1
|
McDermott L, Walters ZG, French SA, Clark AM, Ding J, Kelleghan AV, Houk KN, Garg NK. A solution to the anti-Bredt olefin synthesis problem. Science 2024; 386:eadq3519. [PMID: 39480919 DOI: 10.1126/science.adq3519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/30/2024] [Indexed: 11/02/2024]
Abstract
The π-bonds in unsaturated organic molecules are typically associated with having well-defined geometries that are conserved across diverse structural contexts. Nonetheless, these geometries can be distorted, leading to heightened reactivity of the π-bond. Although π-bond-containing compounds with bent geometries are well utilized in synthetic chemistry, the corresponding leveraging of π-bond-containing compounds that display twisting or pyramidalization remains underdeveloped. We report a study of perhaps the most notorious class of geometrically distorted molecules that contain π-bonds: anti-Bredt olefins (ABOs). ABOs have been known since 1924, and conventional wisdom maintains that ABOs are difficult or impossible to access. We provide a solution to this long-standing problem. Our study also highlights the strategic manipulation of compounds that display considerable distortion arising from the presence of geometrically constrained π-bonds.
Collapse
Affiliation(s)
- Luca McDermott
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Zach G Walters
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Sarah A French
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Allison M Clark
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Jiaming Ding
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Andrew V Kelleghan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Kim N, Choi M, Suh SE, Chenoweth DM. Aryne Chemistry: Generation Methods and Reactions Incorporating Multiple Arynes. Chem Rev 2024; 124:11435-11522. [PMID: 39383091 DOI: 10.1021/acs.chemrev.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Arynes hold significance for the efficient fusion of (hetero) arenes with diverse substrates, advancing the construction of complex molecular frameworks. Employing multiple equivalents of arynes is particularly effective in the rapid formation of polycyclic cores found in optoelectronic materials and bioactive compounds. However, the inherent reactivity of arynes often leads to side reactions, yielding unanticipated products and underlining the importance of a detailed investigation into the use of multiple arynes to fine-tune their reactivity. This review centers on methodologies and syntheses in organic reactions involving multiple arynes, categorizing based on mechanisms like cycloadditions, σ-bond insertions, nucleophilic additions, and ene reactions, and discusses aryne polymerization. The categorization based on these mechanisms includes two primary approaches: the first entails multiple aryne engagement within a single step while the second approach involves using a single equivalent of aryne sequentially across multiple steps, with both requiring strict reactivity control to ensure precise aryne participation in each respective step. Additionally, the review provides an in-depth analysis of the selection of aryne precursors, organized chronologically and by activation strategy, offering a comprehensive background that supports the main theme of multiple aryne utilization. The expectation remains that this comprehensive review will be invaluable in designing advanced syntheses engaging multiple arynes.
Collapse
Affiliation(s)
- Nayoung Kim
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Myungsoo Choi
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Halnor SV, Singh M, Dhote PS, Ramana CV. Synthesis of Tetracyclic Benzoxazolo-indol-3-ones from Isatogens and Arynes through a [3 + 2]-Cycloaddition and Skeletal Reorganization. J Org Chem 2024; 89:14919-14928. [PMID: 39377469 DOI: 10.1021/acs.joc.4c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The construction of an unprecedented tetracyclic benzoxazolo-indol-3-one scaffold has been executed through the [3 + 2]-cycloaddition of isatogens with arynes. The initially formed benzisoxazolo-indol-3-one intermediate undergoes a skeletal reorganization through a 1,3-sigmatropic shift/retro-Mannich reaction with the net formation of one C-N and two C-O bonds. The Lewis acid-catalyzed allylation of some of the resulting benzoxazolo-indol-3-ones resulted in oxazepino-indolones with promising photophysical properties.
Collapse
Affiliation(s)
- Swapnil V Halnor
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Maneesha Singh
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pawan S Dhote
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Zhang Y, Lei Y, Zhang K, Hu Q, Chang M, Hu Y. Single-Pot Reaction of Novel Fused Indolizine Derivatives. Org Lett 2024; 26:8267-8271. [PMID: 39297537 DOI: 10.1021/acs.orglett.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
An unprecedented fused hexacyclic indolizine derivative generated by a single-pot reaction has been developed. This model overcomes the use of catalysts, inefficient atom economy, low yields, and limitations of lengthy steps. Density functional theory calculations reveal the reaction mechanism in which the oxygen molecule plays a crucial role in trapping the penultimate zwitterionic or biradical intermediate to generate the observed products.
Collapse
Affiliation(s)
- Yajuan Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, State Laboratory Cultivation Base, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yu Lei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, State Laboratory Cultivation Base, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Ke Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, State Laboratory Cultivation Base, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qiong Hu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, State Laboratory Cultivation Base, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Meng Chang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, State Laboratory Cultivation Base, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yimin Hu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, State Laboratory Cultivation Base, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
5
|
Khan S, Baire B. BiX 3-Mediated Hydrohalogenations of HDDA Benzynes: An Approach to Polycyclic Aryl Halides. Org Lett 2024; 26:8165-8170. [PMID: 39292185 DOI: 10.1021/acs.orglett.4c03061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Here we demonstrate the hydrohalogenation reactions of HDDA benzynes promoted by BiX3 reagents for the generation of complex aryl halides. All three bismuth(III) halides can act as the source for their respective halides, i.e., Cl- or Br- or I-. The regiochemical preference for hydrohalogenation is dependent on the nature of the substituent present at the diyne terminus but neither on the linker nor on the BiX3 reagent. The substrate scope for this transformation is broad in terms of the tethers A-B-C and the substituents R1 and R2.
Collapse
Affiliation(s)
- Siddique Khan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
6
|
Hu G, Doerksen RS, Ambler BR, Krische MJ. Total Synthesis of the Phenylnaphthacenoid Type II Polyketide Antibiotic Formicamycin H via Regioselective Ruthenium-Catalyzed Hydrogen Auto-Transfer [4 + 2] Cycloaddition. J Am Chem Soc 2024; 146:26351-26359. [PMID: 39265189 PMCID: PMC11470536 DOI: 10.1021/jacs.4c09068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The first total synthesis of the pentacyclic phenylnaphthacenoid type II polyketide antibiotic formicamycin H is described. A key feature of the synthesis involves the convergent, regioselective assembly of the tetracyclic core via ruthenium-catalyzed α-ketol-benzocyclobutenone [4 + 2] cycloaddition. Double dehydration of the diol-containing cycloadduct provides an achiral enone, which upon asymmetric nucleophilic epoxidation and further manipulations delivers the penultimate tetracyclic trichloride in enantiomerically enriched form. Subsequent chemo- and atroposelective Suzuki cross-coupling of the tetracyclic trichloride introduces the E-ring to complete the total synthesis. Single-crystal X-ray diffraction analyses of two model compounds suggest that the initially assigned stereochemistry of the axially chiral C6-C7 linkage may require revision.
Collapse
Affiliation(s)
| | | | - Brett R. Ambler
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| |
Collapse
|
7
|
Gavin JT, Anderson LW, Roberts CC. Aryne Aminohalogenation Using Protic Amines Enabled by Halogen Transfer. Org Lett 2024; 26:7530-7534. [PMID: 39196997 DOI: 10.1021/acs.orglett.4c02407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Methods for aryne difunctionalization have been the focus of recent research, but one limitation is the use of nucleophiles with proton sources. Herein, we demonstrate the use of halogen transfer reagents to enable protic amines in aryne aminohalogenation difunctionalizations in up to 86% yield. This method uses amines and arynes with a variety of N-heterocyclic scaffolds. Through a variety of derivatizations, the synthetic utility of these products is demonstrated.
Collapse
Affiliation(s)
- Joshua T Gavin
- Department of Chemistry, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Lars W Anderson
- Department of Chemistry, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Courtney C Roberts
- Department of Chemistry, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Deng YH, Sun TY, Wu YD. Understanding the Nonlinear Hammett Relationship in Osmylation of Olefins with OsO 4-Amine Ligands: Importance of Singlet-Diradical Character. J Org Chem 2024; 89:11173-11182. [PMID: 39072554 DOI: 10.1021/acs.joc.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although the concerted [3 + 2] mechanism of osmium-catalyzed asymmetric dihydroxylation has been generally accepted, the unusual nonlinear Hammett relationship induced by amine-type ligands remains unexplained. To understand this, we carried out a density functional theory (DFT) study for the osmylation of substituted styrenes by the following: OsO4, OsO4-pyridine, OsO4-4-cyanopyridine, OsO4-4-pyrrolidinopyridine, and OsO4-quinuclidine. Calculations using the M06 functional successfully reproduce the experimentally observed nonlinear relationships. The transition states exhibit considerable singlet-diradical character, which causes the nonlinear Hammett relationship. Regardless of the presence or absence of an amine-type ligand, an electron donation from styrene to OsO4 is observed, indicating no mechanistic change. Calculations indicate that the electronic interaction between the amine-type ligand and styrene also influences the reaction rate.
Collapse
Affiliation(s)
- Yi-Hui Deng
- Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, PR China
| | - Tian-Yu Sun
- Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, PR China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, PR China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Deeksha, Singh R. Heteroannulation of Arynes with α-Bromodifluorohydroxamates: An Efficient and General Approach to Access 2,2-Difluoro Indoxyls. Org Lett 2024; 26:5682-5688. [PMID: 38934600 DOI: 10.1021/acs.orglett.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Herein, we report the first general approach to access N-alkoxy-2,2-difluoro indoxyls, via formal 3 + 2 cycloaddition of aryne and (putative) fluorinated-aza-oxyallyl cation. This transition-metal/oxidant-free transformation occurs under mild reaction conditions with a short reaction time. Mechanistic investigation indicates the possible involvement of the closed form of fluorinated-aza-oxyallyl cation, viz., α-lactam, in the current transformation.
Collapse
Affiliation(s)
- Deeksha
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Ritesh Singh
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| |
Collapse
|
10
|
Rai S, Patil BE, Kumari P, Mainkar PS, Prasanthkumar S, Adepu R, Chandrasekhar S. Practical Access to Fused Carbazoles via Oxidative Benzannulation and their Photophysical Properties. J Org Chem 2024; 89:9586-9596. [PMID: 38899857 DOI: 10.1021/acs.joc.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
An aryne annulation strategy for the synthesis of fused carbazoles is developed using indolyl β-ketonitrile in a cascade manner. The reaction sequence involves aryne-mediated [2 + 2] cycloaddition cleavage and intramolecular Michael addition, followed by oxidation under transition-metal-free reaction conditions. Subsequently, conversion of benzo[b]carbazole-6-carbonitrile to carbazole quinone is observed upon prolongation of the reaction time. Furthermore, these materials exhibit high quantum efficiency, which promotes the light-emitting diode applications.
Collapse
Affiliation(s)
- Shweta Rai
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Basavarajagouda E Patil
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Priti Kumari
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Seelam Prasanthkumar
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Adepu
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
12
|
Kanemoto K, Yoshimura K, Ono K, Ding W, Ito S, Yoshikai N. Amino- and Alkoxybenziodoxoles: Facile Preparation and Use as Arynophiles. Chemistry 2024; 30:e202400894. [PMID: 38494436 DOI: 10.1002/chem.202400894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
We report here on the facile synthesis of amino- and alkoxy-λ3-iodanes supported by a benziodoxole (BX) template and their use as arynophiles. The amino- and alkoxy-BX derivatives can be readily synthesized by reacting the respective amines or alcohols with chlorobenziodoxole in the presence of a suitable base. Unlike previously known nitrogen- and oxygen-bound iodane compounds, which have primarily been employed as electrophilic group transfer agents or oxidants, the present amino- and alkoxy-BX reagents manifest themselves as nucleophilic amino and alkoxy transfer agents toward arynes. This reactivity leads to the aryne insertion into the N-I(III) or O-I(III) bond to afford ortho-amino- and ortho-alkoxy-arylbenziodoxoles, iodane compounds nontrivial to procure by existing methods. The BX group in these insertion products exhibits excellent leaving group ability, enabling diverse downstream transformations.
Collapse
Affiliation(s)
- Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Ken Yoshimura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Koki Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Wei Ding
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Shingo Ito
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
13
|
Tabata S, Yoshida S. Bromothiolation of Arynes for the Synthesis of 2-Bromobenzenethiol Equivalents. Org Lett 2024; 26:3816-3821. [PMID: 38688840 DOI: 10.1021/acs.orglett.4c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A new method to synthesize o-bromobenzenethiol equivalents through aryne intermediates is disclosed. Various o-bromobenzenethiol equivalents are prepared by the bromothiolation of aryne intermediates with potassium xanthates. Aryl xanthates serve in the synthesis of diverse organosulfurs involving phenothiazines and thianthrenes by further transformations.
Collapse
Affiliation(s)
- Shinya Tabata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
14
|
Lukoyanov AA, Aksenova SA, Tabolin AA, Sukhorukov AY. 3-Halo-5,6-dihydro-4 H-1,2-oxazine N-oxides as synthetic equivalents of unsaturated nitrile oxides in the [3 + 2]-cycloaddition with arynes: synthesis of substituted 3-vinyl-1,2-benzisoxazoles. Org Biomol Chem 2024; 22:3615-3621. [PMID: 38634451 DOI: 10.1039/d4ob00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The reaction of 3-halo-5,6-dihydro-4H-1,2-oxazine N-oxides with arynes was studied. Arynes were generated from o-silylaryl triflates and underwent consecutive [3 + 2]-cycloaddition/[4 + 2]-cycloreversion with N-oxides leading to substituted 3-vinyl-benzisoxazoles in high yields. In the presented sequence, 1,2-oxazine N-oxides act as surrogates of rarely employed unsaturated nitrile oxides. A broad substrate scope was demonstrated. The influence of the substitution pattern of an aryne on the reaction outcome was determined. In the presence of bulky substituents, polycyclic 4,4a-dihydro-3H-benzofuro[3,2-c][1,2]oxazines were selectively formed. Mechanistic schemes for the observed reaction pathways were proposed. The synthetic utility of the products was demonstrated by their follow-up modifications.
Collapse
Affiliation(s)
- Alexander A Lukoyanov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russian Federation.
| | - Svetlana A Aksenova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, Moscow, 119334, Russian Federation
| | - Andrey A Tabolin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russian Federation.
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russian Federation.
| |
Collapse
|
15
|
Kunz S, Barnå F, Urrutia MP, Ingner FJL, Martínez-Topete A, Orthaber A, Gates PJ, Pilarski LT, Dyrager C. Derivatization of 2,1,3-Benzothiadiazole via Regioselective C-H Functionalization and Aryne Reactivity. J Org Chem 2024; 89:6138-6148. [PMID: 38648018 PMCID: PMC11077497 DOI: 10.1021/acs.joc.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
Despite growing interest in 2,1,3-benzothiadiazole (BTD) as an integral component of many functional molecules, methods for the functionalization of its benzenoid ring have remained limited, and many even simply decorated BTDs have required de novo synthesis. We show that regioselective Ir-catalyzed C-H borylation allows access to versatile 5-boryl or 4,6-diboryl BTD building blocks, which undergo functionalization at the C4, C5, C6, and C7 positions. The optimization and regioselectivity of C-H borylation are discussed. A broad reaction scope is presented, encompassing ipso substitution at the C-B bond, the first examples of ortho-directed C-H functionalization of BTD, ring closing reactions to generate fused ring systems, as well as the generation and capture reactions of novel BTD-based heteroarynes. The regioselectivity of the latter is discussed with reference to the Aryne Distortion Model.
Collapse
Affiliation(s)
- Susanna Kunz
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Fredrik Barnå
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | | | | | | | - Andreas Orthaber
- Department
of Chemistry—Ångström, Uppsala University, Box 523, Uppsala 75120, Sweden
| | - Paul J. Gates
- School
of Chemistry, University of Bristol, Cantock’s Close, Clifton, Bristol BS8 1TS, U.K.
| | - Lukasz T. Pilarski
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Christine Dyrager
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| |
Collapse
|
16
|
Cheng Q, Bhattacharya D, Haring M, Cao H, Mück-Lichtenfeld C, Studer A. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat Chem 2024; 16:741-748. [PMID: 38238464 PMCID: PMC11087273 DOI: 10.1038/s41557-023-01428-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 05/12/2024]
Abstract
Skeletal editing is a straightforward synthetic strategy for precise substitution or rearrangement of atoms in core ring structures of complex molecules; it enables quick diversification of compounds that is not possible by applying peripheral editing strategies. Previously reported skeletal editing of common arenes mainly relies on carbene- or nitrene-type insertion reactions or rearrangements. Although powerful, efficient and applicable to late-stage heteroarene core structure modification, these strategies cannot be used for skeletal editing of pyridines. Here we report the direct skeletal editing of pyridines through atom-pair swap from CN to CC to generate benzenes and naphthalenes in a modular fashion. Specifically, we use sequential dearomatization, cycloaddition and rearomatizing retrocycloaddition reactions in a one-pot sequence to transform the parent pyridines into benzenes and naphthalenes bearing diversified substituents at specific sites, as defined by the cycloaddition reaction components. Applications to late-stage skeletal diversification of pyridine cores in several drugs are demonstrated.
Collapse
Affiliation(s)
- Qiang Cheng
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | | | - Malte Haring
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Hui Cao
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
17
|
Kikuchi J, Nakajima R, Yoshikai N. Three-component N-alkenylation of azoles with alkynes and iodine(III) electrophile: synthesis of multisubstituted N-vinylazoles. Beilstein J Org Chem 2024; 20:891-897. [PMID: 38711595 PMCID: PMC11070964 DOI: 10.3762/bjoc.20.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
A stereoselective N-alkenylation of azoles with alkynes and iodine(III) electrophile is reported. The reaction between various azoles and internal alkynes is mediated by benziodoxole triflate as the electrophile in a trans-fashion, affording azole-bearing vinylbenziodoxoles in moderate to good yields. The tolerable azole nuclei include pyrazole, indazole, 1,2,3-triazole, benzotriazole, and tetrazole. The iodanyl group in the product can be leveraged as a versatile synthetic handle, allowing for the preparation of hitherto inaccessible types of densely functionalized N-vinylazoles.
Collapse
Affiliation(s)
- Jun Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Roi Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
18
|
Das A, Myers DL, Ganesh V, Greaney MF. Cascade Aryne Aminoarylation for Biaryl Phenol Synthesis. Org Lett 2024; 26:2612-2616. [PMID: 38512156 PMCID: PMC11002935 DOI: 10.1021/acs.orglett.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
We describe a transition metal-free approach to hindered 3-amino-2-aryl phenols through a cascade nucleophilic addition / Smiles-Truce rearrangement of a functionalized Kobayashi aryne precursor. Under anionic conditions, secondary alkyl amines add to the aryne intermediate to set up an aryl transfer from a neighboring sulfonate group. The use of a sulfonate, rather than the more typical sulfonamide, enables access to phenolic biaryl products that are important motifs in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Aniruddha Das
- Department
of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, West Bengal-721302, India
| | - Danielle L. Myers
- Department
of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
| | - Venkataraman Ganesh
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, West Bengal-721302, India
| | - Michael F. Greaney
- Department
of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
| |
Collapse
|
19
|
Mindner J, Rombach S, Werz DB. Copper-Assisted (Pseudo-)Halochalcogenation of Arynes. Org Lett 2024; 26:2124-2128. [PMID: 38427809 DOI: 10.1021/acs.orglett.4c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
In this report, we describe the multicomponent coupling reaction between arynes, (pseudo)halides, and an electrophilic chalcogen species. Addition of a copper salt enabled smooth conversion by suppressing side reactions. A variety of different aryne precursors as well as seleno- and thiosulfonates were employed, yielding a broad spectrum of ortho-(pseudo)halogenated chalcogenides. This motif was subjected to different cross-coupling approaches, demonstrating the applicability of these compounds as building blocks for more complex structures.
Collapse
Affiliation(s)
- Jasper Mindner
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Sina Rombach
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Daniel B Werz
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
20
|
Xu Q, Hoye TR. A Cascade of Strain-Driven Events Converting Benzynes to Alkynylbenzocyclobutenes to 1,3-Dien-5-ynes to Cyclic Allenes to Benzocyclohexadienones. J Am Chem Soc 2024; 146:6438-6443. [PMID: 38437506 DOI: 10.1021/jacs.3c10225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Here, we report a strain-promoted cascade reaction that proceeds via multiple strained intermediates, ultimately driven by the high potential energy inherent in alkyne triple bonds (C≡C). More specifically, four alkynes (three from an HDDA benzyne precursor and the fourth from a conjugated enyne reaction partner) are transformed into eight of the skeletal carbons in the benzocyclohexadienone products. The reaction pathway proceeds sequentially via strained benzyne, benzocyclobutene, and cyclic allene intermediates. DFT computations suggest that the slowest step following benzyne generation is the 4π-electrocyclic ring-opening of the alkynylbenzocyclobutene to a 1,3-dien-5-yne (an alkynylxylylene) intermediate. The activation energy for the subsequent 6π-electrocyclic ring-closure is lower than that for related acyclic dienynes because of the aromaticity that is being regained in the transition structure. Finally, the isolation of the benzocyclohexadienone products rather than their phenolic tautomers is notable.
Collapse
Affiliation(s)
- Qian Xu
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Yan Q, Zhuang Z, Fan R, Wang J, Yao T, Tan J. Access to N-Aryl (Iso)quinolones via Aryne-Induced Three-Component Coupling Reaction. Org Lett 2024; 26:1840-1844. [PMID: 38412291 DOI: 10.1021/acs.orglett.3c04385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
N-Aryl (iso)quinolones are of increasing interest in material and medicinal chemistry, although general routes for their provision remain underexplored, especially when compared with its N-alkyl counterparts. Herein, we report a modular and transition-metal-free, aryne-induced three-component coupling protocol that allows the facile synthesis of structurally diverse N-aryl (iso)quinolones from readily accessible halo-(iso)quinolines in the presence of water. Preliminary results highlight the applicability of our method through scale-up synthesis, downstream derivatization, and flexible synthesis involving other types of aryne precursors.
Collapse
Affiliation(s)
- Qiang Yan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhe Zhuang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Rong Fan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Jingwen Wang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Tuanli Yao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiajing Tan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
22
|
Arakawa C, Kanemoto K, Nakai K, Wang C, Morohashi S, Kwon E, Ito S, Yoshikai N. Carboiodanation of Arynes: Organoiodine(III) Compounds as Nucleophilic Organometalloids. J Am Chem Soc 2024; 146:3910-3919. [PMID: 38315817 DOI: 10.1021/jacs.3c11524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Organic iodine(III) compounds represent the most widely used hypervalent halogen compounds in organic synthesis, where they typically perform the role of an electrophile or oxidant to functionalize electron-rich or -nucleophilic organic compounds. In contrast to this convention, we discovered their unique reactivity as organometallic-like nucleophiles toward arynes. Equipped with diverse transferable ligands and supported by a tethered spectator ligand, the organoiodine(III) compounds undergo addition across the electrophilic C-C triple bond of arynes while retaining the trivalency of the iodine center. This carboiodanation reaction can forge a variety of aryl-alkynyl, aryl-alkenyl, and aryl-(hetero)aryl bonds along with the concurrent formation of an aryl-iodine(III) bond under mild conditions. The newly formed aryl-iodine(III) bond serves as a versatile linchpin for downstream transformations, particularly as an electrophilic reaction site. The amphoteric nature of the iodine(III) group as a metalloid and a leaving group in this sequence enables the flexible and expedient synthesis of extended π-conjugated molecules and privileged biarylphosphine ligands, where all of the iodine(III)-containing compounds can be handled as air- and thermally stable materials.
Collapse
Affiliation(s)
- Chisaki Arakawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Katsuya Nakai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Shunya Morohashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Eunsang Kwon
- Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shingo Ito
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
23
|
Umanzor A, Garcia NA, Roberts CC. Ligand-Controlled Regioinduction in a PHOX-Ni Aryne Complex. ACS ORGANIC & INORGANIC AU 2024; 4:97-101. [PMID: 38344017 PMCID: PMC10853916 DOI: 10.1021/acsorginorgau.3c00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 04/12/2024]
Abstract
Phosphinooxazoline (PHOX) ligands have been used to control the regio- and enantioselectivity in a wide variety of metal-catalyzed reactions. Despite their widespread use, PHOX ligands have never been studied in metal-aryne complexes. Herein we report the first example of a PHOX-Ni aryne complex. As demonstrated in other systems, the differentiated P versus N donors and different steric environments of the unsymmetric ligand are able to induce regiocontrol. A 81:19 mixture of o-methoxy substituted aryne complexes is observed. Single-crystal X-ray crystallographic analysis, UV/vis spectroscopy, and cyclic voltammetry are used to gain further insight into the molecular and electronic structure of these complexes. Lastly, a methylation/deuteration sequence shows retention of the PHOX ligand-induced regiocontrol in the difunctionalized products and that the regiospecificity of these difunctionalizations is due to the trans influence of the P donor.
Collapse
Affiliation(s)
- Alexander Umanzor
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas A. Garcia
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C. Roberts
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Lanzi M, Wencel-Delord J. Diaryl hypervalent bromines and chlorines: synthesis, structures and reactivities. Chem Sci 2024; 15:1557-1569. [PMID: 38303936 PMCID: PMC10829020 DOI: 10.1039/d3sc05382b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024] Open
Abstract
In the field of modern organic chemistry, hypervalent compounds have become indispensable tools for synthetic chemists, finding widespread applications in both academic research and industrial settings. While iodine-based reagents have historically dominated this research field, recent focus has shifted to the potent yet relatively unexplored chemistry of diaryl λ3-bromanes and -chloranes. Despite their unique reactivities, the progress in their development and application within organic synthesis has been hampered by the absence of straightforward, reliable, and widely applicable preparative methods. However, recent investigations have uncovered innovative approaches and novel reactivity patterns associated with these specialized compounds. These discoveries suggest that we have only begun to tap into their potential, implying that there is much more to be explored in this captivating area of chemistry.
Collapse
Affiliation(s)
- Matteo Lanzi
- Laboratoire d'Innovation Moléculaire etApplications (UMR CNRS 7042), Université deStrasbourg/Université deHaute Alsace, ECPM 67087 Strasbourg France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire etApplications (UMR CNRS 7042), Université deStrasbourg/Université deHaute Alsace, ECPM 67087 Strasbourg France
- Institute of Organic Chemistry, JMU Würzburg Am Hubland Würzburg Germany
| |
Collapse
|
25
|
Sarkar S, Singh P, Edin S, Wendt OF, Almqvist F. Synthesis of Three-Dimensional Ring Fused Heterocycles by a Selective [4 + 2] Cycloaddition Between Bicyclic Thiazolo 2-Pyridones and Arynes. J Org Chem 2024; 89:731-739. [PMID: 38093677 PMCID: PMC10777404 DOI: 10.1021/acs.joc.3c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
A selective [4 + 2] cycloaddition reaction of thiazolo-2-pyridones with arynes has been demonstrated. The developed protocol allows rapid access to highly functionalized, structurally complex thiazolo-fused bridged isoquinolones in high yields, which are susceptible to further late-stage functionalization.
Collapse
Affiliation(s)
- Souvik Sarkar
- Department
of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Pardeep Singh
- Department
of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Simon Edin
- Centre
for Analysis and Synthesis, Lund University, SE-221 00 Lund, Sweden
| | - Ola F. Wendt
- Centre
for Analysis and Synthesis, Lund University, SE-221 00 Lund, Sweden
| | | |
Collapse
|
26
|
Pan G, Pu M, Wang H, Ying M, Li Y, Dong S, Feng X, Liu X. Catalytic Enantioselective Nucleophilic Addition to Arynes by a New Quaternary Guanidinium Salt-Based Phase-Transfer Catalyst. J Am Chem Soc 2023; 145:26318-26327. [PMID: 37962558 DOI: 10.1021/jacs.3c09594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Owing to the mild generation methods, arynes have been widely used in synthetic chemistry. However, achieving asymmetric organocatalytic reactions with arynes remains a formidable and infrequent challenge, primarily because these neutral and transient species tend to spontaneously quench. To address this issue, a solid-liquid phase-transfer strategy is devised in which the generation speed of arynes could be controlled by the in situ generated fluoride-based chiral phase-transfer catalyst. In this study, we present a catalytic enantioselective nucleophilic addition reaction involving arynes, utilizing an amino amide-based guanidinium salt QG•X. Furthermore, we demonstrate the broad compatibility of this reaction with various arynes and cyclic/acyclic β-keto amides, leading to the creation of diverse α-aryl quaternary stereocenters with good stereoselectivity. Mechanistic investigations have uncovered the potential involvement of a chiral intramolecular cationic-anionic pair and HF during the ion exchange between QG•X and CsF for nucleophile activation and aryne generation. Additionally, DFT calculations suggested that the observed high levels of enantioselectivity can be attributed to steric repulsion and the cumulative noncovalent interactions between the catalysts and substrates.
Collapse
Affiliation(s)
- Guihua Pan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongyu Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Meijia Ying
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
27
|
Sephton T, Charitou A, Trujillo C, Large JM, Butterworth S, Greaney MF. Aryne-Enabled C-N Arylation of Anilines. Angew Chem Int Ed Engl 2023; 62:e202310583. [PMID: 37850515 PMCID: PMC10952162 DOI: 10.1002/anie.202310583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Anilines are potentially high-value arylating agents, but are limited by the low reactivity of the strong C-N bond. We show that the reactive intermediate benzyne can be used to both activate anilines, and set-up an aryl transfer reaction in a single step. The reaction does not require any transition metal catalysts or stoichiometric organometallics, and establishes a metal-free route to valuable biaryl products by functionalizing the aniline C-N bond.
Collapse
Affiliation(s)
- Thomas Sephton
- School of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | | | | | - Jonathan M. Large
- LifeArc, Accelerator BuildingOpen Innovation CampusStevenageSG1 2FXUK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterM13 9PLUK
| | | |
Collapse
|
28
|
Preeti, Kallurkar KV, Mainkar PS, Adepu R, Chandrasekhar S. Easy Access to Phenanthridinones via Metal-Free Cascade Benzannulation and C-N Bond Formation. Org Lett 2023; 25:8408-8412. [PMID: 37971420 DOI: 10.1021/acs.orglett.3c03040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A concise route for the synthesis of dihydrobenzo[j]phenanthridinones has been disclosed through an aryne annulation strategy under metal-free reaction conditions. The reaction involves multiple C-C and C-N bond cleavages/formations via Diels-Alder reaction, aromatization-driven C-N bond cleavage, and amide formation.
Collapse
Affiliation(s)
- Preeti
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kailas V Kallurkar
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Adepu
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
29
|
Ito M, Takishima Y, Ishikawa R, Kamimura M, Watanabe H, Konishi T, Higuchi K, Sugiyama S. Development of 3-triazenylaryne and its application to iterative aryne reactions via o-triazenylarylboronic acids. Chem Commun (Camb) 2023; 59:14249-14252. [PMID: 37947053 DOI: 10.1039/d3cc04878k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Herein, a novel aryne species, 3-triazenylaryne, was developed and its regioselectivity was revealed. Based on the regioselectivity, various alkyne moieties were introduced by iodoalkynylation, and further derivatization to o-triazenylarylboronic acids as 3-alkynylaryne precursors was enabled. Therefore, 3-triazenylaryne was developed as a divergent platform for the generation of various 3-alkynylarynes.
Collapse
Affiliation(s)
- Motoki Ito
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Yuta Takishima
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Rinto Ishikawa
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Mao Kamimura
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Hana Watanabe
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Takehiro Konishi
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Kazuhiro Higuchi
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Shigeo Sugiyama
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
30
|
Guo Y, Zhuang Z, Feng X, Ma Q, Li N, Jin C, Yoshida H, Tan J. Selective S-Arylation of Sulfenamides with Arynes: Access to Sulfilimines. Org Lett 2023; 25:7192-7197. [PMID: 37733632 DOI: 10.1021/acs.orglett.3c02785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Sulfilimines, the aza analogues of sulfoxides, are of increasing interest in medicinal and agrochemical research programs. However, the development of efficient routes for their synthesis has remained relatively unexplored. In this study, we report a transition metal-free, selective S-arylation reaction between sulfenamides and arynes, enabling the facile preparation of structurally diverse sulfilimines under mild and redox-neutral conditions in good yields. The application value of our method was further demonstrated by scale-up synthesis, downstream derivatization, and robustness screen.
Collapse
Affiliation(s)
- Yifeng Guo
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Zhe Zhuang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Xiaoying Feng
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Quanyu Ma
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Ningning Li
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Chaochao Jin
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Hiroto Yoshida
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Jiajing Tan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
31
|
Sun W, Uttendorfer M, Idiris FIM, Werling AYR, Siddiq K, Jones CR. Selective access to dihydrophenanthridines and phenanthridinones via cyclisation of aryl amines onto N-tethered arynes. Chem Commun (Camb) 2023; 59:11823-11826. [PMID: 37712932 DOI: 10.1039/d3cc03027j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
5,6-Dihydrophenanthridines are prepared from aryl amines via intramolecular addition to N-tethered arynes under mild conditions. A new o-silylaryl triflate precursor was developed to increase reactivity and enable electron-rich and electron-poor aryl amines to undergo cyclisation. A complete switch in product selectivity occurs when the reaction is conducted in air, affording the corresponding phenanthridin-6(5H)-one as the sole product under otherwise identical reaction conditions.
Collapse
Affiliation(s)
- Weitao Sun
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Maria Uttendorfer
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Fahima I M Idiris
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - A Yannic R Werling
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Khushal Siddiq
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Christopher R Jones
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
32
|
Taguchi J, Okuyama T, Tomita S, Niwa T, Hosoya T. Synthesis of Multisubstituted Aromatics via 3-Triazenylarynes. Org Lett 2023; 25:7030-7034. [PMID: 37712445 DOI: 10.1021/acs.orglett.3c02615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
An efficient method for generating 3-triazenylarynes from ortho-iodoaryl triflate-type precursors was developed. The generated arynes reacted with various arynophiles with high regioselectivity because of the triazenyl group. The 3-triazenylaryne precursors functioned as useful intermediates of diverse multisubstituted aromatic compounds through the transformation of the remaining triazenyl group of aryne adducts and triazenyl group-directed ortho-C-H functionalization.
Collapse
Affiliation(s)
- Jumpei Taguchi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takumi Okuyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Satomi Tomita
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takashi Niwa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
33
|
Cao WX, Zhu L, He Y, Wang R, Liu M, Ouyang Q, Xiao Q. Copper-Catalyzed Aryne Insertion into the Carbon-Iodine Bond of Heteroaryl Iodides. Angew Chem Int Ed Engl 2023; 62:e202305146. [PMID: 37571857 DOI: 10.1002/anie.202305146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
Aryne insertions into the carbon-iodine bond of heteroaryl iodides has been achieved for the first time. This novel reaction provides an efficient pathway for the synthesis of valuable building blocks 2-iodoheterobiaryls from heteroaryl iodides and o-silylaryl triflates in excellent regioselectivity. The copper(I) catalyst, which bears a N-heterocyclic carbene (NHC) ligand, is essential to accomplish the reaction. Control reactions and DFT calculations indicate that the coordination of copper, as a Lewis acid, with nitrogen atoms of heteroaryl iodides mediates the insertion of arynes into heteroaryl carbon-iodine bonds.
Collapse
Affiliation(s)
- Wen-Xuan Cao
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Lei Zhu
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Yiyi He
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Run Wang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Ming Liu
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qin Ouyang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qing Xiao
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| |
Collapse
|
34
|
Karandikar SS, Metze BE, Roberts RA, Stuart DR. Oxidative Cycloaddition Reactions of Arylboron Reagents via a One-pot Formal Dehydroboration Sequence. Org Lett 2023; 25:6374-6379. [PMID: 37610877 DOI: 10.1021/acs.orglett.3c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Arylboron compounds are widely available and synthetically useful reagents in which the boron group is typically substituted. Herein, we show that the boron group and ortho-hydrogen atom are substituted in a formal cycloaddition reaction. This transformation is enabled by a one-pot sequence involving diaryliodonium and aryne intermediates. The scope of arylboron reagents and arynophiles is demonstrated, and the method is applied to the formal synthesis of an investigational drug candidate.
Collapse
Affiliation(s)
- Shubhendu S Karandikar
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Bryan E Metze
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Riley A Roberts
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
35
|
Sneddon DS, Hoye TR. The contrasting reactivity of trans- vs. cis-azobenzenes (ArN[double bond, length as m-dash]NAr) with benzynes. Chem Sci 2023; 14:6730-6737. [PMID: 37350825 PMCID: PMC10284128 DOI: 10.1039/d3sc02253f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
We report here a study that has revealed two distinct modes of reactivity of azobenzene derivatives (ArN[double bond, length as m-dash]NAr) with benzynes, depending on whether the aryne reacts with a trans- or a cis-azobenzene geometric isomer. Under thermal conditions, trans-azobenzenes engage benzyne via an initial [2 + 2] trapping event, a process analogous to known reactions of benzynes with diarylimines (ArC[double bond, length as m-dash]NAr). This is followed by an electrocyclic ring opening/closing sequence to furnish dihydrophenazine derivatives, subjects of contemporary interest in other fields (e.g., electronic and photonic materials). In contrast, when the benzyne is attacked by a cis-azobenzene, formation of aminocarbazole derivatives occurs via an alternative, net (3 + 2) pathway. We have explored these complementary orthogonal processes both experimentally and computationally.
Collapse
Affiliation(s)
- Dorian S Sneddon
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
| |
Collapse
|
36
|
Idiris FIM, Jones CR. Rarely used strained molecules step up for organic synthesis. Nature 2023; 618:683-685. [PMID: 37336968 DOI: 10.1038/d41586-023-01935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
37
|
Kelleghan AV, Bulger AS, Witkowski DC, Garg NK. Strain-promoted reactions of 1,2,3-cyclohexatriene and its derivatives. Nature 2023; 618:748-754. [PMID: 37075803 PMCID: PMC10460091 DOI: 10.1038/s41586-023-06075-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Since 18251, compounds with the molecular formula C6H6-most notably benzene-have been the subject of rigorous scientific investigation2-7. Of these compounds, 1,2,3-cyclohexatriene has been largely overlooked. This strained isomer is substantially (approximately 100 kcal mol-1) higher in energy compared with benzene and, similar to its relatives benzyne and 1,2-cyclohexadiene, should undergo strain-promoted reactions. However, few experimental studies of 1,2,3-cyclohexatriene are known8-12. Here we demonstrate that 1,2,3-cyclohexatriene and its derivatives participate in a host of reaction modes, including diverse cycloadditions, nucleophilic additions and σ-bond insertions. Experimental and computational studies of an unsymmetrical derivative of 1,2,3-cyclohexatriene demonstrate the potential for highly selective reactions of strained trienes despite their high reactivity and short lifetimes. Finally, the integration of 1,2,3-cyclohexatrienes into multistep syntheses demonstrates their use in rapidly assembling topologically and stereochemically complex molecules. Collectively, these efforts should enable further investigation of the strained C6H6 isomer 1,2,3-cyclohexatriene and its derivatives, as well as their application in the synthesis of important compounds.
Collapse
Affiliation(s)
- Andrew V Kelleghan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ana S Bulger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dominick C Witkowski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Fan R, Liu S, Yan Q, Wei Y, Wang J, Lan Y, Tan J. Empowering boronic acids as hydroxyl synthons for aryne induced three-component coupling reactions. Chem Sci 2023; 14:4278-4287. [PMID: 37123174 PMCID: PMC10132127 DOI: 10.1039/d3sc00072a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Boronic acids have become one of the most prevalent classes of reagents in modern organic synthesis, displaying various reactivity profiles via C-B bond cleavage. Herein, we describe the utilization of a readily available boronic acid as an efficient surrogate of hydroxide upon activation via fluoride complexation. The hitherto unknown aryne induced ring-opening reaction of cyclic sulfides and three-component coupling of fluoro-azaarenes are developed to exemplify the application value. Different from metal hydroxides or water, this novel hydroxy source displays mild activation conditions, great functionality tolerance and structural tunability, which shall engender a new synthetic paradigm and in a broad context offer new blueprints for organoboron chemistry. Detailed computational studies also recognize the fluoride activation mode, provide in-depth insights into the unprecedented mechanistic pathway and elucidate the reactivity difference of ArB(OH) x F y complexes, which fully support the experimental data.
Collapse
Affiliation(s)
- Rong Fan
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Shihan Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400030 China
| | - Qiang Yan
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yun Wei
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Jingwen Wang
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400030 China
- ZhengZhou JiShu Institute of AI Science Zhengzhou 450000 China
| | - Jiajing Tan
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
39
|
Lukoyanov AA, Tabolin AA, Nelyubina YV, Aksenova SA, Sukhorukov AY. Nitronate-aryne cycloaddition as a concise route to stereochemically complex fused benzisoxazolines and amino alcohols. Org Biomol Chem 2023; 21:3871-3880. [PMID: 37097315 DOI: 10.1039/d3ob00235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The reaction of cyclic nitronates (isoxazoline N-oxides and 5,6-dihydro-4H-1,2-oxazine N-oxides) with Kobayashi's aryne precursors affords tricyclic benzene-fused nitroso acetals as a result of [3 + 2]-cycloaddition. The process is regio- and stereoselective in most cases and produces the target cycloadducts possessing up to four contiguous stereogenic centers. These nitroso acetals were shown to be convenient precursors of valuable polysubstituted aminodiols through catalytic hydrogenolysis of the N-O bonds. Also, the action of protic acids resulted in an unusual fragmentation of the cyclic nitroso acetal moiety through heterolytic N-O bond cleavage and Beckmann-type reaction. Using this acid-mediated reaction, the synthesis of a hitherto unknown hexahydrobenzo[4,5]isoxazolo[2,3-a]azepine scaffold was accomplished.
Collapse
Affiliation(s)
- Alexander A Lukoyanov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation.
| | - Andrey A Tabolin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation.
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, 119991, Vavilov str. 28, Moscow, Russian Federation
| | - Svetlana A Aksenova
- A. N. Nesmeyanov Institute of Organoelement Compounds, 119991, Vavilov str. 28, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (National Research University), 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russian Federation
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation.
| |
Collapse
|
40
|
Dhanaji JR, Samatha P, Raju S, Mainkar PS, Adepu R, Chandrasekhar S. Substitution controlled aryne insertion: synthesis of diarylmethane/chromones. Chem Commun (Camb) 2023; 59:2648-2651. [PMID: 36779483 DOI: 10.1039/d2cc05992d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aryne insertion reaction with 2-aroyl malonates/cyanoesters lead to the formation of diarylmethane or chromones depending on the substitution on the aryne ring. The presence of an electronegative atom at the ortho position of arynes generates chromones, whereas other arynes lead to the formation of diarylmethanes, via a cascade double aryne insertion.
Collapse
Affiliation(s)
- Jadhav Rahul Dhanaji
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Polasani Samatha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Silver Raju
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Adepu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
41
|
Roberts RA, Metze BE, Nilova A, Stuart DR. Synthesis of Arynes via Formal Dehydrogenation of Arenes. J Am Chem Soc 2023; 145:3306-3311. [PMID: 36728842 DOI: 10.1021/jacs.2c13007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arynes offer immense potential for diversification of benzenoid rings, which occur in pharmaceuticals, agrochemicals, and liquid crystals. However, accessing these high-energy intermediates requires synthetic precursors, which involve either harsh conditions or multistep syntheses. The development of alternative methods to access arynes using simpler substrates and milder conditions is necessary for a more streamlined approach. Here, we describe a two-step formal dehydrogenation of simple arenes to generate arynes at a remote position relative to traditionally reactive groups, e.g., halides. This approach is enabled by regioselective installation and ejection of an "onium" leaving group, and we demonstrate the compatibility of simple arenes (20 examples) and arynophiles (8 examples). Moreover, through direct comparison, we show that our formal dehydrogenation method is both more functional group tolerant and efficient in generating arynes than the current state-of-the-art aryne precursors. Finally, we show that aryne intermediates offer opportunities for regioselective C-H amination that are distinct from other methods.
Collapse
Affiliation(s)
- Riley A Roberts
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Bryan E Metze
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Aleksandra Nilova
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
42
|
Coquerel Y. Aryne Atropisomers: Chiral Arynes for the Enantiospecific Synthesis of Atropisomers and Nanographene Atropisomers. Acc Chem Res 2023; 56:86-94. [PMID: 36595619 DOI: 10.1021/acs.accounts.2c00575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The basics about arynes and their applications in synthetic organic chemistry are briefly presented, and the concept of atropisomerism is defined, highlighting that it is a time-dependent form of isomerism and chirality. It is remembered that racemization is a macroscopic and statistical irreversible process, while enantiomerization is a nanoscopic reversible process that occurs at the molecular scale, with racemization being twice as fast as enantiomerization. The concept of aryne atropisomers is introduced with a naive question: Can synthetically useful nonracemic aryne atropisomers having a triple bond ortho to the stereogenic single bond exist in solution? It was found that such aryne atropisomers can be generated in solution from easily available ortho-iodoaryl triflate precursors and excess trimethylsilylmethylmagnesium chloride. Analysis of the barriers to enantiomerization of some aryne atropisomers by computational modeling revealed the key contribution to the configurational stability of the H atom in tris-ortho-substituted biphenyl-based atropisomers. Using a specially designed prototype of aryne atropisomer, for which the barrier to enantiomerization was accurately evaluated by advanced computational modeling, the kinetic parameters of its reaction with furan were experimentally determined. From these measurements, it was concluded that any aryne atropisomer with a barrier to enantiomerization ΔGenant⧧ equal to or higher than 50 kJ mol-1 would lead to fully enantiospecific reactions. The synthetic applications of two structurally distinct aryne atropisomers built on a 1-phenylnaphthalene platform are described: one has the aryne triple bond embedded in the naphthyl moiety, and the other has the aryne triple bond embedded in the phenyl moiety. Both aryne atropisomers allowed for the fully enantiospecific, and possibly overall enantioselective, syntheses of original atropisomers based on standard aryne chemistry. For instance, reactions with anthracene and perylene afforded triptycene and nanographene atropisomers, respectively, in high enantiomeric excesses. A bis(aryne) atropisomer synthetic equivalent prepared from either enantiomer of BINOL is described for 3D bidirectional reactions with a single handedness. Its 2-fold reactions with anthracene and perylene afforded the corresponding severely congested bis(benzotriptycene) (99% ee) nanocarbon atropisomer and bis(anthra[1,2,3,4-ghi]perylene) (98% ee) nanographene atropisomer, respectively. This allowed the discovery of bis(twistacene) atropisomers as a new class of polycyclic aromatic hydrocarbons (PAH) with multiple stereogenicities. Cross reactions with the bis(aryne) atropisomer synthetic equivalent and two different arynophiles proved feasible, providing a nanographene atropisomer with a benzotriptycene unit and an anthra[1,2,3,4-ghi]perylene unit assembled around a stereogenic axis as a unique chiral PAH (99% ee). Overall, because the concept is simple and its implementation is easy, aryne atropisomers is an attractive approach to the synthesis of atropisomers in a broad meaning. Applications to the synthesis of large PAH atropisomers with single handedness are particularly promising.
Collapse
Affiliation(s)
- Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, 13397 Marseille, France
| |
Collapse
|
43
|
Yoshioka E, Yamaoka Y, Shimada S, Tanaka H, Miyabe H. Regiocontrol Using Fluoro Substituent on 3,6-Disubstituted Arynes. Chem Pharm Bull (Tokyo) 2023; 71:775-781. [PMID: 37779079 DOI: 10.1248/cpb.c23-00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The effect of fluoro substituent on the regioselectivity of several reactions of 3,6-disubstituted arynes was studied. These arynes contained another inductively electron-withdrawing substituent other than fluorine. A reasonable degree of regiocontrol was achieved in the (3 + 2) cycloaddition reaction of 3,6-disubstituted aryne containing both fluorine and bromine atoms with benzyl azide. Furthermore, the insertion reaction of aryne into Sn-F σ-bonds and the three-component coupling reaction involving the insertion of aryne into C=O π-bonds also led to the high degree of regiocontrol.
Collapse
Affiliation(s)
- Eito Yoshioka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University
| | - Yousuke Yamaoka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University
| | - Shunsuke Shimada
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University
| | - Hikaru Tanaka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University
| | - Hideto Miyabe
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University
| |
Collapse
|
44
|
Lanzi M, Rogge T, Truong TS, Houk KN, Wencel-Delord J. Cyclic Diaryl λ 3-Chloranes: Reagents and Their C-C and C-O Couplings with Phenols via Aryne Intermediates. J Am Chem Soc 2022; 145:345-358. [PMID: 36535642 PMCID: PMC9837845 DOI: 10.1021/jacs.2c10090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypervalent chloranes are a class of rare and poorly explored reagents. Their unique electronic properties confer reactivity that is complementary to that of the common iodanes and emerging bromanes. Highly chemo- and regioselective, metal-free, and mild C-C and C-O couplings are reported here. Experimental and computational mechanistic studies elucidate the unprecedented reactivities and selectivities of these systems and the intermediacy of aryne intermediates. The synthetic potential of these transformations is further demonstrated via the post-functionalization of C-C and C-O coupling products obtained from reactions of chloranes with phenols under different conditions.
Collapse
Affiliation(s)
- Matteo Lanzi
- Laboratoire
d’Innovation Moléculaire et Applications (UMR CNRS 7042),
Université de Strasbourg/Université de Haute Alsace,
ECPM, 67087Strasbourg, France
| | - Torben Rogge
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States
| | - Tan Sang Truong
- Laboratoire
d’Innovation Moléculaire et Applications (UMR CNRS 7042),
Université de Strasbourg/Université de Haute Alsace,
ECPM, 67087Strasbourg, France
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States,
| | - Joanna Wencel-Delord
- Laboratoire
d’Innovation Moléculaire et Applications (UMR CNRS 7042),
Université de Strasbourg/Université de Haute Alsace,
ECPM, 67087Strasbourg, France,
| |
Collapse
|
45
|
Abstract
Covering: 2011 to 2022The natural world is a prolific source of some of the most interesting, rare, and complex molecules known, harnessing sophisticated biosynthetic machinery evolved over billions of years for their production. Many of these natural products represent high-value targets of total synthesis, either for their desirable biological activities or for their beautiful structures outright; yet, the high sp3-character often present in nature's molecules imparts significant topological complexity that pushes the limits of contemporary synthetic technology. Dearomatization is a foundational strategy for generating such intricacy from simple materials that has undergone considerable maturation in recent years. This review highlights the recent achievements in the field of dearomative methodology, with a focus on natural product total synthesis and retrosynthetic analysis. Disconnection guidelines and a three-phase dearomative logic are described, and a spotlight is given to nature's use of dearomatization in the biosynthesis of various classes of natural products. Synthetic studies from 2011 to 2021 are reviewed, and 425 references are cited.
Collapse
Affiliation(s)
| | - Yaroslav D Boyko
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.
| | - David Sarlah
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
46
|
Lei Y, Zhu W, Zhang Y, Hu Q, Dong J, Hu Y. Benzisoxazole core and benzoxazolopyrrolidine via HDDA-derived benzyne with PTIO/DMPO. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Huang Y, Zhao X, Chen D, Zheng Y, Luo J, Huang S. Access to Sulfocoumarins via Three‐Component Reaction of β‐Keto Sulfonyl Fluorides, Arynes, and DMF. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuan Huang
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Xueyan Zhao
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Dengfeng Chen
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Yu Zheng
- Nanjing Forestry University Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing CHINA
| | - Jinyue Luo
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Shenlin Huang
- Nanjing Forestry University College of Chemical Engineering No. 159, Longpan Road 210037 Nanjing CHINA
| |
Collapse
|
48
|
McCormick TM, Stuart DR, Metze BE, Bhattacharjee A. Parameterization of Arynophiles: Experimental Investigations towards a Quantitative Understanding of Aryne Trapping Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1845-3066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractArynes are highly reactive intermediates that may be used strategically in synthesis by trapping with arynophilic reagents. However, ‘arynophilicity’ of such reagents is almost completely anecdotal and predicting which ones will be efficient traps is often challenging. Here, we describe a systematic study to parameterize the arynophilicity of a wide range of reagents known to trap arynes. A relative reactivity scale, based on one-pot competition experiments, is presented by using furan as a reference arynophile and 3-chlorobenzyne as a the aryne. More than 15 arynophiles that react in pericyclic reactions, nucleophilic addition, and σ-bond insertion reactions are parameterized with arynophilicity (A) values, and multiple aryne precursors are applicable.
Collapse
|
49
|
Yoshida S, Nagai A, Kobayashi A, Sakata Y, Minami Y, Uchida K, Hosoya T. Synthesis of Multisubstituted Benzenes from Phenols via Multisubstituted Benzynes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1834-2927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractA new method to synthesize multifunctionalized arenes from simple phenols through aryne intermediates is described. Multisubstituted aryne precursors were prepared from phenols by Ir-catalyzed C–H borylation, deborylthiolation, O-triflylation, S-oxidation, and further modification through ortho-deprotonation directed by the sulfoxide moiety. Various multisubstituted arenes were synthesized by transformations of highly functionalized aryne intermediates generated from the o-sulfinylaryl triflates.
Collapse
Affiliation(s)
- Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Akira Nagai
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Akihiro Kobayashi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Yasunori Minami
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Keisuke Uchida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
50
|
Zhang K, Zheng H, Han Y, Cheng Y, Zhao X. On the Origins of Stereo- and Regio-Selectivities in the Formation of Fullerene-Fluorene Dyads. J Org Chem 2022; 87:4702-4711. [PMID: 35316058 DOI: 10.1021/acs.joc.1c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, a novel [2+2] cycloaddition between the classical Ih-C60 and a fluorenylideneallene complex has been achieved experimentally. In the fullerene-fluorene dyad product, stereo- and regio-selectivities were found in the experiment, but the reasons are still unknown. Our theoretical studies suggest that, based on a diradical pathway, the structural selectivity of the product strongly depends on the structural/electronic features of the fluorenylideneallene and C60 complexes. When the R1 group in fluorenylideneallene denotes the H atom, the E-type product is more stable than the Z-type one, whereas other bulkier R1 groups lead to the reverse due to their steric hindrance. The π orbital conjugation between the fluorenyl group and the Cβ═Cγ bond in fluorenylideneallene is the main reason for the high selectivity of β,γ-cycloaddition. Analyses of both frontier orbitals and spin density for the intermediate structure suggest a diradical pathway of the reaction between fluorenylideneallene and C60 and uncover a decisive role of the LUMO of C60 toward regio-selectivity, which conduces to a high selectivity of the (6,6)-addition product.
Collapse
Affiliation(s)
- KaiNi Zhang
- Institute for Chemical Physics, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong Zheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanbo Han
- Institute for Chemical Physics, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiang Zhao
- Institute for Chemical Physics, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|