1
|
Zhang Y, Alshammari E, Sobota J, Spellmon N, Perry E, Cao T, Mugunamalwaththa T, Smith S, Brunzelle J, Wu G, Stemmler T, Jin J, Li C, Yang Z. Structure of the SMYD2-PARP1 Complex Reveals Both Productive and Allosteric Modes of Peptide Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626679. [PMID: 39677743 PMCID: PMC11642878 DOI: 10.1101/2024.12.03.626679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Allosteric regulation allows proteins to dynamically respond to environmental cues by modulating activity at sites away from the catalytic center. Despite its importance, the SET-domain protein lysine methyltransferase superfamily has been understudied. Here, we present four crystal structures of SMYD2, a unique family member with a MYND domain. Our findings reveal a novel allosteric binding site with high conformational plasticity and promiscuity, capable of binding peptides, proteins, PEG, and small molecules. This site exhibits positive cooperativity with substrate binding, influencing catalytic activity. Mutations here significantly alter substrate affinity, changing the enzyme's kinetic profile. Specificity studies show interaction with PARP1 but not histones, suggesting targeted regulation. Interestingly, this site's function remains unaffected by active site changes, indicating unidirectional mechanisms. Our discovery provides novel insights into SMYD2's biochemical regulation and lays the foundation for broader research on allosteric control in lysine methyltransferases. Given SMYD2's role in various cancers, this work opens exciting avenues for designing specific allosteric inhibitors with reduced off-target effects.
Collapse
Affiliation(s)
- Yingxue Zhang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eid Alshammari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jacob Sobota
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nicolas Spellmon
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Emerson Perry
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tianxin Cao
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Thamarahansi Mugunamalwaththa
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sheila Smith
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | | | - Gensheng Wu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Timothy Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Jianping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
2
|
Barroso M, Puchwein-Schwepcke A, Buettner L, Goebel I, Küchler K, Muntau AC, Delgado A, Garcia-Collazo AM, Martinell M, Barril X, Cubero E, Gersting SW. Use of the Novel Site-Directed Enzyme Enhancement Therapy (SEE-Tx) Drug Discovery Platform to Identify Pharmacological Chaperones for Glutaric Acidemia Type 1. J Med Chem 2024; 67:17087-17100. [PMID: 39312412 PMCID: PMC11472340 DOI: 10.1021/acs.jmedchem.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Allosteric regulators acting as pharmacological chaperones hold promise for innovative therapeutics since they target noncatalytic sites and stabilize the folded protein without competing with the natural substrate, resulting in a net gain of function. Exogenous allosteric regulators are typically more selective than active site inhibitors and can be more potent than competitive inhibitors when the natural substrate levels are high. To identify novel structure-targeted allosteric regulators (STARs) that bind to and stabilize the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH), the computational site-directed enzyme enhancement therapy (SEE-Tx) technology was applied. SEE-Tx is an innovative drug discovery platform with the potential to identify drugs for treating protein misfolding disorders, such as glutaric acidemia type 1 (GA1) disease. Putative allosteric regulators were discovered using structure- and ligand-based virtual screening methods and validated using orthogonal biophysical and biochemical assays. The computational approach presented here could be used to discover allosteric regulators of other protein misfolding disorders.
Collapse
Affiliation(s)
- Madalena Barroso
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alexandra Puchwein-Schwepcke
- Department
of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich 80337, Germany
- Department
of Pediatric Neurology and Developmental Medicine, University Children’s Hospital Basel, UKBB, Basel 4031, Switzerland
| | - Lars Buettner
- Pharmaceutical
Development Biologicals, Boehringer Ingelheim
Pharma GmbH & Co. KG, Biberach
an der Riss 88397, Germany
| | - Ingrid Goebel
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Katrin Küchler
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ania C. Muntau
- University
Children’s Hospital, University Medical
Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German
Center
for Child and Adolescent Health (DZKJ), Partner Site Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Aida Delgado
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Ana M. Garcia-Collazo
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Marc Martinell
- Minoryx
Therapeutics S.L., Tecno
Campus Mataró-Maresme, Mataró, Barcelona 08302, Spain
| | - Xavier Barril
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Elena Cubero
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Søren W. Gersting
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German
Center
for Child and Adolescent Health (DZKJ), Partner Site Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
3
|
Nussinov R, Jang H. The value of protein allostery in rational anticancer drug design: an update. Expert Opin Drug Discov 2024; 19:1071-1085. [PMID: 39068599 PMCID: PMC11390313 DOI: 10.1080/17460441.2024.2384467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Allosteric drugs are advantageous. However, they still face hurdles, including identification of allosteric sites that will effectively alter the active site. Current strategies largely focus on identifying pockets away from the active sites into which the allosteric ligand will dock and do not account for exactly how the active site is altered. Favorable allosteric inhibitors dock into sites that are nearby the active sites and follow nature, mimicking diverse allosteric regulation strategies. AREAS COVERED The following article underscores the immense significance of allostery in drug design, describes current allosteric strategies, and especially offers a direction going forward. The article concludes with the authors' expert perspectives on the subject. EXPERT OPINION To select a productive venue in allosteric inhibitor development, we should learn from nature. Currently, useful strategies follow this route. Consider, for example, the mechanisms exploited in relieving autoinhibition and in harnessing allosteric degraders. Mimicking compensatory, or rescue mutations may also fall into such a thesis, as can molecular glues that capture features of scaffolding proteins. Capturing nature and creatively tailoring its mimicry can continue to innovate allosteric drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
4
|
Plaper T, Rihtar E, Železnik Ramuta T, Forstnerič V, Jazbec V, Ivanovski F, Benčina M, Jerala R. The art of designed coiled-coils for the regulation of mammalian cells. Cell Chem Biol 2024; 31:1460-1472. [PMID: 38971158 PMCID: PMC11335187 DOI: 10.1016/j.chembiol.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
Synthetic biology aims to engineer complex biological systems using modular elements, with coiled-coil (CC) dimer-forming modules are emerging as highly useful building blocks in the regulation of protein assemblies and biological processes. Those small modules facilitate highly specific and orthogonal protein-protein interactions, offering versatility for the regulation of diverse biological functions. Additionally, their design rules enable precise control and tunability over these interactions, which are crucial for specific applications. Recent advancements showcase their potential for use in innovative therapeutic interventions and biomedical applications. In this review, we discuss the potential of CCs, exploring their diverse applications in mammalian cells, such as synthetic biological circuit design, transcriptional and allosteric regulation, cellular assemblies, chimeric antigen receptor (CAR) T cell regulation, and genome editing and their role in advancing the understanding and regulation of cellular processes.
Collapse
Affiliation(s)
- Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Erik Rihtar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Filip Ivanovski
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Pillai A, Idris A, Philomin A, Weidle C, Skotheim R, Leung PJY, Broerman A, Demakis C, Borst AJ, Praetorius F, Baker D. De novo design of allosterically switchable protein assemblies. Nature 2024; 632:911-920. [PMID: 39143214 PMCID: PMC11338832 DOI: 10.1038/s41586-024-07813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Allosteric modulation of protein function, wherein the binding of an effector to a protein triggers conformational changes at distant functional sites, plays a central part in the control of metabolism and cell signalling1-3. There has been considerable interest in designing allosteric systems, both to gain insight into the mechanisms underlying such 'action at a distance' modulation and to create synthetic proteins whose functions can be regulated by effectors4-7. However, emulating the subtle conformational changes distributed across many residues, characteristic of natural allosteric proteins, is a significant challenge8,9. Here, inspired by the classic Monod-Wyman-Changeux model of cooperativity10, we investigate the de novo design of allostery through rigid-body coupling of peptide-switchable hinge modules11 to protein interfaces12 that direct the formation of alternative oligomeric states. We find that this approach can be used to generate a wide variety of allosterically switchable systems, including cyclic rings that incorporate or eject subunits in response to peptide binding and dihedral cages that undergo effector-induced disassembly. Size-exclusion chromatography, mass photometry13 and electron microscopy reveal that these designed allosteric protein assemblies closely resemble the design models in both the presence and absence of peptide effectors and can have ligand-binding cooperativity comparable to classic natural systems such as haemoglobin14. Our results indicate that allostery can arise from global coupling of the energetics of protein substructures without optimized side-chain-side-chain allosteric communication pathways and provide a roadmap for generating allosterically triggerable delivery systems, protein nanomachines and cellular feedback control circuitry.
Collapse
Affiliation(s)
- Arvind Pillai
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| | - Abbas Idris
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Annika Philomin
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Connor Weidle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rebecca Skotheim
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Philip J Y Leung
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Adam Broerman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cullen Demakis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Florian Praetorius
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Chen X, Zhang X, Qin M, Chen J, Wang M, Liu Z, An L, Song X, Yao L. Protein Allostery Study in Cells Using NMR Spectroscopy. Anal Chem 2024; 96:7065-7072. [PMID: 38652079 DOI: 10.1021/acs.analchem.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Protein allostery is commonly observed in vitro. But how protein allostery behaves in cells is unknown. In this work, a protein monomer-dimer equilibrium system was built with the allosteric effect on the binding characterized using NMR spectroscopy through mutations away from the dimer interface. A chemical shift linear fitting method was developed that enabled us to accurately determine the dissociation constant. A total of 28 allosteric mutations were prepared and grouped to negative allosteric, nonallosteric, and positive allosteric modulators. ∼ 50% of mutations displayed the allosteric-state changes when moving from a buffered solution into cells. For example, there were no positive allosteric modulators in the buffered solution but eight in cells. The change in protein allostery is correlated with the interactions between the protein and the cellular environment. These interactions presumably drive the surrounding macromolecules in cells to transiently bind to the monomer and dimer mutational sites and change the free energies of the two species differently which generate new allosteric effects. These surrounding macromolecules create a new protein allostery pathway that is only present in cells.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xueying Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Qin
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jingfei Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Mengting Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Liaoyuan An
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiangfei Song
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Lishan Yao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
7
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Guidarelli Mattioli F, Saltalamacchia A, Magistrato A. Tracing Allostery in the Spliceosome Ski2-like RNA Helicase Brr2. J Phys Chem Lett 2024; 15:3502-3508. [PMID: 38517341 DOI: 10.1021/acs.jpclett.3c03538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
RNA ATPases/helicases remodel substrate RNA-protein complexes in distinct ways. The different RNA ATPases/helicases, taking part in the spliceosome complex, reshape the RNA/RNA-protein contacts to enable premature-mRNA splicing. Among them, the bad response to refrigeration 2 (Brr2) helicase promotes U4/U6 small nuclear (sn)RNA unwinding via ATP-driven translocation of the U4 snRNA strand, thus playing a pivotal role during the activation, catalytic, and disassembly phases of splicing. The plastic Brr2 architecture consists of an enzymatically active N-terminal cassette (N-cassette) and a structurally similar but inactive C-terminal cassette (C-cassette). The C-cassette, along with other allosteric effectors and regulators, tightly and timely controls Brr2's function via an elusive mechanism. Here, microsecond-long molecular dynamics simulations, dynamical network theory, and community network analysis are combined to elucidate how allosteric effectors/regulators modulate the Brr2 function. We unexpectedly reveal that U4 snRNA itself acts as an allosteric regulator, amplifying the cross-talk of distal Brr2 domains and triggering a conformational reorganization of the protein. Our findings offer fundamental understanding into Brr2's mechanism of action and broaden our knowledge on the sophisticated regulatory mechanisms by which spliceosome ATPases/helicases control gene expression. This includes their allosteric regulation exerted by client RNA strands, a mechanism that may be broadly applicable to other RNA-dependent ATPases/helicases.
Collapse
Affiliation(s)
| | - Andrea Saltalamacchia
- International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy, Institute of Material Foundry at International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
9
|
Su Z, Vu VH, Leckband DE, Wu Y. A computational study for understanding the impact of p120-catenin on the cis-dimerization of cadherin. J Mol Cell Biol 2024; 15:mjad055. [PMID: 37757467 PMCID: PMC11121193 DOI: 10.1093/jmcb/mjad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
A prototype of cross-membrane signal transduction is that extracellular binding of cell surface receptors to their ligands induces intracellular signalling cascades. However, much less is known about the process in the opposite direction, called inside-out signalling. Recent studies show that it plays a more important role in regulating the functions of many cell surface receptors than we used to think. In particular, in cadherin-mediated cell adhesion, recent experiments indicate that intracellular binding of the scaffold protein p120-catenin (p120ctn) can promote extracellular clustering of cadherin and alter its adhesive function. The underlying mechanism, however, is not well understood. To explore possible mechanisms, we designed a new multiscale simulation procedure. Using all-atom molecular dynamics simulations, we found that the conformational dynamics of the cadherin extracellular region can be altered by the intracellular binding of p120ctn. More intriguingly, by integrating all-atom simulation results into coarse-grained random sampling, we showed that the altered conformational dynamics of cadherin caused by the binding of p120ctn can increase the probability of lateral interactions between cadherins on the cell surface. These results suggest that p120ctn could allosterically regulate the cis-dimerization of cadherin through two mechanisms. First, p120ctn controls the extracellular conformational dynamics of cadherin. Second, p120ctn oligomerization can further promote cadherin clustering. Therefore, our study provides a mechanistic foundation for the inside-out signalling in cadherin-mediated cell adhesion, while the computational framework can be generally applied to other cross-membrane signal transduction systems.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Vinh H Vu
- Department of Biochemistry and University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Biochemistry and University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Xiao Z, Zha J, Yang X, Huang T, Huang S, Liu Q, Wang X, Zhong J, Zheng J, Liang R, Deng Z, Zhang J, Lin S, Dai S. A three-level regulatory mechanism of the aldo-keto reductase subfamily AKR12D. Nat Commun 2024; 15:2128. [PMID: 38459030 PMCID: PMC10923870 DOI: 10.1038/s41467-024-46363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
Modulation of protein function through allosteric regulation is central in biology, but biomacromolecular systems involving multiple subunits and ligands may exhibit complex regulatory mechanisms at different levels, which remain poorly understood. Here, we discover an aldo-keto reductase termed AKRtyl and present its three-level regulatory mechanism. Specifically, by combining steady-state and transient kinetics, X-ray crystallography and molecular dynamics simulation, we demonstrate that AKRtyl exhibits a positive synergy mediated by an unusual Monod-Wyman-Changeux (MWC) paradigm of allosteric regulation at low concentrations of the cofactor NADPH, but an inhibitory effect at high concentrations is observed. While the substrate tylosin binds at a remote allosteric site with positive cooperativity. We further reveal that these regulatory mechanisms are conserved in AKR12D subfamily, and that substrate cooperativity is common in AKRs across three kingdoms of life. This work provides an intriguing example for understanding complex allosteric regulatory networks.
Collapse
Affiliation(s)
- Zhihong Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinyin Zha
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuxin Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qi Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jie Zhong
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
11
|
Amaya-Rodriguez CA, Carvajal-Zamorano K, Bustos D, Alegría-Arcos M, Castillo K. A journey from molecule to physiology and in silico tools for drug discovery targeting the transient receptor potential vanilloid type 1 (TRPV1) channel. Front Pharmacol 2024; 14:1251061. [PMID: 38328578 PMCID: PMC10847257 DOI: 10.3389/fphar.2023.1251061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024] Open
Abstract
The heat and capsaicin receptor TRPV1 channel is widely expressed in nerve terminals of dorsal root ganglia (DRGs) and trigeminal ganglia innervating the body and face, respectively, as well as in other tissues and organs including central nervous system. The TRPV1 channel is a versatile receptor that detects harmful heat, pain, and various internal and external ligands. Hence, it operates as a polymodal sensory channel. Many pathological conditions including neuroinflammation, cancer, psychiatric disorders, and pathological pain, are linked to the abnormal functioning of the TRPV1 in peripheral tissues. Intense biomedical research is underway to discover compounds that can modulate the channel and provide pain relief. The molecular mechanisms underlying temperature sensing remain largely unknown, although they are closely linked to pain transduction. Prolonged exposure to capsaicin generates analgesia, hence numerous capsaicin analogs have been developed to discover efficient analgesics for pain relief. The emergence of in silico tools offered significant techniques for molecular modeling and machine learning algorithms to indentify druggable sites in the channel and for repositioning of current drugs aimed at TRPV1. Here we recapitulate the physiological and pathophysiological functions of the TRPV1 channel, including structural models obtained through cryo-EM, pharmacological compounds tested on TRPV1, and the in silico tools for drug discovery and repositioning.
Collapse
Affiliation(s)
- Cesar A. Amaya-Rodriguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Departamento de Fisiología y Comportamiento Animal, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Karina Carvajal-Zamorano
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
12
|
Colombo G. Computing allostery: from the understanding of biomolecular regulation and the discovery of cryptic sites to molecular design. Curr Opin Struct Biol 2023; 83:102702. [PMID: 37716095 DOI: 10.1016/j.sbi.2023.102702] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
The concept of allostery has become a central tenet in the study of biological systems. In parallel, the discovery of allosteric drugs is generating new opportunities to selectively modulate difficult targets involved in pathologic mechanisms. Molecular simulations can provide atomistically detailed insight into the processes involved in allosteric regulation and signaling, and at the same time, they have the potential to unveil regulatory hotspots or cryptic sites that are not immediately evident from the analysis of static structures. In this context, computational approaches should be able to connect the study of allosteric regulation at different scales to the possibility of leveraging this knowledge to expand the chemical space of new, active drugs. Here, we will discuss recent advances in the study of allosteric regulation via computational methods and connect the mechanistic knowledge generated to the possibility of designing new small molecules that can tweak the functions of their receptors.
Collapse
Affiliation(s)
- Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
13
|
Maria-Solano MA, Choi S. Dynamic allosteric networks drive adenosine A 1 receptor activation and G-protein coupling. eLife 2023; 12:RP90773. [PMID: 37656635 PMCID: PMC10473838 DOI: 10.7554/elife.90773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023] Open
Abstract
G-protein coupled receptors (GPCRs) present specific activation pathways and signaling among receptor subtypes. Hence, an extensive knowledge of the structural dynamics of the receptor is critical for the development of therapeutics. Here, we target the adenosine A1 receptor (A1R), for which a negligible number of drugs have been approved. We combine molecular dynamics simulations, enhanced sampling techniques, network theory and pocket detection to decipher the activation pathway of A1R, decode the allosteric networks and identify transient pockets. The A1R activation pathway reveal hidden intermediate and pre-active states together with the inactive and fully-active states observed experimentally. The protein energy networks computed throughout these conformational states successfully unravel the extra and intracellular allosteric centers and the communication pathways that couples them. We observe that the allosteric networks are dynamic, being increased along activation and fine-tuned in presence of the trimeric G-proteins. Overlap of transient pockets and energy networks uncover how the allosteric coupling between pockets and distinct functional regions of the receptor is altered along activation. By an in-depth analysis of the bridge between activation pathway, energy networks and transient pockets, we provide a further understanding of A1R. This information can be useful to ease the design of allosteric modulators for A1R.
Collapse
Affiliation(s)
- Miguel A Maria-Solano
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans UniversitySeoulRepublic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
14
|
Hersey AN, Kay VE, Lee S, Realff MJ, Wilson CJ. Engineering allosteric transcription factors guided by the LacI topology. Cell Syst 2023; 14:645-655. [PMID: 37591203 DOI: 10.1016/j.cels.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 02/26/2023] [Accepted: 04/26/2023] [Indexed: 08/19/2023]
Abstract
Allosteric transcription factors (aTFs) are used in a myriad of processes throughout biology and biotechnology. aTFs have served as the workhorses for developments in synthetic biology, fundamental research, and protein manufacturing. One of the most utilized TFs is the lactose repressor (LacI). In addition to being an exceptional tool for gene regulation, LacI has also served as an outstanding model system for understanding allosteric communication. In this perspective, we will use the LacI TF as the principal exemplar for engineering alternate functions related to allostery-i.e., alternate protein DNA interactions, alternate protein-ligand interactions, and alternate phenotypic mechanisms. In addition, we will summarize the design rules and heuristics for each design goal and demonstrate how the resulting design rules and heuristics can be extrapolated to engineer other aTFs with a similar topology-i.e., from the broader LacI/GalR family of TFs.
Collapse
Affiliation(s)
- Ashley N Hersey
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA
| | - Valerie E Kay
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA
| | - Sumin Lee
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA
| | - Matthew J Realff
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA
| | - Corey J Wilson
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA.
| |
Collapse
|
15
|
Castelli M, Yan P, Rodina A, Digwal CS, Panchal P, Chiosis G, Moroni E, Colombo G. How aberrant N-glycosylation can alter protein functionality and ligand binding: An atomistic view. Structure 2023; 31:987-1004.e8. [PMID: 37343552 PMCID: PMC10526633 DOI: 10.1016/j.str.2023.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023]
Abstract
Protein-assembly defects due to an enrichment of aberrant conformational protein variants are emerging as a new frontier in therapeutics design. Understanding the structural elements that rewire the conformational dynamics of proteins and pathologically perturb functionally oriented ensembles is important for inhibitor development. Chaperones are hub proteins for the assembly of multiprotein complexes and an enrichment of aberrant conformers can affect the cellular proteome, and in turn, phenotypes. Here, we integrate computational and experimental tools to investigte how N-glycosylation of specific residues in glucose-regulated protein 94 (GRP94) modulates internal dynamics and alters the conformational fitness of regions fundamental for the interaction with ATP and synthetic ligands and impacts substructures important for the recognition of interacting proteins. N-glycosylation plays an active role in modulating the energy landscape of GRP94, and we provide support for leveraging the knowledge on distinct glycosylation variants to design molecules targeting GRP94 disease-associated conformational states and assemblies.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | | | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
16
|
Xu J. SBMLKinetics: a tool for annotation-independent classification of reaction kinetics for SBML models. BMC Bioinformatics 2023; 24:248. [PMID: 37312031 DOI: 10.1186/s12859-023-05380-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Reaction networks are widely used as mechanistic models in systems biology to reveal principles of biological systems. Reactions are governed by kinetic laws that describe reaction rates. Selecting the appropriate kinetic laws is difficult for many modelers. There exist tools that attempt to find the correct kinetic laws based on annotations. Here, I developed annotation-independent technologies that assist modelers by focusing on finding kinetic laws commonly used for similar reactions. RESULTS Recommending kinetic laws and other analyses of reaction networks can be viewed as a classification problem. Existing approaches to determining similar reactions rely heavily on having good annotations, a condition that is often unsatisfied in model repositories such as BioModels. I developed an annotation-independent approach to find similar reactions via reaction classifications. I proposed a two-dimensional kinetics classification scheme (2DK) that analyzed reactions along the dimensions of kinetics type (K type) and reaction type (R type). I identified approximately ten mutually exclusive K types, including zeroth order, mass action, Michaelis-Menten, Hill kinetics, and others. R types were organized by the number of distinct reactants and the number of distinct products in reactions. I constructed a tool, SBMLKinetics, that inputted a collection of SBML models and then calculated reaction classifications as the probability of each 2DK class. The effectiveness of 2DK was evaluated on BioModels, and the scheme classified over 95% of the reactions. CONCLUSIONS 2DK had many applications. It provided a data-driven annotation-independent approach to recommending kinetic laws by using type common for the kind of models in combination with the R type of the reactions. Alternatively, 2DK could also be used to alert users that a kinetic law was unusual for the K type and R type. Last, 2DK provided a way to analyze groups of models to compare their kinetic laws. I applied 2DK to BioModels to compare the kinetics of signaling networks with the kinetics of metabolic networks and found significant differences in K type distributions.
Collapse
Affiliation(s)
- Jin Xu
- Department of Bioengineering, University of Washington, Seattle, USA.
| |
Collapse
|
17
|
Nussinov R, Zhang M, Liu Y, Jang H. AlphaFold, allosteric, and orthosteric drug discovery: Ways forward. Drug Discov Today 2023; 28:103551. [PMID: 36907321 PMCID: PMC10238671 DOI: 10.1016/j.drudis.2023.103551] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Drug discovery is arguably a highly challenging and significant interdisciplinary aim. The stunning success of the artificial intelligence-powered AlphaFold, whose latest version is buttressed by an innovative machine-learning approach that integrates physical and biological knowledge about protein structures, raised drug discovery hopes that unsurprisingly, have not come to bear. Even though accurate, the models are rigid, including the drug pockets. AlphaFold's mixed performance poses the question of how its power can be harnessed in drug discovery. Here we discuss possible ways of going forward wielding its strengths, while bearing in mind what AlphaFold can and cannot do. For kinases and receptors, an input enriched in active (ON) state models can better AlphaFold's chance of rational drug design success.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
18
|
Agnati LF, Guidolin D, Cervetto C, Maura G, Marcoli M. Brain Structure and Function: Insights from Chemical Neuroanatomy. Life (Basel) 2023; 13:life13040940. [PMID: 37109469 PMCID: PMC10142941 DOI: 10.3390/life13040940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/24/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
We present a brief historical and epistemological outline of investigations on the brain’s structure and functions. These investigations have mainly been based on the intermingling of chemical anatomy, new techniques in the field of microscopy and computer-assisted morphometric methods. This intermingling has enabled extraordinary investigations to be carried out on brain circuits, leading to the development of a new discipline: “brain connectomics”. This new approach has led to the characterization of the brain’s structure and function in physiological and pathological conditions, and to the development of new therapeutic strategies. In this context, the conceptual model of the brain as a hyper-network with a hierarchical, nested architecture, arranged in a “Russian doll” pattern, has been proposed. Our investigations focused on the main characteristics of the modes of communication between nodes at the various miniaturization levels, in order to describe the brain’s integrative actions. Special attention was paid to the nano-level, i.e., to the allosteric interactions among G protein-coupled receptors organized in receptor mosaics, as a promising field in which to obtain a new view of synaptic plasticity and to develop new, more selective drugs. The brain’s multi-level organization and the multi-faceted aspects of communication modes point to an emerging picture of the brain as a very peculiar system, in which continuous self-organization and remodeling take place under the action of external stimuli from the environment, from peripheral organs and from ongoing integrative actions.
Collapse
Affiliation(s)
- Luigi F. Agnati
- Department of Biochemical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Chiara Cervetto
- Department of Pharmacy, University of Genova, 16148 Genova, Italy
- Center for Promotion of 3Rs in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Guido Maura
- Department of Pharmacy, University of Genova, 16148 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy
- Center for Promotion of 3Rs in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| |
Collapse
|
19
|
Xie J, Zhang W, Zhu X, Deng M, Lai L. Coevolution-based prediction of key allosteric residues for protein function regulation. eLife 2023; 12:81850. [PMID: 36799896 PMCID: PMC9981151 DOI: 10.7554/elife.81850] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Allostery is fundamental to many biological processes. Due to the distant regulation nature, how allosteric mutations, modifications, and effector binding impact protein function is difficult to forecast. In protein engineering, remote mutations cannot be rationally designed without large-scale experimental screening. Allosteric drugs have raised much attention due to their high specificity and possibility of overcoming existing drug-resistant mutations. However, optimization of allosteric compounds remains challenging. Here, we developed a novel computational method KeyAlloSite to predict allosteric site and to identify key allosteric residues (allo-residues) based on the evolutionary coupling model. We found that protein allosteric sites are strongly coupled to orthosteric site compared to non-functional sites. We further inferred key allo-residues by pairwise comparing the difference of evolutionary coupling scores of each residue in the allosteric pocket with the functional site. Our predicted key allo-residues are in accordance with previous experimental studies for typical allosteric proteins like BCR-ABL1, Tar, and PDZ3, as well as key cancer mutations. We also showed that KeyAlloSite can be used to predict key allosteric residues distant from the catalytic site that are important for enzyme catalysis. Our study demonstrates that weak coevolutionary couplings contain important information of protein allosteric regulation function. KeyAlloSite can be applied in studying the evolution of protein allosteric regulation, designing and optimizing allosteric drugs, and performing functional protein design and enzyme engineering.
Collapse
Affiliation(s)
- Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Weilin Zhang
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking UniversityBeijingChina
| | - Xiaolei Zhu
- School of Sciences, Anhui Agricultural UniversityHefeiChina
| | - Minghua Deng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- School of Mathematical Sciences, Peking UniversityBeijingChina
- Center for Statistical Science, Peking UniversityBeijingChina
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking UniversityBeijingChina
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014)BeijingChina
| |
Collapse
|
20
|
Castelli M, Bhattacharya K, Abboud E, Serapian SA, Picard D, Colombo G. Phosphorylation of the Hsp90 Co-Chaperone Hop Changes its Conformational Dynamics and Biological Function. J Mol Biol 2023; 435:167931. [PMID: 36572238 DOI: 10.1016/j.jmb.2022.167931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
The molecular chaperones Hsp90 and Hsp70 and their regulatory co-chaperone Hop play a key role at the crossroads of the folding pathways of numerous client proteins by forming fine-tuned multiprotein complexes. Alterations of the biomolecules involved may functionally impact the chaperone machinery: here, we integrate simulations and experiments to unveil how Hop conformational fitness and interactions can be controlled by the perturbation of just one residue. Specifically, we unveil how mechanisms mediated by Hop residue Y354 control Hop open and closed states, which affect binding of Hsp70/Hsp90. Phosphorylation or mutation of Hop-Y354 are shown to favor structural ensembles that are indeed not optimal for stable interactions with Hsp90 and Hsp70. This disfavors cellular accumulation of the stringent Hsp90 clients glucocorticoid receptor and the viral tyrosine kinase v-Src, with detrimental effects on v-Src activity. Our results show how the post-translational modification of a specific residue in Hop provides a regulation mechanism for the larger chaperone complex of which it is part. In this framework, the effects of one single alteration are amplified at the cellular level through the perturbation of protein-interaction networks.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy. https://twitter.com/mat_castelli
| | - Kaushik Bhattacharya
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 1211 Genève 4, Switzerland. https://twitter.com/kaushik34371359
| | - Ernest Abboud
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 1211 Genève 4, Switzerland
| | - Stefano A Serapian
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Didier Picard
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 1211 Genève 4, Switzerland.
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
21
|
Yao Y, Cao S, Yang Q, Zhang A, Li W. Thermo-Gelling Dendronized Chitosans for Modulating Protein Activity. ACS APPLIED BIO MATERIALS 2022; 5:5377-5385. [PMID: 36343279 DOI: 10.1021/acsabm.2c00755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of protein activity is important in their applications for biomedicine and therapeutics. Here, an approach for the regulation of protein bioactivity through molecular confinement provided by oligoethylene glycol (OEG)-based dendronized chitosan (DCS) hydrogels is reported. Structural effects on their thermoresponsiveness are investigated. The highly transparent hydrogels are formed from thermoresponsive DCSs through their thermal dehydration and exhibit an intriguing reversible sol-gel transition property when triggered at physiological temperatures. The thermo-gelling behavior and mechanical strength of these hydrogels are investigated, and possible effects from hydrophobicity of the OEG dendrons, grafting rates of the dendrons on the chitosan main chain, and solid content of polymers are examined. These DCS hydrogels are found to have lamellar morphologies and can provide characteristic hydrophobicity microenvironments formed through the crowded OEG dendrons, which show a higher level of confinement to guest proteins. This allows the DCS hydrogels remarkable activity protection capability to proteins. Furthermore, these DCS hydrogels inherit the degradability from chitosan, allowing protein release from these hydrogels through the controllable ways without impairing their activities.
Collapse
Affiliation(s)
- Yi Yao
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Shijie Cao
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Qingcen Yang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| |
Collapse
|
22
|
Abstract
In this article, the evolution of viruses is analyzed in terms of their complexity. It is shown that the evolution of viruses is a partially directed process. The participation of viruses and mobile genetic elements in the evolution of other organisms by integration into the genome is also an a priori directed process. The high variability of genomes (including the genes of antibodies), which differs by orders of magnitude for various viruses and their hosts, is not a random process but is the result of the action of a molecular genetic control system. Herein, a model of partially directed evolution of viruses is proposed. Throughout the life cycle of viruses, there is an interaction of complex biologically important molecules that cannot be explained on the basis of classic laws. The interaction of a virus with a cell is essentially a quantum event, including selective long-range action. Such an interaction can be interpreted as the "remote key-lock" principle. In this article, a model of the interaction of biologically important viral molecules with cellular molecules based on nontrivial quantum interactions is proposed. Experiments to test the model are also proposed.
Collapse
|
23
|
Nussinov R, Zhang M, Liu Y, Jang H. AlphaFold, Artificial Intelligence (AI), and Allostery. J Phys Chem B 2022; 126:6372-6383. [PMID: 35976160 PMCID: PMC9442638 DOI: 10.1021/acs.jpcb.2c04346] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/03/2022] [Indexed: 02/08/2023]
Abstract
AlphaFold has burst into our lives. A powerful algorithm that underscores the strength of biological sequence data and artificial intelligence (AI). AlphaFold has appended projects and research directions. The database it has been creating promises an untold number of applications with vast potential impacts that are still difficult to surmise. AI approaches can revolutionize personalized treatments and usher in better-informed clinical trials. They promise to make giant leaps toward reshaping and revamping drug discovery strategies, selecting and prioritizing combinations of drug targets. Here, we briefly overview AI in structural biology, including in molecular dynamics simulations and prediction of microbiota-human protein-protein interactions. We highlight the advancements accomplished by the deep-learning-powered AlphaFold in protein structure prediction and their powerful impact on the life sciences. At the same time, AlphaFold does not resolve the decades-long protein folding challenge, nor does it identify the folding pathways. The models that AlphaFold provides do not capture conformational mechanisms like frustration and allostery, which are rooted in ensembles, and controlled by their dynamic distributions. Allostery and signaling are properties of populations. AlphaFold also does not generate ensembles of intrinsically disordered proteins and regions, instead describing them by their low structural probabilities. Since AlphaFold generates single ranked structures, rather than conformational ensembles, it cannot elucidate the mechanisms of allosteric activating driver hotspot mutations nor of allosteric drug resistance. However, by capturing key features, deep learning techniques can use the single predicted conformation as the basis for generating a diverse ensemble.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mingzhen Zhang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| |
Collapse
|
24
|
Phenol sensing in nature is modulated via a conformational switch governed by dynamic allostery. J Biol Chem 2022; 298:102399. [PMID: 35988639 PMCID: PMC9556785 DOI: 10.1016/j.jbc.2022.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
The NtrC family of proteins senses external stimuli and accordingly stimulates stress and virulence pathways via activation of associated σ54-dependent RNA polymerases. However, the structural determinants that mediate this activation are not well understood. Here, we establish using computational, structural, biochemical, and biophysical studies that MopR, an NtrC protein, harbors a dynamic bidirectional electrostatic network that connects the phenol pocket to two distal regions, namely the “G-hinge” and the “allosteric linker.” While the G-hinge influences the entry of phenol into the pocket, the allosteric linker passes the signal to the downstream ATPase domain. We show that phenol binding induces a rewiring of the electrostatic connections by eliciting dynamic allostery and demonstrates that perturbation of the core relay residues results in a complete loss of ATPase stimulation. Furthermore, we found a mutation of the G-hinge, ∼20 Å from the phenol pocket, promotes altered flexibility by shifting the pattern of conformational states accessed, leading to a protein with 7-fold enhanced phenol binding ability and enhanced transcriptional activation. Finally, we conducted a global analysis that illustrates that dynamic allostery-driven conserved community networks are universal and evolutionarily conserved across species. Taken together, these results provide insights into the mechanisms of dynamic allostery-mediated conformational changes in NtrC sensor proteins.
Collapse
|
25
|
Bai F, Puk KM, Liu J, Zhou H, Tao P, Zhou W, Wang S. Sparse group selection and analysis of function-related residue for protein-state recognition. J Comput Chem 2022; 43:1342-1354. [PMID: 35656889 PMCID: PMC9248267 DOI: 10.1002/jcc.26937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/08/2022] [Indexed: 11/08/2022]
Abstract
Machine learning methods have helped to advance wide range of scientific and technological field in recent years, including computational chemistry. As the chemical systems could become complex with high dimension, feature selection could be critical but challenging to develop reliable machine learning based prediction models, especially for proteins as bio-macromolecules. In this study, we applied sparse group lasso (SGL) method as a general feature selection method to develop classification model for an allosteric protein in different functional states. This results into a much improved model with comparable accuracy (Acc) and only 28 selected features comparing to 289 selected features from a previous study. The Acc achieves 91.50% with 1936 selected feature, which is far higher than that of baseline methods. In addition, grouping protein amino acids into secondary structures provides additional interpretability of the selected features. The selected features are verified as associated with key allosteric residues through comparison with both experimental and computational works about the model protein, and demonstrate the effectiveness and necessity of applying rigorous feature selection and evaluation methods on complex chemical systems.
Collapse
Affiliation(s)
- Fangyun Bai
- Department of Management Science and Engineering, Tongji University. Fangyun Bai and Kin Ming Puk contributed equally to this work
| | | | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center
| | - Hongyu Zhou
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University
| | - Peng Tao
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University
| | - Wenyong Zhou
- Department of Management Science and Engineering, Tongji University
| | - Shouyi Wang
- Corresponding author: Shouyi Wang, Department of Industrial, Manufacturing and Systems Engineering, University of Texas at Arlington.
| |
Collapse
|
26
|
Berezovsky IN, Nussinov R. Multiscale Allostery: Basic Mechanisms and Versatility in Diagnostics and Drug Design. J Mol Biol 2022; 434:167751. [PMID: 35863488 DOI: 10.1016/j.jmb.2022.167751] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboraory, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
27
|
Identification of Core Allosteric Sites through Temperature- and Nucleus-Invariant Chemical Shift Covariance. Biophys J 2022; 121:2035-2045. [PMID: 35538664 DOI: 10.1016/j.bpj.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Allosteric regulation is essential to control biological function. In addition, allosteric sites offer a promising venue for selective drug targeting. However, accurate mapping of allosteric sites remains challenging since allostery relies on often subtle, yet functionally relevant, structural and dynamical changes. A viable approach proposed to overcome such challenge is the chemical shift covariance analysis (CHESCA). Although CHESCA offers an exhaustive map of allosteric networks, it is critical to define the core allosteric sites to be prioritized in subsequent functional studies or the design of allosteric drugs. Here we propose two new CHESCA-based methodologies, called temperature CHESCA (T-CHESCA) and CLASS-CHESCA, aimed at narrowing down allosteric maps to the core allosteric residues. Both T- and CLASS-CHESCAs rely on the invariance of core inter-residue correlations to changes in the chemical shifts of the active and inactive conformations interconverting in fast exchange. In the T-CHESCA the chemical shifts of such states are modulated through temperature changes, while in the CLASS-CHESCA through variations in the spin-active nuclei involved in pairwise correlations. The T- and CLASS-CHESCAs as well as complete-linkage CHESCA were applied to the cAMP-binding domain of the exchange protein directly activated by cAMP (EPAC), which serves as a prototypical allosteric switch. Residues consistently identified by the three CHESCA methods were found in previously identified EPAC allosteric core sites. Hence, the T-, CLASS- and CL-CHESCA provide a toolset to establish allosteric site hierarchy and triage allosteric sites to be further analyzed by mutations and functional assays. Furthermore, the core allosteric networks selectively revealed through T- and CLASS-CHESCA are expected to facilitate the mechanistic understanding of disease-related mutations and the design of selective allosteric modulators.
Collapse
|
28
|
Nussinov R, Tsai CJ, Jang H. Allostery, and how to define and measure signal transduction. Biophys Chem 2022; 283:106766. [PMID: 35121384 PMCID: PMC8898294 DOI: 10.1016/j.bpc.2022.106766] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Here we ask: What is productive signaling? How to define it, how to measure it, and most of all, what are the parameters that determine it? Further, what determines the strength of signaling from an upstream to a downstream node in a specific cell? These questions have either not been considered or not entirely resolved. The requirements for the signal to propagate downstream to activate (repress) transcription have not been considered either. Yet, the questions are pivotal to clarify, especially in diseases such as cancer where determination of signal propagation can point to cell proliferation and to emerging drug resistance, and to neurodevelopmental disorders, such as RASopathy, autism, attention-deficit/hyperactivity disorder (ADHD), and cerebral palsy. Here we propose a framework for signal transduction from an upstream to a downstream node addressing these questions. Defining cellular processes, experimentally measuring them, and devising powerful computational AI-powered algorithms that exploit the measurements, are essential for quantitative science.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
29
|
Baltrukevich H, Podlewska S. From Data to Knowledge: Systematic Review of Tools for Automatic Analysis of Molecular Dynamics Output. Front Pharmacol 2022; 13:844293. [PMID: 35359865 PMCID: PMC8960308 DOI: 10.3389/fphar.2022.844293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
An increasing number of crystal structures available on one side, and the boost of computational power available for computer-aided drug design tasks on the other, have caused that the structure-based drug design tools are intensively used in the drug development pipelines. Docking and molecular dynamics simulations, key representatives of the structure-based approaches, provide detailed information about the potential interaction of a ligand with a target receptor. However, at the same time, they require a three-dimensional structure of a protein and a relatively high amount of computational resources. Nowadays, as both docking and molecular dynamics are much more extensively used, the amount of data output from these procedures is also growing. Therefore, there are also more and more approaches that facilitate the analysis and interpretation of the results of structure-based tools. In this review, we will comprehensively summarize approaches for handling molecular dynamics simulations output. It will cover both statistical and machine-learning-based tools, as well as various forms of depiction of molecular dynamics output.
Collapse
Affiliation(s)
- Hanna Baltrukevich
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
- Faculty of Pharmacy, Chair of Technology and Biotechnology of Medical Remedies, Jagiellonian University Medical College in Krakow, Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
30
|
Martinez Pomier K, Akimoto M, Byun JA, Khamina M, Melacini G. Allosteric Regulation of Cyclic Nucleotide Dependent Protein Kinases. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kinases include a wide variety of valuable drug targets, but full therapeutic exploitation requires a high degree of selectivity. A promising avenue to engineer the desired kinase selectivity relies on allosteric sites. Here we provide a focused minireview of recent progress in allosteric modulation of cyclic nucleotide-dependent kinases, including protein kinases A and G. We show how apparently diverse emerging concepts such as allosteric pluripotency, allosteric non-additive binding and uncompetitive allosteric inhibition are all manifestations of complex conformational ensembles. Such ensembles include not only the typical apo-inactive and effector-bound-active states, but also mixed intermediates that feature attributes of the former states within a single molecule. We also discuss how allosteric responses are amplified by aggregation processes, thus establishing a novel interface between the signaling and amyloid fields. Finally, we critically evaluate the challenges and opportunities for clinical translation opened by these emerging allosteric concepts.
Collapse
Affiliation(s)
| | | | - Jung Ah Byun
- McMaster University, 3710, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
31
|
Abrusán G, Ascher DB, Inouye M. Known allosteric proteins have central roles in genetic disease. PLoS Comput Biol 2022; 18:e1009806. [PMID: 35139069 PMCID: PMC10138267 DOI: 10.1371/journal.pcbi.1009806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 04/27/2023] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Allostery is a form of protein regulation, where ligands that bind sites located apart from the active site can modify the activity of the protein. The molecular mechanisms of allostery have been extensively studied, because allosteric sites are less conserved than active sites, and drugs targeting them are more specific than drugs binding the active sites. Here we quantify the importance of allostery in genetic disease. We show that 1) known allosteric proteins are central in disease networks, contribute to genetic disease and comorbidities much more than non-allosteric proteins, and there is an association between being allosteric and involvement in disease; 2) they are enriched in many major disease types like hematopoietic diseases, cardiovascular diseases, cancers, diabetes, or diseases of the central nervous system; 3) variants from cancer genome-wide association studies are enriched near allosteric proteins, indicating their importance to polygenic traits; and 4) the importance of allosteric proteins in disease is due, at least partly, to their central positions in protein-protein interaction networks, and less due to their dynamical properties.
Collapse
Affiliation(s)
- György Abrusán
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, School of Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - David B. Ascher
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Structural Biology and Bioinformatics, Department of Biochemistry, Bio21 Institute, University of Melbourne, Melbourne, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, School of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
32
|
Rehman AU, Lu S, Khan AA, Khurshid B, Rasheed S, Wadood A, Zhang J. Hidden allosteric sites and De-Novo drug design. Expert Opin Drug Discov 2021; 17:283-295. [PMID: 34933653 DOI: 10.1080/17460441.2022.2017876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Hidden allosteric sites are not visible in apo-crystal structures, but they may be visible in holo-structures when a certain ligand binds and maintains the ligand intended conformation. Several computational and experimental techniques have been used to investigate these hidden sites but identifying them remains a challenge. AREAS COVERED This review provides a summary of the many theoretical approaches for predicting hidden allosteric sites in disease-related proteins. Furthermore, promising cases have been thoroughly examined to reveal the hidden allosteric site and its modulator. EXPERT OPINION In the recent past, with the development in scientific techniques and bioinformatics tools, the number of drug targets for complex human diseases has significantly increased but unfortunately most of these targets are undruggable due to several reasons. Alternative strategies such as finding cryptic (hidden) allosteric sites are an attractive approach for exploitation of the discovery of new targets. These hidden sites are difficult to recognize compared to allosteric sites, mainly due to a lack of visibility in the crystal structure. In our opinion, after many years of development, MD simulations are finally becoming successful for obtaining a detailed molecular description of drug-target interaction.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Salman Rasheed
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Nussinov R, Tsai CJ, Jang H. Signaling in the crowded cell. Curr Opin Struct Biol 2021; 71:43-50. [PMID: 34218161 PMCID: PMC8648894 DOI: 10.1016/j.sbi.2021.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
High-resolution technologies have clarified some of the principles underlying cellular actions. However, understanding how cells receive, communicate, and respond to signals is still challenging. Questions include how efficient regulation of assemblies, which execute cell actions at the nanoscales, transmits productively at micrometer scales, especially considering the crowded environment, and how the cell organization makes it happen. Here, we describe how cells can navigate long-range diffusion-controlled signaling via association/dissociation of spatially proximal entities. Dynamic clusters can span the cell, engaging in most signaling steps. Effective local concentration, allostery, scaffolding, affinities, and the chemical and mechanical properties of the macromolecules and the environment play key roles. Signaling strength and duration matter, for example, deciding if a mutation promotes cancer or developmental syndromes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
34
|
Zhou G, Lu X, Yuan M, Li T, Li L. Enzymatic Cycle-Inspired Dynamic Biosensors Affording No False-Positive Identification. Anal Chem 2021; 93:15482-15492. [PMID: 34767335 DOI: 10.1021/acs.analchem.1c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an urgent need for reliable biosensors to detect nucleic acid of interest in clinical samples. We propose that the accuracy of the present nucleic acid-sensing method can be advanced by avoiding false-positive identifications derived from nonspecific interactions (e.g., nonspecific binding, probe degradation). The challenge is to exploit biosensors that can distinguish false-positive from true-positive samples in nucleic acid screening. In the present study, by learning from the enzymatic cycle in nature, we raise an allostery tool displaying invertible positive/negative cooperativity for reversible or cyclic activity control of the biosensing probe. We demonstrate that the silencing and regeneration of a positive (or negative) allosteric effector can be carried out through toehold displacement or an enzymatic reaction. We, thus, have developed several dynamic biosensors that can repeatedly measure a single nucleic acid sample. The ability to distinguish a false-positive from a true-positive signal is ascribed to the nonspecific interaction presenting equivalent signal variations, while the specific target binding exhibits diverse signal variations according to repeated measurements. Given its precise identification, such consequent dynamic biosensors offer exciting opportunities in physiological and pathological diagnosis.
Collapse
Affiliation(s)
- Guobao Zhou
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Xing Lu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Mengmeng Yuan
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Tuqiang Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| |
Collapse
|
35
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
36
|
Morris DT, Wales SM, Tilly DP, Farrar EH, Grayson MN, Ward JW, Clayden J. A molecular communication channel consisting of a single reversible chain of hydrogen bonds in a conformationally flexible oligomer. Chem 2021; 7:2460-2472. [PMID: 34553103 PMCID: PMC8442760 DOI: 10.1016/j.chempr.2021.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
Communication of information through the global switching of conformation in synthetic molecules has hitherto entailed the inversion of chirality. Here, we report a class of oligomer through which information may be communicated through a global reversal of polarity. Ethylene-bridged oligoureas are constitutionally symmetrical, conformationally flexible molecules organized by a single chain of hydrogen bonds running the full length of the oligomer. NMR reveals that this hydrogen-bonded chain may undergo a coherent reversal of directionality. The directional uniformity of the hydrogen-bond chain allows it to act as a channel for the spatial communication of information on a molecular scale. A binding site at the terminus of an oligomer detects local information about changes in pH or anion concentration and transmits that information—in the form of a directionality switch in the hydrogen-bond chain—to a remote polarity-sensitive fluorophore. This propagation of polarity-encoded information provides a new mechanism for molecular communication. Simple urea oligomers organize themselves with a single coherent hydrogen-bond chain Reversing the polarity of the hydrogen bonding sends a message through the molecule Conformational messages can be transmitted by changes in pH or by anion binding Receipt of the conformational message is indicated by a remote fluorescent response
Despite the progress made by synthetic chemistry in building the molecular structures of nature, there are still domains of molecular science where biology is immensely more sophisticated than even the most advanced artificial chemical systems. One of these is the ability to use molecular structures to encode and communicate information. Nature stores information in the hydrogen-bond polarity of the base pairs and translates it into molecular function using the polarity matching of these bonds. Here, we outline an early step toward replicating this ability in the design, synthesis, and operation of a series of synthetic molecular devices that employ a structurally simple family of oligomeric molecules that can communicate information in the form of hydrogen-bond polarity. This study marks a significant step in the design of molecular systems that manipulate information, which will form the basis of the many compartmentalization-based nanotechnologies of the future.
Collapse
Affiliation(s)
- David T.J. Morris
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Steven M. Wales
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - David P. Tilly
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Elliot H.E. Farrar
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew N. Grayson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - John W. Ward
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Corresponding author
| |
Collapse
|
37
|
Huang Q, Song P, Chen Y, Liu Z, Lai L. Allosteric Type and Pathways Are Governed by the Forces of Protein-Ligand Binding. J Phys Chem Lett 2021; 12:5404-5412. [PMID: 34080881 DOI: 10.1021/acs.jpclett.1c01253] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Allostery is central to many cellular processes, by up- or down-regulating target function. However, what determines the allosteric type remains elusive and currently it is impossible to predict whether the allosteric compounds would activate or inhibit target function before experimental studies. We demonstrated that the allosteric type and allosteric pathways are governed by the forces imposed by ligand binding to target protein using the anisotropic network model and developed an allosteric type prediction method (AlloType). AlloType correctly predicted 13 of the 16 allosteric systems in the data set with experimentally determined protein and complex structures as well as verified allosteric types, which was also used to identify allosteric pathways. When applied to glutathione peroxidase 4, a protein with no complex structure information, AlloType could still be able to predict the allosteric type of the recently reported allosteric activators, demonstrating its potential application in designing specific allosteric drugs and uncovering allosteric mechanisms.
Collapse
Affiliation(s)
- Qiaojing Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Pengbo Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yixin Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
38
|
Wang S, Huang Z, Li A, Zhao Y, Zuo W, Li Y, Miao H, Ma J, Sun W, Wang X, Cao L, Wu B, Jia C. Crown Ether Functionalized Potassium‐Responsive Anionocages for Cascaded Guest Delivery. Angew Chem Int Ed Engl 2021; 60:9573-9579. [DOI: 10.1002/anie.202100441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Zhe Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Zuo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yawen Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Haohao Miao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Jiacheng Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiaoqing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- Key Laboratory of Cluster Science of Ministry of Education Key Laboratory of Medical Molecule Science and Pharmaceutics, Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| |
Collapse
|
39
|
Wang S, Huang Z, Li A, Zhao Y, Zuo W, Li Y, Miao H, Ma J, Sun W, Wang X, Cao L, Wu B, Jia C. Crown Ether Functionalized Potassium‐Responsive Anionocages for Cascaded Guest Delivery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Zhe Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Zuo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yawen Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Haohao Miao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Jiacheng Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiaoqing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- Key Laboratory of Cluster Science of Ministry of Education Key Laboratory of Medical Molecule Science and Pharmaceutics, Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| |
Collapse
|
40
|
Kakarala KK, Jamil K. Identification of novel allosteric binding sites and multi-targeted allosteric inhibitors of receptor and non-receptor tyrosine kinases using a computational approach. J Biomol Struct Dyn 2021; 40:6889-6909. [PMID: 33682622 DOI: 10.1080/07391102.2021.1891140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
EGFR1, VEGFR2, Bcr-Abl and Src kinases are key drug targets in non-small cell lung cancer (NSCLC), bladder cancer, pancreatic cancer, CML, ALL, colorectal cancer, etc. The available drugs targeting these kinases have limited therapeutic efficacy due to novel mutations resulting in drug resistance and toxicity, as they target ATP binding site. Allosteric drugs have shown promising results in overcoming drug resistance, but the discovery of allosteric drugs is challenging. The allosteric binding pockets are difficult to predict, as they are generally associated with high energy conformations and regulate protein function in yet unknown mechanisms. In addition, the discovery of drugs using conventional methods takes long time and goes through several challenges, putting the lives of many cancer patients at risk. Therefore, the aim of the present work was to apply the most successful, drug repurposing approach in combination with computational methods to identify kinase inhibitors targeting novel allosteric sites on protein structure and assess their potential multi-kinase binding affinity. Multiple crystal structures belonging to EGFR1, VEGFR2, Bcr-Abl and Src tyrosine kinases were selected, including mutated, inhibitor bound and allosteric conformations to identify potential leads, close to physiological conditions. Interestingly the potential inhibitors identified were peptides. The drugs identified in this study could be used in therapy as a single multi-kinase inhibitor or in a combination of single kinase inhibitors after experimental validation. In addition, we have also identified new hot spots that are likely to be druggable allosteric sites for drug discovery of kinase-specific drugs in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Kaiser Jamil
- Bhagwan Mahavir Medical Research Center, Hyderabad, Telangana, India
| |
Collapse
|
41
|
Teanphonkrang S, Suginta W, Sucharitakul J, Fukamizo T, Chaiyen P, Schulte A. An electrochemical method for detecting the biomarker 4-HPA by allosteric activation of Acinetobacterbaumannii reductase C1 subunit. J Biol Chem 2021; 296:100467. [PMID: 33639166 PMCID: PMC8027283 DOI: 10.1016/j.jbc.2021.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
The C1 (reductase) subunit of 4-hydroxy-phenylacetate (4-HPA) 3-hydroxylase (HPAH) from the soil-based bacterium Acinetobacterbaumannii catalyzes NADH oxidation by molecular oxygen, with hydrogen peroxide as a by-product. 4-HPA is a potent allosteric modulator of C1, but also a known urinary biomarker for intestinal bacterial imbalance and for some cancers and brain defects. We thus envisioned that C1 could be used to facilitate 4-HPA detection. The proposed test protocol is simple and in situ and involves addition of NADH to C1 in solution, with or without 4-HPA, and direct acquisition of the H2O2 current with an immersed Prussian Blue–coated screen-printed electrode (PB-SPE) assembly. We confirmed that cathodic H2O2 amperometry at PB-SPEs is a reliable electrochemical assay for intrinsic and allosterically modulated redox enzyme activity. We further validated this approach for quantitative NADH electroanalysis and used it to evaluate the activation of NADH oxidation of C1 by 4-HPA and four other phenols. Using 4-HPA, the most potent effector, allosteric activation of C1 was related to effector concentration by a simple saturation function. The use of C1 for cathodic biosensor analysis of 4-HPA is the basis of the development of a simple and affordable clinical routine for assaying 4-HPA in the urine of patients with a related disease risk. Extension of this principle to work with other allosteric redox enzymes and their effectors is feasible.
Collapse
Affiliation(s)
- Somjai Teanphonkrang
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand; School of Chemistry, Institute of Science, The Suranaree University of Technology (SUT), Nakhon Ratchasima, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry and Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, Nara, Japan
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand; School of Chemistry, Institute of Science, The Suranaree University of Technology (SUT), Nakhon Ratchasima, Thailand.
| |
Collapse
|
42
|
Abstract
Allosteric regulation in proteins is fundamental to many important biological processes. Allostery has been employed to control protein functions by regulating protein activity. Engineered allosteric regulation allows controlling protein activity in subsecond time scale and has a broad range of applications, from dissecting spatiotemporal dynamics in biochemical cascades to applications in biotechnology and medicine. Here, we review the concept of allostery in proteins and various approaches to identify allosteric sites and pathways. We then provide an overview of strategies and tools used in allosteric protein regulation and their utility in biological applications. We highlight various classes of proteins, where regulation is achieved through allostery. Finally, we analyze the current problems, critical challenges, and future prospective in achieving allosteric regulation in proteins.
Collapse
Affiliation(s)
| | - Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Departments of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
43
|
Wang Y, Yu Z, Xiao W, Lu S, Zhang J. Allosteric binding sites at the receptor-lipid bilayer interface: novel targets for GPCR drug discovery. Drug Discov Today 2020; 26:690-703. [PMID: 33301977 DOI: 10.1016/j.drudis.2020.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
As a superfamily of membrane receptors, G-protein-coupled receptors (GPCRs) have significant roles in human physiological processes, including cell proliferation, metabolism, and neuromodulation. GPCRs are vital targets of therapeutic drugs, and their allosteric regulation represents a novel direction for drug discovery. Given the numerous breakthroughs in structural biology, diverse allosteric sites on GPCRs have been identified within the extracellular and intracellular loops, and the seven core transmembrane helices. However, a unique type of allosteric site has also been discovered at the interface of the receptor-lipid bilayer, similar to the β2-adrenergic receptor. Here, we review recent identifications of these allosteric sites and the detailed modulator-target interactions within the interface for each modulator to highlight the role of lipids in GPCR allosteric drug discovery.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Zhengtian Yu
- Nutshell Biotechnology Co., Ltd., Shanghai, China
| | - Wen Xiao
- Nutshell Biotechnology Co., Ltd., Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
44
|
Prabhakant A, Panigrahi A, Krishnan M. Allosteric Response of DNA Recognition Helices of Catabolite Activator Protein to cAMP and DNA Binding. J Chem Inf Model 2020; 60:6366-6376. [PMID: 33108170 DOI: 10.1021/acs.jcim.0c00617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The homodimeric catabolite activator protein (CAP) regulates the transcription of several bacterial genes based on the cellular concentration of cyclic adenosine monophosphate (cAMP). The binding of cAMP to CAP triggers allosteric communication between the cAMP binding domains (CBD) and DNA binding domains (DBD) of CAP, which entails repositioning of DNA recognition helices (F-helices) in the DBD to dock favorably to the target DNA. Despite considerable progress, much remains to be understood about the mechanistic details of DNA recognition by CAP and about the map of allosteric pathways involved in CAP-mediated gene transcription. The present study uses molecular dynamics and umbrella sampling simulations to investigate the mechanism of cAMP- and DNA-induced changes in the conformation and energetics of F-helices observed during the allosteric regulation of CAP by cAMP and the subsequent binding to the DNA promoter region. Using novel collective variables, the free energy profiles associated with the orientation and dynamics of F-helices in the unliganded, cAMP-bound, and cAMP-DNA-bound states of CAP are calculated and compared. The binding-induced alterations in the resultant free energy profiles reveal important flexibility constraints imposed on DBD upon cAMP and DNA binding. A comprehensive analysis of residue-wise interaction maps reveals potential allosteric pathways between CBD and DBD that facilitate the allosteric transduction of regulatory signals in CAP. The revelation that the predicted allosteric pathways crisscross the intersubunit interface offers important clues on the microscopic origin of the intersubunit cooperativity and dimer stability of CAP.
Collapse
Affiliation(s)
- Akshay Prabhakant
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India
| | - Abhinandan Panigrahi
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India
| |
Collapse
|
45
|
Rajappan SC, McCarthy DR, Campbell JP, Ferrell JB, Sharafi M, Ambrozaite O, Li J, Schneebeli ST. Selective Monofunctionalization Enabled by Reaction-History-Dependent Communication in Catalytic Rotaxanes. Angew Chem Int Ed Engl 2020; 59:16668-16674. [PMID: 32525593 DOI: 10.1002/anie.202006305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 12/24/2022]
Abstract
Selective monofunctionalization of substrates with distant, yet equally reactive functional groups is difficult to achieve, as it requires the second functional group to selectively modulate its reactivity once the first functional group has reacted. We now show that mechanically interlocked catalytic rings can effectively regulate the reactivity of stoppering groups in rotaxanes over a distance of about 2 nm. Our mechanism of communication is enabled by a unique interlocked design, which effectively removes the catalytic rings from the substrates by fast dethreading as soon as the first reaction has taken place. Our method not only led to a rare example of selective monofunctionalization, but also to a "molecular if function". Overall, the study presents a way to get distant functional groups to communicate with each other in a reaction-history-dependent manner by creating linkers that can ultimately perform logical operations at the molecular level.
Collapse
Affiliation(s)
- Sinu C Rajappan
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Dillon R McCarthy
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Joseph P Campbell
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Jonathon B Ferrell
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Mona Sharafi
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Ona Ambrozaite
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | | |
Collapse
|
46
|
Yan Q, Wang Y, Shi J, Wei B. Allostery of DNA nanostructures controlled by enzymatic modifications. Nucleic Acids Res 2020; 48:7595-7600. [PMID: 32526030 PMCID: PMC7367186 DOI: 10.1093/nar/gkaa488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023] Open
Abstract
Allostery is comprehensively studied for natural macromolecules, such as proteins and nucleic acids. Here, we present controllable allostery of synthetic DNA nanostructure–enzyme systems. Rational designs of the synthetic allosteric systems are based on an in-depth understanding of allosteric sites with several types of strand placements, whose varying stacking strengths determine the local conformation and ultimately lead to a gradient level of allosteric transition. When enzymes in a molecular cloning toolbox such as DNA polymerase, exonuclease and ligase are applied to treat the allosteric sites, the resulting local conformational changes propagate through the entire structure for a global allosteric transition.
Collapse
Affiliation(s)
- Qi Yan
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yaqi Wang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Jile Shi
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Rajappan SC, McCarthy DR, Campbell JP, Ferrell JB, Sharafi M, Ambrozaite O, Li J, Schneebeli ST. Selective Monofunctionalization Enabled by Reaction‐History‐Dependent Communication in Catalytic Rotaxanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sinu C. Rajappan
- Department of Chemistry University of Vermont Burlington VT 05405 USA
| | | | | | | | - Mona Sharafi
- Department of Chemistry University of Vermont Burlington VT 05405 USA
| | - Ona Ambrozaite
- Department of Chemistry University of Vermont Burlington VT 05405 USA
| | - Jianing Li
- Department of Chemistry University of Vermont Burlington VT 05405 USA
| | | |
Collapse
|
48
|
Allostery and Epistasis: Emergent Properties of Anisotropic Networks. ENTROPY 2020; 22:e22060667. [PMID: 33286439 PMCID: PMC7517209 DOI: 10.3390/e22060667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
Understanding the underlying mechanisms behind protein allostery and non-additivity of substitution outcomes (i.e., epistasis) is critical when attempting to predict the functional impact of mutations, particularly at non-conserved sites. In an effort to model these two biological properties, we extend the framework of our metric to calculate dynamic coupling between residues, the Dynamic Coupling Index (DCI) to two new metrics: (i) EpiScore, which quantifies the difference between the residue fluctuation response of a functional site when two other positions are perturbed with random Brownian kicks simultaneously versus individually to capture the degree of cooperativity of these two other positions in modulating the dynamics of the functional site and (ii) DCIasym, which measures the degree of asymmetry between the residue fluctuation response of two sites when one or the other is perturbed with a random force. Applied to four independent systems, we successfully show that EpiScore and DCIasym can capture important biophysical properties in dual mutant substitution outcomes. We propose that allosteric regulation and the mechanisms underlying non-additive amino acid substitution outcomes (i.e., epistasis) can be understood as emergent properties of an anisotropic network of interactions where the inclusion of the full network of interactions is critical for accurate modeling. Consequently, mutations which drive towards a new function may require a fine balance between functional site asymmetry and strength of dynamic coupling with the functional sites. These two tools will provide mechanistic insight into both understanding and predicting the outcome of dual mutations.
Collapse
|
49
|
Abstract
Abiotic allosterism is most commonly observed in hetero-bimetallic supramolecular complexes and less frequently in homo-bimetallic complexes. The use of hemilabile ligands with high synthetic complexity enables the catalytic center by the addition or removal of allosteric effectors and simplicity is unusually seen in these systems. Here we describe a simpler approach to achieve kinetic regulation by the use of dimeric Schiff base copper complexes connected by a chlorido ligand bridge. The chlorido ligand acts as a weak link between monomers, generating homo-bimetallic self-aggregating supramolecular complexes that generate monomeric species in different reaction rates depending on the solvent and on the radical moiety of the ligand. The ligand exchange was observed by electron paramagnetic resonance (EPR) and conductivity measurements, indicating that complexes with ligands bearing methoxyl (CuIIL2) and ethoxyl (CuIIL5) radicals were more prone to form dimeric complexes in comparison to ligands bearing hydrogen (CuIIL1), methyl (CuIIL3), or t-butyl (CuIIL4) radicals. The equilibrium between dimer and monomer afforded different reactivities of the complexes in acetonitrile/water and methanol/water mixtures toward urea hydrolysis as a model reaction. It was evident that the dimeric species were inactive and that by increasing the water concentration in the reaction medium, the dimeric structures dissociated to form the active monomeric structures. This behavior was more pronounced when methanol/water mixtures were employed due to a slower displacement of the chlorido bridge in this medium than in the acetonitrile/water mixtures, enabling the reaction kinetics to be evaluated. This effect was attributed to the preferential solvation shell by the organic solvents and in essence, an upregulation behavior was observed due to the intrinsic nature of the complexes to form dimeric structures in solution that could be dismantled in the presence of water, indicating their possible use as water-sensors in organic solvents.
Collapse
|
50
|
Liu X, Lu S, Song K, Shen Q, Ni D, Li Q, He X, Zhang H, Wang Q, Chen Y, Li X, Wu J, Sheng C, Chen G, Liu Y, Lu X, Zhang J. Unraveling allosteric landscapes of allosterome with ASD. Nucleic Acids Res 2020; 48:D394-D401. [PMID: 31665428 PMCID: PMC7145546 DOI: 10.1093/nar/gkz958] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Allosteric regulation is one of the most direct and efficient ways to fine-tune protein function; it is induced by the binding of a ligand at an allosteric site that is topographically distinct from an orthosteric site. The Allosteric Database (ASD, available online at http://mdl.shsmu.edu.cn/ASD) was developed ten years ago to provide comprehensive information related to allosteric regulation. In recent years, allosteric regulation has received great attention in biological research, bioengineering, and drug discovery, leading to the emergence of entire allosteric landscapes as allosteromes. To facilitate research from the perspective of the allosterome, in ASD 2019, novel features were curated as follows: (i) >10 000 potential allosteric sites of human proteins were deposited for allosteric drug discovery; (ii) 7 human allosterome maps, including protease and ion channel maps, were built to reveal allosteric evolution within families; (iii) 1312 somatic missense mutations at allosteric sites were collected from patient samples from 33 cancer types and (iv) 1493 pharmacophores extracted from allosteric sites were provided for modulator screening. Over the past ten years, the ASD has become a central resource for studying allosteric regulation and will play more important roles in both target identification and allosteric drug discovery in the future.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shaoyong Lu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Kun Song
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qiancheng Shen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Duan Ni
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qian Li
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Xinheng He
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Hao Zhang
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qi Wang
- China National Pharmaceutical Industry Information Center, Shanghai, 200040, China
| | - Yingyi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xinyi Li
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jing Wu
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guoqiang Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yaqin Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|