1
|
Petropoulos V, Rukin PS, Quintela F, Russo M, Moretti L, Moore A, Moore T, Gust D, Prezzi D, Scholes GD, Molinari E, Cerullo G, Troiani F, Rozzi CA, Maiuri M. Vibronic Coupling Drives the Ultrafast Internal Conversion in a Functionalized Free-Base Porphyrin. J Phys Chem Lett 2024; 15:4461-4467. [PMID: 38630018 DOI: 10.1021/acs.jpclett.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Internal conversion (IC) is a common radiationless transition in polyatomic molecules. Theory predicts that molecular vibrations assist IC between excited states, and ultrafast experiments can provide insight into their structure-function relationship. Here we elucidate the dynamics of the vibrational modes driving the IC process within the Q band of a functionalized porphyrin molecule. Through a combination of ultrafast multidimensional spectroscopies and theoretical modeling, we observe a 60 fs Qy-Qx IC and demonstrate that it is driven by the interplay among multiple high-frequency modes. Notably, we identify 1510 cm-1 as the leading tuning mode that brings the porphyrin to an optimal geometry for energy surface crossing. By employing coherent wave packet analysis, we highlight a set of short-lived vibrations (1200-1400 cm-1), promoting the IC within ≈60 fs. Furthermore, we identify one coupling mode (1350 cm-1) that is responsible for vibronic mixing within the Q states. Our findings indicate that porphyrin-core functionalization modulates IC effectively, offering new opportunities in photocatalysis and optoelectronics.
Collapse
Affiliation(s)
- Vasilis Petropoulos
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Pavel S Rukin
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Frank Quintela
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213A, I-41125 Modena, Italy
| | - Mattia Russo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Moretti
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Ana Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Devens Gust
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Deborah Prezzi
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Elisa Molinari
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213A, I-41125 Modena, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Filippo Troiani
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Carlo A Rozzi
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Margherita Maiuri
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
2
|
Coppola F, Cimino P, Petrone A, Rega N. Evidence of Excited-State Vibrational Mode Governing the Photorelaxation of a Charge-Transfer Complex. J Phys Chem A 2024; 128:1620-1633. [PMID: 38381887 DOI: 10.1021/acs.jpca.3c08366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Modern, nonlinear, time-resolved spectroscopic techniques have opened new doors for investigating the intriguing but complex world of photoinduced ultrafast out-of-equilibrium phenomena and charge dynamics. The interaction between light and matter introduces an additional dimension, where the complex interplay between electronic and vibrational dynamics needs the most advanced theoretical-computational protocols to be fully understood on the molecular scale. In this study, we showcase the capabilities of ab initio molecular dynamics simulation integrated with a multiresolution wavelet protocol to carefully investigate the excited-state relaxation dynamics in a noncovalent complex involving tetramethylbenzene (TMB) and tetracyanoquinodimethane (TCNQ) undergoing charge transfer (CT) upon photoexcitation. Our protocol provides an accurate description that facilitates a direct comparison between transient vibrational analysis and time-resolved spectroscopic signals. This molecular level perspective enhances our understanding of photorelaxation processes confined in the adiabatic regime and offers an improved interpretation of vibrational spectra. Furthermore, it enables the quantification of anharmonic vibrational couplings between high- and low-frequency modes, specifically the TCNQ "rocking" and "bending" modes. Additionally, it identifies the primary vibrational mode that governs the adiabaticity between the ground state and the CT state. This comprehensive understanding of photorelaxation processes holds significant importance in the rational design and precise control of more efficient photovoltaic and sensor devices.
Collapse
Affiliation(s)
- Federico Coppola
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Paola Cimino
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| |
Collapse
|
3
|
Inukai S, Katayama K, Koyanagi M, Terakita A, Kandori H. Counterion at an atypical position: Investigating the mechanism of photoisomerization in jellyfish rhodopsin. J Biol Chem 2023; 299:104726. [PMID: 37094700 DOI: 10.1016/j.jbc.2023.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
The position of the counterion in animal rhodopsins plays a crucial role in maintaining visible light sensitivity and facilitating the photoisomerization of their retinal chromophore. The counterion displacement is thought to be closely related to the evolution of rhodopsins, with different positions found in invertebrates and vertebrates. Interestingly, box jellyfish rhodopsin (JelRh) acquired the counterion in transmembrane 2 (TM2) independently. This is a unique feature, as in most animal rhodopsins, the counterion is found in a different location. In this study, we used Fourier Transform Infrared spectroscopy to examine the structural changes that occur in the early photointermediate state of JelRh. We aimed to determine whether the photochemistry of JelRh is similar to that of other animal rhodopsins by comparing its spectra to those of vertebrate bovine rhodopsin (BovRh) and invertebrate squid rhodopsin (SquRh). We observed that the N-D stretching band of the retinal Schiff base was similar to that of BovRh, indicating the interaction between the Schiff base and the counterion is similar in both rhodopsins, despite their different counterion positions. Furthermore, we found that the chemical structure of the retinal in JelRh is similar to that in BovRh, including the changes in the hydrogen-out-of-plane band that indicates a retinal distortion. Overall, the protein conformational changes induced by the photoisomerization of JelRh yielded spectra that resemble an intermediate between BovRh and SquRh, suggesting a unique spectral property of JelRh, and making it the only animal rhodopsin with a counterion in TM2 and an ability to activate Gs protein.
Collapse
Affiliation(s)
- Shino Inukai
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Mitsumasa Koyanagi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
4
|
Kojima K, Sudo Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv 2023; 13:5367-5381. [PMID: 36793294 PMCID: PMC9923458 DOI: 10.1039/d2ra07073a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Rhodopsins, a family of photoreceptive membrane proteins, contain retinal as a chromophore and were firstly identified as reddish pigments from frog retina in 1876. Since then, rhodopsin-like proteins have been identified mainly from animal eyes. In 1971, a rhodopsin-like pigment was discovered from the archaeon Halobacterium salinarum and named bacteriorhodopsin. While it was believed that rhodopsin- and bacteriorhodopsin-like proteins were expressed only in animal eyes and archaea, respectively, before the 1990s, a variety of rhodopsin-like proteins (called animal rhodopsins or opsins) and bacteriorhodopsin-like proteins (called microbial rhodopsins) have been progressively identified from various tissues of animals and microorganisms, respectively. Here, we comprehensively introduce the research conducted on animal and microbial rhodopsins. Recent analysis has revealed that the two rhodopsin families have common molecular properties, such as the protein structure (i.e., 7-transmembrane structure), retinal structure (i.e., binding ability to cis- and trans-retinal), color sensitivity (i.e., UV- and visible-light sensitivities), and photoreaction (i.e., triggering structural changes by light and heat), more than what was expected at the early stages of rhodopsin research. Contrastingly, their molecular functions are distinctively different (e.g., G protein-coupled receptors and photoisomerases for animal rhodopsins and ion transporters and phototaxis sensors for microbial rhodopsins). Therefore, based on their similarities and dissimilarities, we propose that animal and microbial rhodopsins have convergently evolved from their distinctive origins as multi-colored retinal-binding membrane proteins whose activities are regulated by light and heat but independently evolved for different molecular and physiological functions in the cognate organism.
Collapse
Affiliation(s)
- Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| |
Collapse
|
5
|
Boeije Y, Olivucci M. From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions. Chem Soc Rev 2023; 52:2643-2687. [PMID: 36970950 DOI: 10.1039/d2cs00719c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
This review discusses how ultrafast organic photochemical reactions are controlled by conical intersections, highlighting that decay to the ground-state at multiple points of the intersection space results in their multi-mode character.
Collapse
Affiliation(s)
- Yorrick Boeije
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Massimo Olivucci
- Chemistry Department, University of Siena, Via Aldo Moro n. 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, USA
| |
Collapse
|
6
|
Hong Y, Schlosser F, Kim W, Würthner F, Kim D. Ultrafast Symmetry-Breaking Charge Separation in a Perylene Bisimide Dimer Enabled by Vibronic Coupling and Breakdown of Adiabaticity. J Am Chem Soc 2022; 144:15539-15548. [PMID: 35951363 DOI: 10.1021/jacs.2c03916] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perylene bisimides (PBIs) have received great attention in their applicability to optoelectronics. Especially, symmetry-breaking charge separation (SB-CS) in PBIs has been investigated to mimic the efficient light capturing and charge generation in natural light-harvesting systems. However, unlike ultrafast CS dynamics in donor-acceptor heterojunction materials, ultrafast SB-CS in a stacked homodimer has still been challenging due to excimer formation in the absence of rigidifying surroundings such as a special pair in the natural systems. Herein, we present the detailed mechanism of ultrafast photoinduced SB-CS occurring in a 1,7-bis(N-pyrrolidinyl) PBI dimer within a cyclophane. Through narrow-band and broad-band transient absorption spectroscopy, we demonstrate that ultrafast SB-CS in the dimer is enabled by the combination of (1) vibrationally coherent charge-transfer resonance-enhanced excimer formation and (2) breakdown of adiabaticity (formation of SB-CS diabats) in the excimer state via structural and solvent fluctuation. Quantum chemical calculations also underpin that the participation of strong electron-donating substituents in overall vibrational modes plays a crucial role in triggering the ultrafast SB-CS. Therefore, our work provides an alternative route to facilitate ultrafast SB-CS in PBIs and thereby establishes a novel strategy for the design of optoelectronic materials.
Collapse
Affiliation(s)
- Yongseok Hong
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Felix Schlosser
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universitat Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Woojae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universitat Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.,Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
7
|
Chuang C, Brumer P. Steady State Photoisomerization Quantum Yield of Model Rhodopsin: Insights from Wavepacket Dynamics? J Phys Chem Lett 2022; 13:4963-4970. [PMID: 35639452 DOI: 10.1021/acs.jpclett.2c01200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We simulate the nonequilibrium steady state cis-trans photoisomerization of retinal chromophore in rhodopsin on the basis of a two-state, two-mode model coupled to a thermal environment. By analyzing the systematic trends within an inhomogeneously broadened ensemble of systems, we find that the steady state reaction quantum yield (QY) correlates strongly with the excess energy above the crossing point of the system, in agreement with the prediction of the short-time dynamical wavepacket picture. However, the nontrivial dependence of the QY on the system-environment interaction indicates that a pure dynamical picture is insufficient and that environment-induced partial internal energy redistribution takes place before the reaction concludes. These results imply that a proper treatment of the photoisomerization reaction, particularly its high QY, must account for the redistribution and dissipation of energy beyond the dynamical wavepacket motion that is typically employed in the literature and that is appropriate only in the transient regime.
Collapse
Affiliation(s)
- Chern Chuang
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
8
|
Tumbarello F, Marcolin G, Fresch E, Hofmann E, Carbonera D, Collini E. The Energy Transfer Yield between Carotenoids and Chlorophylls in Peridinin Chlorophyll a Protein Is Robust against Mutations. Int J Mol Sci 2022; 23:5067. [PMID: 35563456 PMCID: PMC9099807 DOI: 10.3390/ijms23095067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
The energy transfer (ET) from carotenoids (Cars) to chlorophylls (Chls) in photosynthetic complexes occurs with almost unitary efficiency thanks to the synergistic action of multiple finely tuned channels whose photophysics and dynamics are not fully elucidated yet. We investigated the energy flow from the Car peridinin (Per) to Chl a in the peridinin chlorophyll a protein (PCP) from marine algae Amphidinium carterae by using two-dimensional electronic spectroscopy (2DES) with a 10 fs temporal resolution. Recently debated hypotheses regarding the S2-to-S1 relaxation of the Car via a conical intersection and the involvement of possible intermediate states in the ET were examined. The comparison with an N89L mutant carrying the Per donor in a lower-polarity environment helped us unveil relevant details on the mechanisms through which excitation was transferred: the ET yield was conserved even when a mutation perturbed the optimization of the system thanks to the coexistence of multiple channels exploited during the process.
Collapse
Affiliation(s)
- Francesco Tumbarello
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (F.T.); (G.M.); (E.F.); (D.C.)
| | - Giampaolo Marcolin
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (F.T.); (G.M.); (E.F.); (D.C.)
| | - Elisa Fresch
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (F.T.); (G.M.); (E.F.); (D.C.)
| | - Eckhard Hofmann
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, D-44780 Bochum, Germany;
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (F.T.); (G.M.); (E.F.); (D.C.)
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (F.T.); (G.M.); (E.F.); (D.C.)
| |
Collapse
|
9
|
Naka K, Sato H, Higashi M. Theoretical study of the mechanism of the solvent dependency of ESIPT in HBT. Phys Chem Chem Phys 2021; 23:20080-20085. [PMID: 34338683 DOI: 10.1039/d0cp06604d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-(2'-Hydroxyphenyl)-benzothiazole (HBT) has been widely studied for use as a system for excited-state intramolecular proton transfer. However, the mechanism underlying the solvent dependency of HBT fluorescence spectra remains unclear. In this study, the HBT photochemical process in the S1 state was analysed using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state intramolecular proton transfer in the enol form of HBT was found to depend on the hydrogen-bond acceptability of the solvent. The twisting of the keto form of HBT is determined by whether HBT acts as a hydrogen-bond acceptor or donor. A specific stacking structure of the enol form of HBT was found to decrease the S1 → S0 transition energy, which corresponds to the experimental fluorescence spectra in a DMSO/H2O solution mixture.
Collapse
Affiliation(s)
- Keiji Naka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan. .,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan. .,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
10
|
van Stokkum IHM, Kloz M, Polli D, Viola D, Weißenborn J, Peerbooms E, Cerullo G, Kennis JTM. Vibronic dynamics resolved by global and target analysis of ultrafast transient absorption spectra. J Chem Phys 2021; 155:114113. [PMID: 34551543 DOI: 10.1063/5.0060672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a methodology that provides a complete parametric description of the time evolution of the electronically and vibrationally excited states as detected by ultrafast transient absorption (TA). Differently from previous approaches, which started fitting the data after ≈100 fs, no data are left out in our methodology, and the "coherent artifact" and the instrument response function are fully taken into account. In case studies, the method is applied to solvents, the dye Nile blue, and all-trans β-carotene in cyclohexane solution. The estimated Damped Oscillation Associated Spectra (DOAS) and phases express the most important vibrational frequencies present in the molecular system. By global fit alone of the experimental data, it is difficult to interpret in detail the underlying dynamics. Since it is unfeasible to directly fit the data by a theoretical simulation, our enhanced DOAS methodology thus provides a useful "middle ground" where the theoretical description and the fit of the experimental data can meet. β-carotene in cyclohexane was complementarily studied with femtosecond stimulated Raman spectroscopy (FSRS). The fs-ps dynamics of β-carotene in cyclohexane in TA and FSRS experiments can be described by a sequential scheme S2 → hot S1 → S1' → S1 → S0 with lifetimes of 167 fs (fixed), 0.35, 1.1, and 9.6 ps. The correspondence of DOAS decaying concomitantly with hot S1 and the Species Associated Difference Spectra of hot S1 in TA and FSRS suggest that we observe here features of the vibrational relaxation and nuclear reorganization responsible for the hot S1 to S1 transition.
Collapse
Affiliation(s)
- Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Miroslav Kloz
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic
| | - Dario Polli
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Daniele Viola
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Jörn Weißenborn
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ebo Peerbooms
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Giulio Cerullo
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - John T M Kennis
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Mewes L, Ingle RA, Al Haddad A, Chergui M. Broadband visible two-dimensional spectroscopy of molecular dyes. J Chem Phys 2021; 155:034201. [PMID: 34293898 DOI: 10.1063/5.0053554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional Fourier transform spectroscopy is a promising technique to study ultrafast molecular dynamics. Similar to transient absorption spectroscopy, a more complete picture of the dynamics requires broadband laser pulses to observe transient changes over a large enough bandwidth, exceeding the inhomogeneous width of electronic transitions, as well as the separation between the electronic or vibronic transitions of interest. Here, we present visible broadband 2D spectra of a series of dye molecules and report vibrational coherences with frequencies up to ∼1400 cm-1 that were obtained after improvements to our existing two-dimensional Fourier transform setup [Al Haddad et al., Opt. Lett. 40, 312-315 (2015)]. The experiment uses white light from a hollow core fiber, allowing us to acquire 2D spectra with a bandwidth of 200 nm, in a range between 500 and 800 nm, and with a temporal resolution of 10-15 fs. 2D spectra of nile blue, rhodamine 800, terylene diimide, and pinacyanol iodide show vibronic spectral features with at least one vibrational mode and reveal information about structural motion via coherent oscillations of the 2D signals during the population time. For the case of pinacyanol iodide, these observations are complemented by its Raman spectrum, as well as the calculated Raman activity at the ground- and excited-state geometry.
Collapse
Affiliation(s)
- Lars Mewes
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Rebecca A Ingle
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Andre Al Haddad
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Pooler DRS, Pierron R, Crespi S, Costil R, Pfeifer L, Léonard J, Olivucci M, Feringa BL. Effect of charge-transfer enhancement on the efficiency and rotary mechanism of an oxindole-based molecular motor. Chem Sci 2021; 12:7486-7497. [PMID: 34163839 PMCID: PMC8171491 DOI: 10.1039/d1sc01105g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/25/2021] [Indexed: 01/04/2023] Open
Abstract
Harvesting energy and converting it into mechanical motion forms the basis for both natural and artificial molecular motors. Overcrowded alkene-based light-driven rotary motors are powered through sequential photochemical and thermal steps. The thermal helix inversion steps are well characterised and can be manipulated through adjustment of the chemical structure, however, the insights into the photochemical isomerisation steps still remain elusive. Here we report a novel oxindole-based molecular motor featuring pronounced electronic push-pull character and a four-fold increase of the photoisomerization quantum yield in comparison to previous motors of its class. A multidisciplinary approach including synthesis, steady-state and transient absorption spectroscopies, and electronic structure modelling was implemented to elucidate the excited state dynamics and rotary mechanism. We conclude that the charge-transfer character of the excited state diminishes the degree of pyramidalisation at the alkene bond during isomerisation, such that the rotational properties of this oxindole-based motor stand in between the precessional motion of fluorene-based molecular motors and the axial motion of biomimetic photoswitches.
Collapse
Affiliation(s)
- Daisy R S Pooler
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Robin Pierron
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504 F-67034 Strasbourg France
| | - Stefano Crespi
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Romain Costil
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Lukas Pfeifer
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504 F-67034 Strasbourg France
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena 53100 Siena Italy
- Chemistry Department, Bowling Green State University Bowling Green Ohio 43403 USA
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
13
|
Gaulier G, Dietschi Q, Bhattacharyya S, Schmidt C, Montagnese M, Chauvet A, Hermelin S, Chiodini F, Bonacina L, Herrera PL, Rothlisberger U, Rodriguez I, Wolf JP. Ultrafast pulse shaping modulates perceived visual brightness in living animals. SCIENCE ADVANCES 2021; 7:7/18/eabe1911. [PMID: 33910906 PMCID: PMC8081367 DOI: 10.1126/sciadv.abe1911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Vision is usually assumed to be sensitive to the light intensity and spectrum but not to its spectral phase. However, experiments performed on retinal proteins in solution showed that the first step of vision consists in an ultrafast photoisomerization that can be coherently controlled by shaping the phase of femtosecond laser pulses, especially in the multiphoton interaction regime. The link between these experiments in solution and the biological process allowing vision was not demonstrated. Here, we measure the electric signals fired from the retina of living mice upon femtosecond multipulse and single-pulse light stimulation. Our results show that the electrophysiological signaling is sensitive to the manipulation of the light excitation on a femtosecond time scale. The mechanism relies on multiple interactions with the light pulses close to the conical intersection, like pump-dump (photoisomerization interruption) and pump-repump (reverse isomerization) processes. This interpretation is supported both experimentally and by dynamics simulations.
Collapse
Affiliation(s)
- Geoffrey Gaulier
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Quentin Dietschi
- Department of Genetics and Evolution, University of Geneva, 30 Quai Ansermet, 1211 Geneva, Switzerland
| | - Swarnendu Bhattacharyya
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Cédric Schmidt
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Matteo Montagnese
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Adrien Chauvet
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Sylvain Hermelin
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Florence Chiodini
- Biobanque de tissus thérapeutiques, Department of Diagnostic, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Luigi Bonacina
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Ursula Rothlisberger
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ivan Rodriguez
- Department of Genetics and Evolution, University of Geneva, 30 Quai Ansermet, 1211 Geneva, Switzerland
| | - Jean-Pierre Wolf
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland.
| |
Collapse
|
14
|
Loaiza I, Izmaylov AF, Brumer P. Computational approaches to efficient generation of the stationary state for incoherent light excitation. J Chem Phys 2021; 154:124126. [PMID: 33810687 DOI: 10.1063/5.0036622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Light harvesting processes are often computationally studied from a time-dependent viewpoint, in line with ultrafast coherent spectroscopy experiments. Yet, natural processes take place in the presence of incoherent light, which induces a stationary state. Such stationary states can be described using the eigenbasis of the molecular Hamiltonian, but for realistic systems, a full diagonalization is prohibitively expensive. We propose three efficient computational approaches to obtain the stationary state that circumvents system Hamiltonian diagonalization. The connection between the incoherent perturbations, decoherence, and Kraus operators is established.
Collapse
Affiliation(s)
- Ignacio Loaiza
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Artur F Izmaylov
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
15
|
Gurchiek JK, Rose JB, Guberman-Pfeffer MJ, Tilluck RW, Ghosh S, Gascón JA, Beck WF. Fluorescence Anisotropy Detection of Barrier Crossing and Ultrafast Conformational Dynamics in the S 2 State of β-Carotene. J Phys Chem B 2020; 124:9029-9046. [PMID: 32955881 DOI: 10.1021/acs.jpcb.0c06961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carotenoids are usually only weakly fluorescent despite being very strong absorbers in the mid-visible region because their first two excited singlet states, S1 and S2, have very short lifetimes. To probe the structural mechanisms that promote the nonradiative decay of the S2 state to the S1 state, we have carried out a series of fluorescence lineshape and anisotropy measurements with a prototype carotenoid, β-carotene, in four aprotic solvents. The anisotropy values observed in the fluorescence emission bands originating from the S2 and S1 states reveal that the large internal rotations of the emission transition dipole moment, as much as 50° relative to that of the absorption transition dipole moment, are initiated during ultrafast evolution on the S2 state potential energy surface and persist upon nonradiative decay to the S1 state. Electronic structure calculations of the orientation of the transition dipole moment account for the anisotropy results in terms of torsional and pyramidal distortions near the center of the isoprenoid backbone. The excitation wavelength dependence of the fluorescence anisotropy indicates that these out-of-plane conformational motions are initiated by passage over a low-activation energy barrier from the Franck-Condon S2 structure. This conclusion is consistent with detection over the 80-200 K range of a broad, red-shifted fluorescence band from a dynamic intermediate evolving on a steep gradient of the S2 state potential energy surface after crossing the activation barrier. The temperature dependence of the oscillator strength and anisotropy indicate that nonadiabatic passage from S2 through a conical intersection seam to S1 is promoted by the out-of-plane motions of the isoprenoid backbone with strong hindrance by solvent friction.
Collapse
Affiliation(s)
- J K Gurchiek
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Justin B Rose
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Matthew J Guberman-Pfeffer
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06268-1712, United States
| | - Ryan W Tilluck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Soumen Ghosh
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Lombardy 20133, Italy
| | - José A Gascón
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06268-1712, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Marsili E, Olivucci M, Lauvergnat D, Agostini F. Quantum and Quantum-Classical Studies of the Photoisomerization of a Retinal Chromophore Model. J Chem Theory Comput 2020; 16:6032-6048. [PMID: 32931266 DOI: 10.1021/acs.jctc.0c00679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report an in-depth analysis of the photo-induced isomerization of the 2-cis-penta-2,4-dieniminium cation: a minimal model of the 11-cis retinal protonated Schiff base chromophore of the dim-light photoreceptor rhodopsin. Based on recently developed three-dimensional potentials parametrized on ab initio multi-state multi-configurational second-order perturbation theory data, we perform quantum-dynamical studies. In addition, simulations based on various quantum-classical methods, among which Tully surface hopping and the coupled-trajectory approach derived from the exact factorization, allow us to validate their performance against vibronic wavepacket propagation and, therefore, a purely quantum treatment. Quantum-dynamics results uncover qualitative differences with respect to the two-dimensional Hahn-Stock potentials, widely used as model potentials for the isomerization of the same chromophore, due to the increased dimensionality and three-mode correlation. Quantum-classical simulations show, instead, that three-dimensional model potentials are capable of capturing a number of features revealed by atomistic simulations and experimental observations. In particular, a recently reported vibrational phase relationship between double-bond torsion and hydrogen-out-of-plane modes critical for rhodopsin isomerization efficiency is correctly reproduced.
Collapse
Affiliation(s)
- Emanuele Marsili
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France.,Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| |
Collapse
|
17
|
Rich CC, Frontiera RR. Uncovering the Functional Role of Coherent Phonons during the Photoinduced Phase Transition in a Molecular Crystal. J Phys Chem Lett 2020; 11:7502-7509. [PMID: 32845635 DOI: 10.1021/acs.jpclett.0c01834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The atomic motions that make up phonons and molecular vibrations in molecular crystals influence their photophysical and electronic properties, including polaron formation, carrier mobility, and phase transitions. Discriminating between spectator and driving motions is a significant challenge hindering optimization. Unlocking this information and developing fine-tuned controls over actively participating phonon modes would not only lead to a stronger understanding of photochemistry but also provide a significant new tool in controlling solid state chemistry. We present a strategy using rationally designed double pulses to unveil the unique function of specific excited state phonon modes. Using ultrafast spectroscopy, we identified 50 and 90 cm-1 phonons involved in modulating the photoinduced spin-Peierls melting of potassium tetracyanoquinodimethane crystals. We show that the 50 cm-1 phonon specifically corresponds to the coherent nuclear wavepacket involved in the charge transfer component of the overall spin-Peierls phase melting process, while the 90 cm-1 phonon facilitates the phase transition component.
Collapse
Affiliation(s)
- Christopher C Rich
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Shigaev AS, Feldman TB, Nadtochenko VA, Ostrovsky MA, Lakhno VD. Quantum-classical model of the rhodopsin retinal chromophore cis–trans photoisomerization with modified inter-subsystem coupling. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Fang C, Tang L. Mapping Structural Dynamics of Proteins with Femtosecond Stimulated Raman Spectroscopy. Annu Rev Phys Chem 2020; 71:239-265. [PMID: 32075503 DOI: 10.1146/annurev-physchem-071119-040154] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structure-function relationships of biomolecules have captured the interest and imagination of the scientific community and general public since the field of structural biology emerged to enable the molecular understanding of life processes. Proteins that play numerous functional roles in cellular processes have remained in the forefront of research, inspiring new characterization techniques. In this review, we present key theoretical concepts and recent experimental strategies using femtosecond stimulated Raman spectroscopy (FSRS) to map the structural dynamics of proteins, highlighting the flexible chromophores on ultrafast timescales. In particular, wavelength-tunable FSRS exploits dynamic resonance conditions to track transient-species-dependent vibrational motions, enabling rational design to alter functions. Various ways of capturing excited-state chromophore structural snapshots in the time and/or frequency domains are discussed. Continuous development of experimental methodologies, synergistic correlation with theoretical modeling, and the expansion to other nonequilibrium, photoswitchable, and controllable protein systems will greatly advance the chemical, physical, and biological sciences.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| |
Collapse
|
20
|
Woods KN, Pfeffer J. Conformational perturbation, allosteric modulation of cellular signaling pathways, and disease in P23H rhodopsin. Sci Rep 2020; 10:2657. [PMID: 32060349 PMCID: PMC7021821 DOI: 10.1038/s41598-020-59583-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
In this investigation we use THz spectroscopy and MD simulation to study the functional dynamics and conformational stability of P23H rhodopsin. The P23H mutation of rod opsin is the most common cause of human binding autosomal dominant retinitis pigmentosa (ADRP), but the precise mechanism by which this mutation leads to photoreceptor cell degeneration has not yet been elucidated. Our measurements confirm conformational instability in the global modes of the receptor and an active-state that uncouples the torsional dynamics of the retinal with protein functional modes, indicating inefficient signaling in P23H and a drastically altered mechanism of activation when contrasted with the wild-type receptor. Further, our MD simulations indicate that P23H rhodopsin is not functional as a monomer but rather, due to the instability of the mutant receptor, preferentially adopts a specific homodimerization motif. The preferred homodimer configuration induces structural changes in the receptor tertiary structure that reduces the affinity of the receptor for the retinal and significantly modifies the interactions of the Meta-II signaling state. We conjecture that the formation of the specific dimerization motif of P23H rhodopsin represents a cellular-wide signaling perturbation that is directly tied with the mechanism of P23H disease pathogenesis. Our results also support a direct role for rhodopsin P23H dimerization in photoreceptor rod death.
Collapse
Affiliation(s)
- Kristina N Woods
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität, 80538, München, Germany.
| | - Jürgen Pfeffer
- Technical University of Munich, Bavarian School of Public Policy, 80333, München, Germany
| |
Collapse
|
21
|
Gueye M, Paolino M, Gindensperger E, Haacke S, Olivucci M, Léonard J. Vibrational coherence and quantum yield of retinal-chromophore-inspired molecular switches. Faraday Discuss 2020; 221:299-321. [DOI: 10.1039/c9fd00062c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV-Vis transient absorption (TA) spectroscopy is used to carry out a systematic investigation of the ultrafast CC double photoisomerization dynamics and quantum yield of each isomer of a set of six chromophores based on the same retinal-inspired, indanylidene pyrrolinium (IP) molecular framework.
Collapse
Affiliation(s)
- Moussa Gueye
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- UMR 7504
- F-67034 Strasbourg
| | - Marco Paolino
- Dipartimento di Biotechnologie
- Chimica e Farmacia
- Università di Siena
- I-53100 Siena
- Italy
| | - Etienne Gindensperger
- Université de Strasbourg
- CNRS
- Laboratoire de Chimie Quantique
- Institut de Chimie
- UMR 7177
| | - Stefan Haacke
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- UMR 7504
- F-67034 Strasbourg
| | - Massimo Olivucci
- Dipartimento di Biotechnologie
- Chimica e Farmacia
- Università di Siena
- I-53100 Siena
- Italy
| | - Jérémie Léonard
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- UMR 7504
- F-67034 Strasbourg
| |
Collapse
|
22
|
Schnedermann C, Alvertis AM, Wende T, Lukman S, Feng J, Schröder FAYN, Turban DHP, Wu J, Hine NDM, Greenham NC, Chin AW, Rao A, Kukura P, Musser AJ. A molecular movie of ultrafast singlet fission. Nat Commun 2019; 10:4207. [PMID: 31527736 PMCID: PMC6746807 DOI: 10.1038/s41467-019-12220-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/26/2019] [Indexed: 11/09/2022] Open
Abstract
The complex dynamics of ultrafast photoinduced reactions are governed by their evolution along vibronically coupled potential energy surfaces. It is now often possible to identify such processes, but a detailed depiction of the crucial nuclear degrees of freedom involved typically remains elusive. Here, combining excited-state time-domain Raman spectroscopy and tree-tensor network state simulations, we construct the full 108-atom molecular movie of ultrafast singlet fission in a pentacene dimer, explicitly treating 252 vibrational modes on 5 electronic states. We assign the tuning and coupling modes, quantifying their relative intensities and contributions, and demonstrate how these modes coherently synchronise to drive the reaction. Our combined experimental and theoretical approach reveals the atomic-scale singlet fission mechanism and can be generalized to other ultrafast photoinduced reactions in complex systems. This will enable mechanistic insight on a detailed structural level, with the ultimate aim to rationally design molecules to maximise the efficiency of photoinduced reactions.
Collapse
Affiliation(s)
- Christoph Schnedermann
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Antonios M Alvertis
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Torsten Wende
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
| | - Steven Lukman
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jiaqi Feng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Florian A Y N Schröder
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - David H P Turban
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Nicholas D M Hine
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Alex W Chin
- Centre National de la Recherce Scientifique, Institute des Nanosciences de Paris, Sorbonne Universite, Paris, France
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
| | - Andrew J Musser
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK.
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14853, USA.
| |
Collapse
|
23
|
Bizimana LA, Farfan CA, Brazard J, Turner DB. E to Z Photoisomerization of Phytochrome Cph1Δ Exceeds the Born-Oppenheimer Adiabatic Limit. J Phys Chem Lett 2019; 10:3550-3556. [PMID: 31181167 DOI: 10.1021/acs.jpclett.9b01137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Born-Oppenheimer adiabatic limit applies broadly in chemistry because most reactions occur on the ground electronic state. Photochemical reactions involve two or more electronic states and need not be subject to this adiabatic limit. The spectroscopic signatures of nonadiabatic processes are subtle, and therefore, experimental investigations have been limited to the few systems dominated by single photochemical outcomes. Systems with branched excited-state pathways have been neglected, despite their potential to reveal insights into photochemical reactivity. Here we present experimental evidence from coherent three-dimensional electronic spectroscopy that the E to Z photoisomerization of phytochrome Cph1 is strongly nonadiabatic, and the simulations reproduce the measured features only when the photoisomerization proceeds nonadiabatically near, but not through, a conical intersection. The results broaden the general understanding of photoisomerization mechanisms and motivate future studies of nonadiabatic processes with multiple outcomes arising from branching on excited-state potential energy surfaces.
Collapse
Affiliation(s)
- Laurie A Bizimana
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Camille A Farfan
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Johanna Brazard
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Daniel B Turner
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| |
Collapse
|
24
|
Bull JN, West CW, Anstöter CS, da Silva G, Bieske EJ, Verlet JRR. Ultrafast photoisomerisation of an isolated retinoid. Phys Chem Chem Phys 2019; 21:10567-10579. [PMID: 31073587 DOI: 10.1039/c9cp01624d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The photoinduced excited state dynamics of gas-phase trans-retinoate (deprotonated trans-retinoic acid, trans-RA-) are studied using tandem ion mobility spectrometry coupled with laser spectroscopy, and frequency-, angle- and time-resolved photoelectron imaging. Photoexcitation of the bright S3(ππ*) ← S0 transition leads to internal conversion to the S1(ππ*) state on a ≈80 fs timescale followed by recovery of S0 and concomitant isomerisation to give the 13-cis (major) and 9-cis (minor) photoisomers on a ≈180 fs timescale. The sub-200 fs stereoselective photoisomerisation parallels that for the retinal protonated Schiff base chromophore in bacteriorhodopsin. Measurements on trans-RA- in methanol using the solution photoisomerisation action spectroscopy technique show that 13-cis-RA- is also the principal photoisomer, although the 13-cis and 9-cis photoisomers are formed with an inverted branching ratio with photon energy in methanol when compared with the gas phase, presumably due to solvent-induced modification of potential energy surfaces and inhibition of electron detachment processes. Comparison of the gas-phase time-resolved data with transient absorption spectroscopy measurements on retinoic acid in methanol suggest that photoisomerisation is roughly six times slower in solution. This work provides clear evidence that solvation significantly affects the photoisomerisation dynamics of retinoid molecules.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Christopher W West
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Evan J Bieske
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
25
|
Roy PP, Abe-Yoshizumi R, Kandori H, Buckup T. Point Mutation of Anabaena Sensory Rhodopsin Enhances Ground-State Hydrogen Out-of-Plane Wag Raman Activity. J Phys Chem Lett 2019; 10:1012-1017. [PMID: 30742765 DOI: 10.1021/acs.jpclett.8b03805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interaction between the retinal protonated Schiff base (RPSB) and surrounding protein residues inside the retinal pocket is believed to play a major role in the ultrafast isomerization of the former. Coherent time-resolved vibrational spectroscopic techniques are applied to reveal the effect of changes in the protein architecture by point mutations (V112N and L83Q) close to the RPSB in Anabaena sensory rhodopsin (ASR). Our study reveals that such point mutations have a minor effect on the low-frequency (<400 cm-1) torsional modes but dramatically influence the ground-state vibrational Raman activity of the C14-H out-of-plane (HOOP) wag mode (800-820 cm-1). In mutated ASR, the increase of HOOP Raman activity in the ground state is experimentally observed for the all- trans RPSB, which has shorter excited-state lifetime than in wild-type ASR. This indicates that predistortion of the RPSB inside the mutated retinal pocket is a major factor in the acceleration of the isomerization rate.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69120 Heidelberg , Germany
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
- OptoBioTechnology Research Center , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| | - Tiago Buckup
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69120 Heidelberg , Germany
| |
Collapse
|
26
|
Kraack JP, Motzkus M, Buckup T. Excited State Vibrational Spectra of All- trans Retinal Derivatives in Solution Revealed By Pump-DFWM Experiments. J Phys Chem B 2018; 122:12271-12281. [PMID: 30507189 DOI: 10.1021/acs.jpcb.8b08495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ultrafast structural changes during the photoinduced isomerization of the retinal-protonated Schiff base (RPSB) is still a poorly understood aspect in the retinal's photochemistry. In this work, we apply pump-degenerate four-wave mixing (pump-DFWM) to all- trans retinal (ATR) and retinal Schiff bases (RSB) to resolve coherent high- and low-frequency vibrational signatures from excited electronic states. We show that the vibrational spectra of excited singlet states in these samples exhibit pronounced differences compared to the relaxed ground state. Pump-DFWM results indicate three major features for ATR and RSB. (i) Excited state vibrational spectra of ATR and RSB consist predominately of low-frequency modes in the energetic range 100-500 cm-1. (ii) Excited state vibrational spectra show distinct differences for excitation in specific regions of electronic transitions of excited state absorption and emission. (iii) Low-frequency modes in ATR and RSB are inducible during the entire lifetime of the excited electronic states. This latter effect points to a transient molecular structure that, following initial relaxation between different excited electronic states, does not change anymore over the lifetime of the finally populated excited electronic state.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| |
Collapse
|
27
|
Roy PP, Kato Y, Abe-Yoshizumi R, Pieri E, Ferré N, Kandori H, Buckup T. Mapping the ultrafast vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys 2018; 20:30159-30173. [PMID: 30484447 DOI: 10.1039/c8cp05469j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discrepancies in the isomerization dynamics and quantum yields of the trans and cis retinal protonated Schiff base is a well-known issue in the context of retinal photochemistry. Anabaena Sensory Rhodopsin (ASR) is a microbial retinal protein that comprises a retinal chromophore in two ground state (GS) conformations: all-trans, 15-anti (AT) and 13-cis, 15-syn (13C). In this study, we applied impulsive vibrational spectroscopic techniques (DFWM, pump-DFWM and pump-IVS) to ASR to shed more light on how the structural changes take place in the excited state within the same protein environment. Our findings point to distinct features in the ground state structural conformations as well as to drastically different evolutions in the excited state manifold. The ground state vibrational spectra show stronger Raman activity of the C14-H out-of-plane wag (at about 805 cm-1) for the 13C isomer than that for the AT isomer, which hints at a pre-distortion of 13C in the ground state. Evolution of the Raman frequency after interaction with the actinic pulse shows a blue-shift for the C[double bond, length as m-dash]C stretching and CH3 rocking mode for both isomers. For AT, however, the blue-shift is not instantaneous as observed for the 13C isomer, rather it takes more than 200 fs to reach the maximum frequency shift. This frequency blue-shift is rationalized by a decrease in the effective conjugation length during the isomerization reaction, which further confirms a slower formation of the twisted state for the AT isomer and corroborates the presence of a barrier in the excited state trajectory previously predicted by quantum chemical calculations.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Brinkmann A, Sternberg U, Bovee-Geurts PHM, Fernández Fernández I, Lugtenburg J, Kentgens APM, DeGrip WJ. Insight into the chromophore of rhodopsin and its Meta-II photointermediate by 19F solid-state NMR and chemical shift tensor calculations. Phys Chem Chem Phys 2018; 20:30174-30188. [PMID: 30484791 DOI: 10.1039/c8cp05886e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
19F nuclei are useful labels in solid-state NMR studies, since their chemical shift and tensor elements are very sensitive to the electrostatic and space-filling properties of their local environment. In this study we have exploited a fluorine substituent, strategically placed at the C-12-position of 11-cis retinal, the chromophore of visual rhodopsins. This label was used to explore the local environment of the chromophore in the ground state of bovine rhodopsin and its active photo-intermediate Meta II. In addition, the chemical shift and tensor elements of the chromophore in the free state in a membrane environment and the bound state in the protein were determined. Upon binding of the chromophore into rhodopsin and Meta II, the isotropic chemical shift changes in the opposite direction by +9.7 and -8.4 ppm, respectively. An unusually large isotropic shift difference of 35.9 ppm was observed between rhodopsin and Meta II. This partly originates in the light-triggered 11-cis to all-trans isomerization of the chromophore. The other part reflects the local conformational rearrangements in the chromophore and the binding pocket. These NMR data were correlated with the available X-ray structures of rhodopsin and Meta II using bond polarization theory. For this purpose hydrogen atoms have to be inserted and hereto a family of structures were derived that best correlated with the well-established 13C chemical shifts. Based upon these structures, a 12-F derivative was obtained that best corresponded with the experimentally determined 19F chemical shifts and tensor elements. The combined data indicate strong changes in the local environment of the C-12 position and a substantially different interaction pattern with the protein in Meta II as compared to rhodopsin.
Collapse
Affiliation(s)
- Andreas Brinkmann
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kaneshima K, Ninota Y, Sekikawa T. Time-resolved high-harmonic spectroscopy of ultrafast photoisomerization dynamics. OPTICS EXPRESS 2018; 26:31039-31054. [PMID: 30469991 DOI: 10.1364/oe.26.031039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/01/2018] [Indexed: 06/09/2023]
Abstract
We report the first time-resolved high-harmonic spectroscopy (TR-HHS) study of a chemical bond rearrangement. We investigate the transient change of the high-harmonic signal from 1,3-cyclohexadiene (CHD), which undergoes ring-opening and isomerizes to 1,3,5-hexatriene (HT) upon photoexcitation. We associated the harmonic yield variation with the changes in the molecule's electronic state and vibrational frequencies, which are caused by isomerization. This showed us that the electronic excited state of CHD created through two-photon absorption of 3.1 eV photons relaxes almost completely within 100 fs to the electronic ground state of CHD with vibrational excitation. Subsequently, the molecule isomerizes to HT (i.e., ring-opening occurs, around 400 fs after the excitation). The present results demonstrate that TR-HHS, which can track both electronic and nuclear dynamics, is a powerful tool for studying ultrafast photochemical reactions.
Collapse
|
30
|
Duan HG, Qi DL, Sun ZR, Miller RD, Thorwart M. Signature of the geometric phase in the wave packet dynamics on hypersurfaces. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Sala M, Egorova D. Quantum dynamics of multi-dimensional rhodopsin photoisomerization models: Approximate versus accurate treatment of the secondary modes. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Pandya R, Chen RYS, Cheminal A, Thomas T, Thampi A, Tanoh A, Richter J, Shivanna R, Deschler F, Schnedermann C, Rao A. Observation of Vibronic-Coupling-Mediated Energy Transfer in Light-Harvesting Nanotubes Stabilized in a Solid-State Matrix. J Phys Chem Lett 2018; 9:5604-5611. [PMID: 30149711 DOI: 10.1021/acs.jpclett.8b02325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrafast vibrational spectroscopy is employed to obtain real-time structural information on energy transport in double-walled light-harvesting nanotubes at room temperature, stabilized in a host matrix to mimic the rigid scaffolds of natural light-harvesting systems. We observe evidence of a low-frequency vibrational mode at 315 cm-1, which transfers excitons from the outer wall of the nanotubes to a crossing point through which energy transfer to the inner wall can occur. This mode is furthermore absent in solution phase. Importantly, the coherence of this mode is not transferred to the inner wall upon energy transfer and is only present on the outer wall's excited-state energy surface, highlighting that complete energy transfer between the outer and inner walls does not take place. Isolation of the individual walls of the nanotubes provides evidence that this mode corresponds to a supramolecular motion of the nanotubes. Our results emphasize the importance of the solid-state environment in modulating vibronic coupling and directing energy transfer in molecular light-harvesting systems.
Collapse
Affiliation(s)
- Raj Pandya
- Cavendish Laboratory , University of Cambridge , J. J. Thompson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Richard Y S Chen
- Cavendish Laboratory , University of Cambridge , J. J. Thompson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Alexandre Cheminal
- Cavendish Laboratory , University of Cambridge , J. J. Thompson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Tudor Thomas
- Cavendish Laboratory , University of Cambridge , J. J. Thompson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Arya Thampi
- Cavendish Laboratory , University of Cambridge , J. J. Thompson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Arelo Tanoh
- Cavendish Laboratory , University of Cambridge , J. J. Thompson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Johannes Richter
- Cavendish Laboratory , University of Cambridge , J. J. Thompson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Ravichandran Shivanna
- Cavendish Laboratory , University of Cambridge , J. J. Thompson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Felix Deschler
- Cavendish Laboratory , University of Cambridge , J. J. Thompson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Christoph Schnedermann
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Akshay Rao
- Cavendish Laboratory , University of Cambridge , J. J. Thompson Avenue , CB3 0HE Cambridge , United Kingdom
| |
Collapse
|
33
|
Multidimensional Vibrational Coherence Spectroscopy. Top Curr Chem (Cham) 2018; 376:35. [DOI: 10.1007/s41061-018-0213-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
34
|
Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nat Chem 2018; 10:449-455. [DOI: 10.1038/s41557-018-0014-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 01/23/2018] [Indexed: 01/05/2023]
|
35
|
Gueye M, Manathunga M, Agathangelou D, Orozco Y, Paolino M, Fusi S, Haacke S, Olivucci M, Léonard J. Engineering the vibrational coherence of vision into a synthetic molecular device. Nat Commun 2018; 9:313. [PMID: 29358689 PMCID: PMC5778125 DOI: 10.1038/s41467-017-02668-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022] Open
Abstract
The light-induced double-bond isomerization of the visual pigment rhodopsin operates a molecular-level optomechanical energy transduction, which triggers a crucial protein structure change. In fact, rhodopsin isomerization occurs according to a unique, ultrafast mechanism that preserves mode-specific vibrational coherence all the way from the reactant excited state to the primary photoproduct ground state. The engineering of such an energy-funnelling function in synthetic compounds would pave the way towards biomimetic molecular machines capable of achieving optimum light-to-mechanical energy conversion. Here we use resonance and off-resonance vibrational coherence spectroscopy to demonstrate that a rhodopsin-like isomerization operates in a biomimetic molecular switch in solution. Furthermore, by using quantum chemical simulations, we show why the observed coherent nuclear motion critically depends on minor chemical modifications capable to induce specific geometric and electronic effects. This finding provides a strategy for engineering vibrationally coherent motions in other synthetic systems. The ultrafast, vibrationally coherent photoisomerization of rhodopsin is a model of efficient photomechanical energy conversion at the molecular scale. Here, the authors demonstrate a similar photoreaction in synthetic compounds, unraveling the underlying mechanism and discussing its implications.
Collapse
Affiliation(s)
- Moussa Gueye
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034, Strasbourg, France
| | - Madushanka Manathunga
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Damianos Agathangelou
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034, Strasbourg, France
| | - Yoelvis Orozco
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034, Strasbourg, France
| | - Marco Paolino
- Dipartimento di Biotechnologie, Chimica e Farmacia, Università di Siena, I-53100, Siena, Italy
| | - Stefania Fusi
- Dipartimento di Biotechnologie, Chimica e Farmacia, Università di Siena, I-53100, Siena, Italy
| | - Stefan Haacke
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034, Strasbourg, France
| | - Massimo Olivucci
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034, Strasbourg, France. .,Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA. .,Dipartimento di Biotechnologie, Chimica e Farmacia, Università di Siena, I-53100, Siena, Italy.
| | - Jérémie Léonard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034, Strasbourg, France.
| |
Collapse
|
36
|
Farag MH, Jansen TLC, Knoester J. The origin of absorptive features in the two-dimensional electronic spectra of rhodopsin. Phys Chem Chem Phys 2018; 20:12746-12754. [DOI: 10.1039/c8cp00638e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-state three-mode model Hamiltonian reveals the origin of the absorptive features in the two-dimensional electronic spectra of rhodopsin.
Collapse
Affiliation(s)
- Marwa H. Farag
- University of Groningen
- Zernike Institute for Advanced Materials
- 9747 AG Groningen
- The Netherlands
| | - Thomas L. C. Jansen
- University of Groningen
- Zernike Institute for Advanced Materials
- 9747 AG Groningen
- The Netherlands
| | - Jasper Knoester
- University of Groningen
- Zernike Institute for Advanced Materials
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
37
|
Ni L, Huynh U, Cheminal A, Thomas TH, Shivanna R, Hinrichsen TF, Ahmad S, Sadhanala A, Rao A. Real-Time Observation of Exciton-Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells. ACS NANO 2017; 11:10834-10843. [PMID: 29064668 DOI: 10.1021/acsnano.7b03984] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication, and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons, remains an open question. Here, we investigate two widely used materials, namely, butylammonium lead iodide (CH3(CH2)3NH3)2PbI4 and hexylammonium lead iodide (CH3(CH2)5NH3)2PbI4, both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton-phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm-1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 and 137 cm-1. Using the determined optical phonon energies, we analyzed photoluminescence broadening mechanisms. At low temperatures (<100 K), the broadening is due to acoustic phonon scattering, whereas at high temperatures, LO phonon-exciton coupling is the dominant mechanism. Our results help explain the broad photoluminescence line shape observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.
Collapse
Affiliation(s)
- Limeng Ni
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Uyen Huynh
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Alexandre Cheminal
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tudor H Thomas
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Ravichandran Shivanna
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Ture F Hinrichsen
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Shahab Ahmad
- Institute for Manufacturing, Department of Engineering, University of Cambridge , 17 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Aditya Sadhanala
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
38
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
39
|
Qi DL, Duan HG, Sun ZR, Miller RJD, Thorwart M. Tracking an electronic wave packet in the vicinity of a conical intersection. J Chem Phys 2017; 147:074101. [DOI: 10.1063/1.4989462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Da-Long Qi
- State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, 3663 North Zhongshan Road, 200062 Shanghai, China
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hong-Guang Duan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Zhen-Rong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, 3663 North Zhongshan Road, 200062 Shanghai, China
| | - R. J. Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
40
|
Celestino A, Eisfeld A. Tuning Nonradiative Lifetimes via Molecular Aggregation. J Phys Chem A 2017; 121:5948-5953. [DOI: 10.1021/acs.jpca.7b06259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alan Celestino
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Alexander Eisfeld
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| |
Collapse
|
41
|
Time-resolved photoelectron signals from bifurcating electron wavepackets propagated across conical intersection in path-branching dynamics. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Hall CR, Conyard J, Heisler IA, Jones G, Frost J, Browne WR, Feringa BL, Meech SR. Ultrafast Dynamics in Light-Driven Molecular Rotary Motors Probed by Femtosecond Stimulated Raman Spectroscopy. J Am Chem Soc 2017; 139:7408-7414. [PMID: 28486804 DOI: 10.1021/jacs.7b03599] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photochemical isomerization in sterically crowded chiral alkenes is the driving force for molecular rotary motors in nanoscale machines. Here the excited-state dynamics and structural evolution of the prototypical light-driven rotary motor are followed on the ultrafast time scale by femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption (TA). TA reveals a sub-100-fs blue shift and decay of the Franck-Condon bright state arising from relaxation along the reactive potential energy surface. The decay is accompanied by coherently excited vibrational dynamics which survive the excited-state structural evolution. The ultrafast Franck-Condon bright state relaxes to a dark excited state, which FSRS reveals to have a rich spectrum compared to the electronic ground state, with the most intense Raman-active modes shifted to significantly lower wavenumber. This is discussed in terms of a reduced bond order of the central bridging bond and overall weakening of bonds in the dark state, which is supported by electronic structure calculations. The observed evolution in the FSRS spectrum is assigned to vibrational cooling accompanied by partitioning of the dark state between the product isomer and the original ground state. Formation of the product isomer is observed in real time by FSRS. It is formed vibrationally hot and cools over several picoseconds, completing the characterization of the light-driven half of the photocycle.
Collapse
Affiliation(s)
- Christopher R Hall
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Jamie Conyard
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Ismael A Heisler
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Garth Jones
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - James Frost
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Ben L Feringa
- Synthetic Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Stephen R Meech
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
43
|
Johnson PJM, Farag MH, Halpin A, Morizumi T, Prokhorenko VI, Knoester J, Jansen TLC, Ernst OP, Miller RJD. The Primary Photochemistry of Vision Occurs at the Molecular Speed Limit. J Phys Chem B 2017; 121:4040-4047. [PMID: 28358485 DOI: 10.1021/acs.jpcb.7b02329] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrafast photochemical reactions are initiated by vibronic transitions from the reactant ground state to the excited potential energy surface, directly populating excited-state vibrational modes. The primary photochemical reaction of vision, the isomerization of retinal in the protein rhodopsin, is known to be a vibrationally coherent reaction, but the Franck-Condon factors responsible for initiating the process have been difficult to resolve with conventional time-resolved spectroscopies. Here we employ experimental and theoretical 2D photon echo spectroscopy to directly resolve for the first time the Franck-Condon factors that initiate isomerization on the excited potential energy surface and track the reaction dynamics. The spectral dynamics reveal vibrationally coherent isomerization occurring on the fastest possible time scale, that of a single period of the local torsional reaction coordinate. We successfully model this process as coherent wavepacket motion through a conical intersection on a ∼30 fs time scale, confirming the reaction coordinate as a local torsional coordinate with a frequency of ∼570 cm-1. As a result of spectral features being spread out along two frequency coordinates, we unambiguously assign reactant and product states following passage through the conical intersection, which reveal the key vibronic transitions that initiate the vibrationally coherent photochemistry of vision.
Collapse
Affiliation(s)
- Philip J M Johnson
- Departments of Chemistry & Physics, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Marwa H Farag
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Max Planck Institute for the Structure and Dynamics of Matter , Atomically Resolved Dynamics Division, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Alexei Halpin
- Departments of Chemistry & Physics, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto , 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Valentyn I Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter , Atomically Resolved Dynamics Division, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto , 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto , 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - R J Dwayne Miller
- Departments of Chemistry & Physics, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Max Planck Institute for the Structure and Dynamics of Matter , Atomically Resolved Dynamics Division, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
44
|
Carbery WP, Verma A, Turner DB. Spin-Orbit Coupling Drives Femtosecond Nonadiabatic Dynamics in a Transition Metal Compound. J Phys Chem Lett 2017; 8:1315-1322. [PMID: 28266859 DOI: 10.1021/acs.jpclett.7b00130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transient absorption measurements conducted using broadband, 6 fs laser pulses reveal unexpected femtosecond dynamics in the [IrBr6]2- model system. Vibrational spectra and the X-ray crystal structure indicate that these dynamics are not induced by a Jahn-Teller distortion, a type of conical intersection typically associated with the spectral features of transition metal compounds. Two-dimensional electronic spectra of [IrBr6]2- contain 23 cross peaks, which necessarily arise from spin-orbit coupling. Real-valued 2D spectra support a spectroscopic basis where strong nonadiabatic coupling, ascribed to multiple conical intersections, mediates rapid energy relaxation to the lowest-energy excited state. Subsequent analysis gives rise to a more generalized description of a conical intersection as a degeneracy between two adiabatic states having the same total angular momentum.
Collapse
Affiliation(s)
- William P Carbery
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Archana Verma
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Daniel B Turner
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
45
|
Roy K, Kayal S, Ariese F, Beeby A, Umapathy S. Mode specific excited state dynamics study of bis(phenylethynyl)benzene from ultrafast Raman loss spectroscopy. J Chem Phys 2017; 146:064303. [DOI: 10.1063/1.4975174] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Khokan Roy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Surajit Kayal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Freek Ariese
- On leave from LaserLaB, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Andrew Beeby
- Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
- On leave from LaserLaB, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
- Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, United Kingdom
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
46
|
Wu Y, Zhang C, Ma H. Ab initio conical intersections for the Si( 1D) + H 2 reaction system: a lowest five singlet states study. RSC Adv 2017. [DOI: 10.1039/c7ra01021d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conical intersections and geometric phase effects of the Si(1D) + H2 system were clarified intuitively, and important features of them are revealed.
Collapse
Affiliation(s)
- Yanan Wu
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Chunfang Zhang
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Haitao Ma
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
47
|
De Sio A, Lienau C. Vibronic coupling in organic semiconductors for photovoltaics. Phys Chem Chem Phys 2017; 19:18813-18830. [DOI: 10.1039/c7cp03007j] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ultrafast two-dimensional electronic spectroscopy reveals vibronically-assisted coherent charge transport and separation in organic materials and opens up new perspectives for artificial light-to-current conversion.
Collapse
Affiliation(s)
- Antonietta De Sio
- Institut für Physik and Center of Interface Science
- Carl von Ossietzky Universität
- Oldenburg 26129
- Germany
| | - Christoph Lienau
- Institut für Physik and Center of Interface Science
- Carl von Ossietzky Universität
- Oldenburg 26129
- Germany
- Research Center Neurosensory Science
| |
Collapse
|
48
|
Abstract
Stimulated Raman scattering (SRS) describes a family of techniques first discovered and developed in the 1960s. Whereas the nascent history of the technique is parallel to that of laser light sources, recent advances have spurred a resurgence in its use and development that has spanned across scientific fields and spatial scales. SRS is a nonlinear technique that probes the same vibrational modes of molecules that are seen in spontaneous Raman scattering. While spontaneous Raman scattering is an incoherent technique, SRS is a coherent process, and this fact provides several advantages over conventional Raman techniques, among which are much stronger signals and the ability to time-resolve the vibrational motions. Technological improvements in pulse generation and detection strategies have allowed SRS to probe increasingly smaller volumes and shorter time scales. This has enabled SRS research to move from its original domain, of probing bulk media, to imaging biological tissues and single cells at the micro scale, and, ultimately, to characterizing samples with subdiffraction resolution at the nanoscale. In this Review, we give an overview of the history of the technique, outline its basic properties, and present historical and current uses at multiple length scales to underline the utility of SRS to the molecular sciences.
Collapse
Affiliation(s)
- Richard C Prince
- Department of Biomedical Engineering, University of California, Irvine , 1436 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis , B-18, 139 Smith Hall, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine , 1107 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
49
|
Sala M, Egorova D. Two-dimensional photon-echo spectroscopy at a conical intersection: A two-mode pyrazine model with dissipation. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Coupled HOOP signature correlates with quantum yield of isorhodopsin and analog pigments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:118-125. [PMID: 27836700 DOI: 10.1016/j.bbabio.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/29/2016] [Accepted: 11/04/2016] [Indexed: 11/21/2022]
Abstract
With a quantum yield of 0.66±0.03 the photoisomerization efficiency of the visual pigment rhodopsin (11-cis⇒all-trans chromophore) is exceptionally high. This is currently explained by coherent coupling of the excited state electronic wavepacket with local vibrational nuclear modes, facilitating efficient cross-over at a conical intersection onto the photoproduct energy surface. The 9-cis counterpart of rhodopsin, dubbed isorhodopsin, has a much lower quantum yield (0.26±0.03), which, however, can be markedly enhanced by modification of the retinal chromophore (7,8-dihydro and 9-cyclopropyl derivatives). The coherent coupling in the excited state is promoted by torsional skeletal and coupled HOOP vibrational modes, in combination with a twisted conformation around the isomerization region. Since such torsion will strongly enhance the infrared intensity of coupled HOOP modes, we investigated FTIR difference spectra of rhodopsin, isorhodopsin and several analog pigments in the spectral range of isolated and coupled HCCH wags. As a result we propose that the coupled HOOP signature in these retinal pigments correlates with the distribution of torsion over counteracting segments in the retinylidene polyene chain. As such the HOOP signature can act as an indicator for the photoisomerization efficiency, and can explain the higher quantum yield of the 7,8-dihydro and 9-cyclopropyl-isorhodopsin analogs.
Collapse
|