1
|
Li T, Wei L, Wang Z, Zhang X, Yang J, Wei Y, Li P, Xu L. Vinylcyclopropane-Cyclopentene (VCP-CP) Rearrangement Enabled by Pyridine-Assisted Boronyl Radical Catalysis. Org Lett 2024; 26:5341-5346. [PMID: 38875468 DOI: 10.1021/acs.orglett.4c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
An unprecedented VCP-CP (vinylcyclopropane-cyclopentene) rearrangement approach has been established herein by virtue of the pyridine-boronyl radical catalyzed intramolecular ring expansions. This metal-free radical pathway harnesses readily available catalysts and unactivated vinylcyclopropane starting materials, providing an array of cyclopentene derivatives chemoselectively under relatively mild conditions. Mechanistic studies support the idea that the boronyl radical engages in the generation of allylic/ketyl radical species, thus inducing the ring opening of cyclopropanes and the following intramolecular cyclization processes.
Collapse
Affiliation(s)
- Ting Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Lanfeng Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
- Xinjiang Key Laboratory of Coal Mine Disasters Intelligent Prevention and Emergency Response, Xinjiang Institute of Engineering, Urumqi 830023, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xinyu Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jinbo Yang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
2
|
Wei Y, Wang G, Zhang Z, Li M, Ma N, Wu H, Zhang G. Cope Rearrangement of 1-Acyl-2-vinylcyclopropanes to Cyclohept-4-Enones. J Org Chem 2024. [PMID: 38166204 DOI: 10.1021/acs.joc.3c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cycloheptenones are widespread in natural products and bioactive molecules. An efficient and convenient NaH-mediated Cope Rearrangement of doubly activated vinylcyclopropanes is reported for the synthesis of cyclohepten-4-ones. These flexible intramolecular reactions were applicable to a wide range of substrates and could be performed on gram scale. The derivatization of the product leads to short and highly efficient synthesis of some useful functional molecules.
Collapse
Affiliation(s)
- Yinhe Wei
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Gang Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mengjuan Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Wurzer N, Klimczak U, Babl T, Fischer S, Angnes RA, Kreutzer D, Pattanaik A, Rehbein J, Reiser O. Heck-Type Coupling of Fused Bicyclic Vinylcyclopropanes: Synthesis of 1,2-Dihydropyridines, 2,3-Dihydro-1 H-azepines, 1,4-Cyclohexadienes, and 2 H-Pyrans. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nikolai Wurzer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Urszula Klimczak
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Tobias Babl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sebastian Fischer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ricardo A. Angnes
- Institute of Chemistry, University of Campinas, Rua Carlos Gomes, 241, Cidade Universitária, Campinas, 13083-970 São Paulo, Brazil
| | - Dominik Kreutzer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Aryaman Pattanaik
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Julia Rehbein
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
|
5
|
Abstract
Reviewed herein is the aromatic Cope rearrangement, a Cope rearrangement where one (or both) of the alkenes of the 1,5-diene are part of a greater aromatic system. While the Cope rearrangement of 1,5-dienes has seen wide utility, variation, and application in chemical synthesis, the aromatic Cope rearrangement, comparatively, has not. This review summarizes the ∼40 papers dating back to 1956 on this topic and is divided into the following sections: (1) introduction, including kinetic and thermodynamic challenges of the aromatic Cope rearrangement, and (2) key substrate features, of which there are four general types: (i) α-allyl-α-aryl malonates (and related substrates), (ii) 1-aryl-2-vinylcyclopropanes, and (iii) anion-accelerated aromatic oxy-Cope substrates, and (iv) the concept of synchronized aromaticity. Ultimately, we hope this review will draw attention to a potentially valuable transformation for arene functionalization that warrants further studies and development.
Collapse
Affiliation(s)
- Breanna M Tomiczek
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL, USA.
| | | |
Collapse
|
6
|
Caillé J, Robiette R. Cycloaddition of cyclopropanes for the elaboration of medium-sized carbocycles. Org Biomol Chem 2021; 19:5702-5724. [PMID: 34114583 DOI: 10.1039/d1ob00838b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The stereocontrolled formation of medium-sized carbocycles is a major goal in modern organic chemistry due to their widespread occurrence in natural products and pharmaceutically active ingredients. One approach consists in the use of cycloaddition reactions which notably results in high selectivities and atom-economy. To this end, cyclopropanes are ideal substrates since they can provide readily functionalized three- or five-carbon synthons. Herein we report advances made in cycloaddition reactions of cyclopropanes towards the synthesis of medium-sized carbocycles via transition metal catalysis or Lewis acid catalysis.
Collapse
Affiliation(s)
- Julien Caillé
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium. and Institut de Chimie et des Matériaux Paris Est (ICMPE), UMR-CNRS 7182, Université Paris Est Créteil (UPEC), 2 Rue Henri Dunant, 94320 Thiais, France.
| | - Raphaël Robiette
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
7
|
Gerosa GG, Schwengers SA, Maji R, De CK, List B. Homologisierung der Fischer‐Indol‐Synthese: Chinoline via Homo‐Diaza‐Cope‐Umlagerung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Rajat Maji
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Chandra Kanta De
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
8
|
Gerosa GG, Schwengers SA, Maji R, De CK, List B. Homologation of the Fischer Indolization: A Quinoline Synthesis via Homo-Diaza-Cope Rearrangement. Angew Chem Int Ed Engl 2020; 59:20485-20488. [PMID: 32621795 PMCID: PMC7693176 DOI: 10.1002/anie.202005798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/18/2020] [Indexed: 12/23/2022]
Abstract
We disclose a new Brønsted acid promoted quinoline synthesis, proceeding via homo-diaza-Cope rearrangement of N-aryl-N'-cyclopropyl hydrazines. Our strategy can be considered a homologation of Fischer's classical indole synthesis and delivers 6-membered N-heterocycles, including previously inaccessible pyridine derivatives. This approach can also be used as a pyridannulation methodology toward constructing polycyclic polyheteroaromatics. A computational analysis has been employed to probe plausible activation modes and to interrogate the role of the catalyst.
Collapse
Affiliation(s)
| | | | - Rajat Maji
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Chandra Kanta De
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Benjamin List
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
9
|
|
10
|
Hori H, Arai S, Nishida A. Cobalt-catalyzed cyclization with the introduction of cyano, acyl and aminoalkyl groups. Org Biomol Chem 2019; 17:4783-4788. [PMID: 31033992 DOI: 10.1039/c9ob00637k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient synthesis of carbo- and heterocycles using C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds under cobalt catalysis is described. The substituents on olefins are key for controlling the regio- and chemoselectivity in the initial hydrogen atom transfer step and quaternary carbons are efficiently constructed under mild conditions. Cyclopropane cleavage and tandem cyclization give highly functionalized bicyclic skeletons in a single operation.
Collapse
Affiliation(s)
- Hiroto Hori
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 2608675, Japan.
| | | | | |
Collapse
|
11
|
Min MY, Song RJ, Ouyang XH, Li JH. Copper-catalyzed intermolecular oxidative trifluoromethyl-arylation of styrenes with NaSO2CF3 and indoles involving C–H functionalization. Chem Commun (Camb) 2019; 55:3646-3649. [DOI: 10.1039/c9cc00469f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new copper-catalyzed three-component oxidative 1,2-trifluoromethylarylation of styrenes with NaSO2CF3 and indoles involving aryl C–H bond functionalization is described.
Collapse
Affiliation(s)
- Man-Yi Min
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
12
|
Ivanova OA, Chagarovskiy AO, Shumsky AN, Krasnobrov VD, Levina II, Trushkov IV. Lewis Acid Triggered Vinylcyclopropane-Cyclopentene Rearrangement. J Org Chem 2017; 83:543-560. [PMID: 29110480 DOI: 10.1021/acs.joc.7b02351] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a mild Lewis acid induced isomerization of donor-acceptor cyclopropanes, containing an alkenyl moiety and diverse electron-withdrawing group(s) at the adjacent positions, into substituted cyclopentenes. We have found that 1,1,2-trisubstituted cyclopent-3-enes were exclusively obtained in yield of 51-99% when cyclopropanes with a 2-substituted alkenyl group as a donor underwent isomerization. For cyclopropanes bearing a trisubstituted alkenyl group either the corresponding cyclopent-3-enes or isomeric cyclopent-2-enes having two acceptor groups at the C(1) atom were formed, with the reaction selectivity being determined by the applied Lewis acid. We have shown that the reactivity of the donor-acceptor cyclopropane increases with the increase of the electron-donating character of (hetero)aromatic group attached to the alkenyl moiety. The synthetic utility of the developed methodology was also demonstrated through the synthesis of polysubstituted cyclopentane and piperidine derivatives.
Collapse
Affiliation(s)
- Olga A Ivanova
- Department of Chemistry, M.V. Lomonosov Moscow State University , Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Alexey O Chagarovskiy
- Dmitry Rogachev National Research Center of Pediatric Hematology , Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation.,Faculty of Science, RUDN University , Miklukho-Maklaya 6, Moscow 117198, Russian Federation
| | - Alexey N Shumsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Kosygina 4, Moscow 119334, Russian Federation
| | - Vasiliy D Krasnobrov
- Department of Chemistry, M.V. Lomonosov Moscow State University , Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Irina I Levina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Kosygina 4, Moscow 119334, Russian Federation
| | - Igor V Trushkov
- Dmitry Rogachev National Research Center of Pediatric Hematology , Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation.,Faculty of Science, RUDN University , Miklukho-Maklaya 6, Moscow 117198, Russian Federation
| |
Collapse
|
13
|
Bos M, Riguet E. Iridium-catalysed asymmetric allylic alkylation of benzofuran γ-lactones followed by heteroaromatic Cope rearrangement: study of an unusual reaction sequence. Chem Commun (Camb) 2017; 53:4997-5000. [DOI: 10.1039/c7cc01529a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The iridium-catalysed asymmetric allylic alkylation of benzofuran γ-lactones produces 1,5-hexadienes that were found to be excellent substrates for an unusual heteroaromatic Cope rearrangement.
Collapse
Affiliation(s)
- Maxence Bos
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims
- CNRS UMR 7312
- UFR des Sciences Exactes et Naturelles
- 51687 Reims Cedex 2
| | - Emmanuel Riguet
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims
- CNRS UMR 7312
- UFR des Sciences Exactes et Naturelles
- 51687 Reims Cedex 2
| |
Collapse
|
14
|
Le Jeune K, Chevallier-Michaud S, Gatineau D, Giordano L, Tenaglia A, Clavier H. Preparation of Vinylcyclopropanes by Sodium Mediated Reductive Isomerization of Methylenecyclopropanes. J Org Chem 2015; 80:8821-9. [DOI: 10.1021/acs.joc.5b01205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karel Le Jeune
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | | | - David Gatineau
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Laurent Giordano
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Alphonse Tenaglia
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Hervé Clavier
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| |
Collapse
|
15
|
Yang Y, Li J, Du B, Yuan C, Liu B, Qin S. An entry to vinylcyclopropane through palladium-catalyzed intramolecular cyclopropanation of alkenes with unstabilized allylic tosylhydrazones. Chem Commun (Camb) 2015; 51:6179-82. [DOI: 10.1039/c5cc00235d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular cyclopropanation of unstabilized allylic tosylhydrazones with different alkenes was developed in the presence of a Pd catalyst.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jinpeng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Biao Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Changchun Yuan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Song Qin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|