the approach reported herein benefits from the steric effects of the N-heterocyclic carbene and the choice of alkene to regulate the competing reactivity of allylic C‒H activation and hydropalladation. This method circumvents the challenges associated with tedious olefin separation and a low exo-to-endo olefin isomerization ratio and expands the scope to include challenging endo- and exo-cyclic olefins under mild, neutral, and oxidant-free conditions. Overall, herein, we provide a strategy to synthesize (hetero)aromatic compounds via chemoselective dehydrogenation of cyclic alkenes over ketones and the dehydrogenative Diels-Alder reaction of a cyclic enamine. Aromatic compounds can be prepared via dehydrogenation of cyclic compounds. Here the authors report the dehydroaromatization of endocyclic and exocyclic olefins via chain-walking isomerization and transfer-dehydrogenation catalyzed by palladium N-heterocyclic carbene complexes in the presence of alkenes as sacrificial reagents.
Collapse
|
19
|
Tricoire M, Wang D, Rajeshkumar T, Maron L, Danoun G, Nocton G. Electron Shuttle in N-Heteroaromatic Ni Catalysts for Alkene Isomerization. JACS AU 2022; 2:1881-1888. [PMID: 36032537 PMCID: PMC9400170 DOI: 10.1021/jacsau.2c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Simple N-heteroaromatic Ni(II) precatalysts, (L)NiMe2 (L = bipy, bipym), were used for alkene isomerization. With an original reduction method using a simple borane (HB(Cat)), a low-valent Ni center was formed readily and showed good conversion when a reducing divalent lanthanide fragment, Cp*2Yb, was coordinated to the (bipym)NiMe2 complex, a performance not achieved by the monometallic (bipy)NiMe2 analogue. Experimental mechanistic investigations and computational studies revealed that the redox non-innocence of the L ligand triggered an electron shuttle process, allowing the elusive formation of Ni(I) species that were central to the isomerization process. Additionally, the reaction occurred with a preference for mono-isomerization rather than chain-walking isomerization. The presence of the low-valent ytterbium fragment, which contributed to the formation of the electron shuttle, strongly stabilized the catalysts, allowing catalytic loading as low as 0.5%. A series of alkenes with various architectures have been tested. The possibility to easily tune the various components of the heterobimetallic catalyst reported here, the ligand L and the divalent lanthanide fragment, opens perspectives for further applications in catalysis induced by Ni(I) species.
Collapse
Affiliation(s)
- Maxime Tricoire
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Ding Wang
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Thayalan Rajeshkumar
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077 Toulouse
cedex 4, France
| | - Laurent Maron
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077 Toulouse
cedex 4, France
| | - Grégory Danoun
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Grégory Nocton
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| |
Collapse
|
20
|
Wang X, Li LJ, Wang ZY, Xu H, Dai HX. Homologation of aryl ketones to long-chain ketones and aldehydes via C-C bond cleavage. iScience 2022; 25:104505. [PMID: 35720269 PMCID: PMC9204744 DOI: 10.1016/j.isci.2022.104505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/26/2022] [Accepted: 05/27/2022] [Indexed: 10/29/2022] Open
Abstract
Transition metal-catalyzed C-C bond cleavage is a powerful tool for the reconstruction of a molecular skeleton. We report herein the multi-carbon homologation of aryl ketones to long-chain ketones and aldehydes via ligand-promoted Ar-C(O) bond cleavage and subsequent cross coupling with alkenols. Various (hetero)aryl ketones are compatible in the reaction, affording the corresponding products wtih good to excellent yields with high regioselectivity. Further applications in the late-stage diversification of biologically important molecules demonstrate the synthetic utility of this protocol. Mechanistic studies indicate that the ligand plays an important role in both C-C bond cleavage and the asymmetric migration-insertion process.
Collapse
Affiliation(s)
- Xing Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ling-Jun Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hui Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
21
|
Han M, Tashiro S, Shiraogawa T, Ehara M, Shionoya M. Substrate-Specific Activation and Long-Range Olefin Migration Catalysis at the Pd Centers in a Porous Metal-Macrocycle Framework. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mengying Han
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takafumi Shiraogawa
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science and SOKENDAI, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Siddaraju Y, Sabbatani J, Cohen A, Marek I. Preparation of Distant Quaternary Carbon Stereocenters by Double Selective Ring-Opening of 1,1-Biscyclopropyl Methanol Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203652. [PMID: 35521738 PMCID: PMC9401570 DOI: 10.1002/anie.202203652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/15/2022]
Abstract
The diastereoselective double carbometalation reaction of cyclopropenes provides, in a single-pot operation, two ω-ene-[1,1]-bicyclopropyl ester derivatives. One regioisomer then undergoes a Pd-catalyzed addition of aryl iodide to provide skipped dienes possessing several distant stereocenters including two congested quaternary carbon centers with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Yogesh Siddaraju
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Juliette Sabbatani
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Anthony Cohen
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| |
Collapse
|
23
|
Ge Q, Meng J, Liu H, Yang Z, Wu Z, Zhang W. Palladium‐catalyzed long‐range isomerization of aryl olefins. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology School of Pharmaceutical Science, Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Jingjie Meng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Huikang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology School of Pharmaceutical Science, Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Zhengxing Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
24
|
Zhang Q, Wang S, Yin J, Xiong T, Zhang Q. Remote Site-Selective Asymmetric Protoboration of Unactivated Alkenes Enabled by Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202202713. [PMID: 35297558 DOI: 10.1002/anie.202202713] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/14/2022]
Abstract
A remote C(sp3 )-H bond asymmetric borylation of unactivated alkenes was achieved by bimetallic relay catalysis. The reaction proceeded through reversible and consecutive β-H elimination/olefin insertion promoted by CoH species generated in situ, followed by copper-catalyzed asymmetric protoboration. The use of this synergistic Co/Cu catalysis protocol allowed the enantioselective protoboration of various unactivated terminal alkenes and internal alkenes, as well as an unrefined mixture of olefin isomers, at the distal less-reactive β-position to a functional group, leading to chiral organoboronates.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
25
|
Siddaraju Y, Sabbatani J, Cohen A, Marek I. Preparation of Distant Quaternary Carbon Stereocenters by Double Selective Ring‐Opening of 1,1‐Biscyclopropyl Methanol Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Anthony Cohen
- Technion Israel Institute of Technology Chemistry ISRAEL
| | - Ilan Marek
- Technion - Israel Institute of Technology Schulich Faculty of Chemistry Technion City 32000 Haifa ISRAEL
| |
Collapse
|
26
|
Zhang M, Ji Y, Zhang C. Transition Metal Catalyzed Enantioselective Migratory Functionalization Reactions of Alkenes through Chain‐walking. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Min Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
| | - Yuqi Ji
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
27
|
Khake SM, Chatani N. Rhodium(III)-Catalyzed Oxidative C–H Alkylation of Aniline Derivatives with Allylic Alcohols To Produce β-Aryl Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shrikant M. Khake
- Department of Applied Chemistry, Faculty of Engineering, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Suita, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Zhang Q, Wang S, Yin J, Xiong T, Zhang Q. Remote Site‐Selective Asymmetric Protoboration of Unactivated Alkenes Enabled by Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiao Zhang
- Northeast Normal University Department of Chemistry CHINA
| | - Simin Wang
- Northeast Normal University Department of Chemistry CHINA
| | - Jianjun Yin
- Northeast Normal University Department of Chemistry CHINA
| | - Tao Xiong
- Northeast Normal University Department of Chemistry Renmin ST. 5268 130024 ChangChun CHINA
| | - Qian Zhang
- Northeast Normal University Department of Chemistry CHINA
| |
Collapse
|
29
|
Electrocatalytic Isomerization of Allylic Alcohols: Straightforward Preparation of β-Aryl-Ketones. Catalysts 2022. [DOI: 10.3390/catal12030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Electrochemical synthesis has been rapidly developing over the past few years. Here, we report a practical and eco-friendly electrocatalytic isomerization of allylic alcohols to their corresponding carbonyl compounds. This reaction can be carried out in undivided cells without the addition of external chemical oxidants and metal catalysts. Moreover, this reaction features a broad substrate scope including challenging allylic alcohols bearing tri- and tetra-substituted olefins and affords straightforward access to diverse β-aryl-ketones. Mechanistic investigations suggest that the reactions proceed through a radical process. This study represents a unique example in which electrochemistry enables hydrogen atom transfer in organic allylic alcohol substrates using a simple organocatalyst.
Collapse
|
30
|
Zhang XX, Zhang Y, Liao L, Gao Y, Su HEM, Yu JS. Catalytic Asymmetric Isomerization of (Homo)Allylic Alcohols: Recent Advances and Challenges. ChemCatChem 2022. [DOI: 10.1002/cctc.202200126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue-Xin Zhang
- East China Normal University Department of chemistry CHINA
| | - Ying Zhang
- East China Normal University Department of chemistry CHINA
| | - Ling Liao
- East China Normal University Department of chemistry CHINA
| | - Yang Gao
- East China Normal University Department of chemistry CHINA
| | | | - Jin-Sheng Yu
- East China Normal University Department of Chemistry Zhongshan Rd. 3663 N, 200062 Shanghai CHINA
| |
Collapse
|
31
|
Shen GB, Qian BC, Zhang GS, Luo GZ, Fu YH, Zhu XQ. Thermodynamics regulated organic hydride/acid pairs as novel organic hydrogen reductants. Org Chem Front 2022. [DOI: 10.1039/d2qo01605b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Organic hydride/acid pairs could realize transformation of N-substituted organic hydrides from hydride reductants to thermodynamics regulated hydrogen reductants on conveniently choosing suitable organic hydrides and acids with various acidities.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Gao-Shuai Zhang
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Guang-Ze Luo
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Bai N, Wang X, Wang Z, Liu F, Rong ZQ. Redox-neutral remote amidation of alkenyl alcohols via long-range isomerization/transformation. Org Chem Front 2022. [DOI: 10.1039/d2qo01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and straightforward approach for the construction of amides via redox-neutral Ru-catalyzed cross-coupling reaction of long-range alkenyl alcohols with amines to realize remote site-selective functionalization has been developed.
Collapse
Affiliation(s)
- Na Bai
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zhenchao Wang
- College of Pharmacy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
33
|
Zhao W, Zhang K, Huang J. Rh-Catalyzed Coupling of Aldehydes with Allylboronates Enables Facile Access to Ketones. Chemistry 2021; 28:e202103851. [PMID: 34967479 DOI: 10.1002/chem.202103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/09/2022]
Abstract
We present herein a novel strategy for the preparation of ketones from aldehydes and allylic boronicesters. This reaction involves the allylation of aldehydes with allylic boronicesters and the Rh-catalyzed chain-walking of homoallylic alcohols. The key to this successful development is the protodeboronation of alkenyl borylether intermediate via a tetravalent borate anion species in the presence of KHF 2 and MeOH. This approach features mild reaction conditions, broad substrate scope, and excellent functional group tolerance. Mechanistic studies also supported that the tandem allylation and chain-walking process was involved.
Collapse
Affiliation(s)
- Wanxiang Zhao
- Hunan University, chemistry, Yuelushan, Changsha, 410082, changsha, CHINA
| | | | - Jiaxin Huang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
34
|
Zhang Q, Wang S, Zhang Q, Xiong T, Zhang Q. Radical Addition-Triggered Remote Migratory Isomerization of Unactivated Alkenes to Difluoromethylene-Containing Alkenes Enabled by Bimetallic Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Simin Wang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Tao Xiong
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
35
|
Liu X, Rong X, Liu S, Lan Y, Liu Q. Cobalt-Catalyzed Desymmetric Isomerization of Exocyclic Olefins. J Am Chem Soc 2021; 143:20633-20639. [PMID: 34870975 DOI: 10.1021/jacs.1c11343] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chiral cyclic olefins, 1-methylcyclohexenes, are versatile building blocks for the synthesis of pharmaceuticals and natural products. Despite the prevalence of these structural motifs, the development of efficient synthetic methods remains an unmet challenge. Herein we report a novel desymmetric isomerization of exocyclic olefins using a series of newly designed chiral cobalt catalysts, which enables a straightforward construction of chiral 1-methylcyclohexenes with diversified functionalities. The synthetic utility of this methodology is highlighted by a concise and enantioselective synthesis of a natural product, β-bisabolene. The versatility of the reaction products is further demonstrated by multifarious derivatizations.
Collapse
Affiliation(s)
- Xufang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xianle Rong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People's Republic of China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People's Republic of China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
36
|
Kanno S, Kakiuchi F, Kochi T. Palladium-Catalyzed Remote Diborylative Cyclization of Dienes with Diborons via Chain Walking. J Am Chem Soc 2021; 143:19275-19281. [PMID: 34695350 DOI: 10.1021/jacs.1c09705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel method for catalytic remote bismetalation of alkene substrates by the addition of dimetal reagents is accomplished by using chain walking. In the presence of a palladium catalyst, the reaction of various 1,n-dienes and diborons were converted into cyclopentane derivatives with two boryl groups at remote positions via facile regioselective transformation of an unactivated sp3 C-H bond to a C-B bond. Sequential construction of three distant bonds, which is difficult to achieve by any method, was accomplished for the reactions of 1,n-dienes (n ≥ 7).
Collapse
Affiliation(s)
- Shota Kanno
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
37
|
Muto K, Kumagai T, Kakiuchi F, Kochi T. Remote Arylative Substitution of Alkenes Possessing an Acetoxy Group via β-Acetoxy Elimination. Angew Chem Int Ed Engl 2021; 60:24500-24504. [PMID: 34510680 DOI: 10.1002/anie.202111396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Palladium-catalyzed remote arylative substitution was achieved for the reaction of arylboronic acids with alkenes possessing a distant acetoxy group to provide arylation products having an alkene moiety at the remote position. The use of β-acetoxy elimination as a key step in the catalytic cycle allowed for regioselective formation of unstabilized alkenes after chain walking. This reaction was applicable to various arylboronic acids as well as alkene substrates.
Collapse
Affiliation(s)
- Kazuma Muto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takaaki Kumagai
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
38
|
Muto K, Kumagai T, Kakiuchi F, Kochi T. Remote Arylative Substitution of Alkenes Possessing an Acetoxy Group via β‐Acetoxy Elimination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuma Muto
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takaaki Kumagai
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takuya Kochi
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
39
|
Ru T, Liang G, Zhang L, Ning Y, Chen F. Linear Selective Hydroformylation of 2‐Arylpropenes Using Water‐Soluble Rh‐PNP Complex: Straightforward Access to 3‐Aryl‐Butyraldehydes. ChemCatChem 2021. [DOI: 10.1002/cctc.202101352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tong Ru
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Guanfeng Liang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Luyun Zhang
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Yingtang Ning
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Fen‐Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| |
Collapse
|
40
|
Ghosh S, Patel S, Chatterjee I. Chain-walking reactions of transition metals for remote C-H bond functionalization of olefinic substrates. Chem Commun (Camb) 2021; 57:11110-11130. [PMID: 34611681 DOI: 10.1039/d1cc04370f] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Past several decades have witnessed the great evolution of inert C-H bond functionalization reactions as an emerging technique for synthesizing drug molecules, agrochemicals, and functional materials with intricate three-dimensional architectures. Although most activation of "unreactive" C-H bonds was accomplished by exploiting the power of transition metal catalysts, the distant and selective activation of unreactive C-H bonds in an undirected fashion remains one of the critical challenges to this rapidly growing field of organic chemistry. In this context, to meet all these concerns, much more attractive and challenging transition metal catalytic transformations have begun to blossom in recent years with the aid of the chain-walking process. The chain-walking strategy is one of the state-of-the-art techniques in organic synthesis to functionalize the unreactive C-H bonds by allowing the movement of a metal complex along the hydrocarbon chain of the substrate to recognize preferable bond-forming sites. The essential advantage of this strategy is that the bonds are formed only at the places where the catalyst selects for the specific C-H bonds to be cleaved, which not only avoids tedious synthetic procedures for prefunctionalization and the emission of undesirable wastes but also inspires chemists to plan novel synthetic strategies in a completely different manner. Consequently, various C-H bond functionalization reactions have been reported in recent years, employing the vast opportunity provided by this growing field mainly for the acyclic olefinic systems with flexible alkyl chains. Thus, chain-walking reactions allow the reactivity of the reaction centers within the substrates that cannot be realized via the classical mode of reactivity of the substrates. Applying this approach, inexpensive feedstock materials and simple hydrocarbons as an isomeric mixture can be converted to a single isomeric product in a regioconvergent scenario. Simultaneously, the site-selectivity of these reactions can also be switched using a regiodivergent strategy via appropriate tuning of ligands or a slight modification of reaction conditions. Herein, we have provided a comprehensive overview of the chain-walking reactions involving a variety of catalytic systems ranging from the first-row transition metal catalysts to the third-row transition metal catalysts for C-H activation in a concise fashion with the hope for further developments in this area through the appropriate application of the chain-walking reactions.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Sandeep Patel
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
41
|
Greener Synthesis of Pristane by Flow Dehydrative Hydrogenation of Allylic Alcohol Using a Packed-Bed Reactor Charged by Pd/C as a Single Catalyst. Molecules 2021; 26:molecules26195845. [PMID: 34641390 PMCID: PMC8510359 DOI: 10.3390/molecules26195845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Abstract
Our previous work established a continuous-flow synthesis of pristane, which is a saturated branched alkane obtained from a Basking Shark. The dehydration of an allylic alcohol that is the key to a tetraene was carried out using a packed-bed reactor charged by an acid–silica catalyst (HO-SAS) and flow hydrogenation using molecular hydrogen via a Pd/C catalyst followed. The present work relies on the additional propensity of Pd/C to serve as an acid catalyst, which allows us to perform a flow synthesis of pristane from the aforementioned key allylic alcohol in the presence of molecular hydrogen using Pd/C as a single catalyst, which is applied to both dehydration and hydrogenation. The present one-column-two-reaction-flow system could eliminate the use of an acid catalyst such as HO-SAS and lead to a significant simplification of the production process.
Collapse
|
42
|
Goossen LJ, Koley D, De S, Sivendran N. Isomerization of Functionalized Olefins Using the Dinuclear Catalyst [PdI(μ-Br)(PtBu3)]2: A Mechanistic Study. Chemistry 2021; 27:15226-15238. [PMID: 34387372 PMCID: PMC8596456 DOI: 10.1002/chem.202102554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/13/2022]
Abstract
In a combined experimental and computational study, the isomerization activity of the dinuclear palladium(I) complex [PdI(μ‐Br)(PtBu3)]2 towards allyl arenes, esters, amides, ethers, and alcohols has been investigated. The calculated energy profiles for catalyst activation for two alternative dinuclear and mononuclear catalytic cycles, and for catalyst deactivation are in good agreement with the experimental results. Comparison of experimentally observed E/Z ratios at incomplete conversion with calculated kinetic selectivities revealed that a substantial amount of product must form via the dinuclear pathway, in which the isomerization is promoted cooperatively by two palladium centers. The dissociation barrier towards mononuclear Pd species is relatively high, and once the catalyst enters the energetically more favorable mononuclear pathway, only a low barrier has to be overcome towards irreversible deactivation.
Collapse
Affiliation(s)
- Lukas J Goossen
- Ruhr-Universität Bochum, Organische Chemie I, Universitätsstraße 150, ZEMOS 2/27, 44801, 44801 Bochum, GERMANY
| | - Debasis Koley
- IISER-K: Indian Institute of Science Education and Research Kolkata, Chemical Sciences, Campus Rd, 741 246, Mohanpur, Nadia, INDIA
| | - Sriman De
- IISER-K: Indian Institute of Science Education and Research Kolkata, Chemical Sciences, Campus Rd, 741 246, Mohanpur, Nadia, INDIA
| | - Nardana Sivendran
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Chemistry and Biochemistry, Universitätsstr. 150, ZEMOS, 44795, Bochum, GERMANY
| |
Collapse
|
43
|
Ding Y, Long J, Sun F, Fang X. Nickel-Catalyzed Isomerization/Allylic Cyanation of Alkenyl Alcohols. Org Lett 2021; 23:6073-6078. [PMID: 34296889 DOI: 10.1021/acs.orglett.1c02143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein reported is a nickel-catalyzed isomerization/allylic cyanation of alkenyl alcohols, which complements current methods for the allylic substitution reactions. The specific diphosphite ligand and methanol as the solvent are crucial for the success for this transformation. A gram-scale regioconvergent experiment and formal synthesis of quebrachamine demonstrate the high potential of this methodology.
Collapse
Affiliation(s)
- Ying Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinguo Long
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Feilong Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
44
|
He Y, Han B, Zhu S. Terminal-Selective C(sp 3)–H Arylation: NiH-Catalyzed Remote Hydroarylation of Unactivated Internal Olefins. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuli He
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People’s Republic of China
| | - Bo Han
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People’s Republic of China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People’s Republic of China
| |
Collapse
|
45
|
Scaringi S, Mazet C. Kinetically Controlled Stereoselective Access to Branched 1,3-Dienes by Ru-Catalyzed Remote Conjugative Isomerization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02144] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Simone Scaringi
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
46
|
Takeuchi D. Synthesis of Polymers with Regulated Repeating Structures by Utilizing Chain Walking Strategy. CHEM LETT 2021. [DOI: 10.1246/cl.200793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daisuke Takeuchi
- Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| |
Collapse
|
47
|
Abstract
An efficient and convergent first total syntheses of (±)-japonicol B and (-)-japonicol C have been completed. The notable points of the synthetic route are Lewis-acid-catalyzed Friedel-Crafts reaction for one pot C-C and C-O bond formations resulting in construction of the tricyclic meroterpenoid skeleton, one pot Pd(OH)2/C-catalyzed isomerization/hydrogenation, and site selective sp3 C-H oxidation.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India
| | - Appasaheb K Nirpal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India
| |
Collapse
|
48
|
Pandya C, Panicker RR, Senjaliya P, Hareendran MH, Anju P, Sarkar S, Bhat H, Jha PC, Rao KP, Smith GS, Sivaramakrishna A. Designing and synthesis of phosphine derivatives of Ru3(CO)12 – Studies on catalytic isomerization of 1-alkenes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Kraus SL, Ross SP, Sigman MS. Rate Profiling the Impact of Remote Functional Groups on the Redox-Relay Heck Reaction. Org Lett 2021; 23:2505-2509. [PMID: 33710906 DOI: 10.1021/acs.orglett.1c00450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The redox-relay Heck reaction is a powerful method for the construction of enantioenriched quaternary stereocenters remote from existing functional groups. However, there has been little success in the design of site-selective alkene functionalization based on these methods. Herein, we show that experimentally determined rates can be used to train a multivariate linear regression model capable of predicting the rate of a specific relay Heck reaction, allowing for the site-selective functionalization of diene substrates.
Collapse
Affiliation(s)
- Samantha L Kraus
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Sean P Ross
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
50
|
Kim D, Pillon G, DiPrimio DJ, Holland PL. Highly Z-Selective Double Bond Transposition in Simple Alkenes and Allylarenes through a Spin-Accelerated Allyl Mechanism. J Am Chem Soc 2021; 143:3070-3074. [DOI: 10.1021/jacs.1c00856] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel Kim
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Guy Pillon
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Daniel J. DiPrimio
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|