1
|
Li K, Guo Z, Bai L. Digitoxose as powerful glycosyls for building multifarious glycoconjugates of natural products and un-natural products. Synth Syst Biotechnol 2024; 9:701-712. [PMID: 38868608 PMCID: PMC11167396 DOI: 10.1016/j.synbio.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Digitoxose, a significant 2,6-dideoxyhexose found in nature, exists in many small-molecule natural products. These digitoxose-containing natural products can be divided into steroids, macrolides, macrolactams, anthracyclines, quinones, enediynes, acyclic polyene, indoles and oligosaccharides, that exhibit antibacterial, anti-viral, antiarrhythmic, and antitumor activities respectively. As most of digitoxose-containing natural products for clinical application or preclinical tests, this review also summarizes the biosynthesis of digitoxose, and application of compound diversification by introducing sugar plasmids. It may provide a practical approach to expanding the diversity of digitoxose-containing products.
Collapse
Affiliation(s)
- Kemeng Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhengyan Guo
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liping Bai
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
2
|
Gao L, Ding Q, Lei X. Hunting for the Intermolecular Diels-Alderase. Acc Chem Res 2024; 57:2166-2183. [PMID: 38994670 DOI: 10.1021/acs.accounts.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
ConspectusThe Diels-Alder reaction is well known as a concerted [4 + 2] cycloaddition governed by the Woodward-Hoffmann rules. Since Prof. Otto Diels and his student Kurt Alder initially reported the intermolecular [4 + 2] cycloaddition between cyclopentadiene and quinone in 1928, it has been recognized as one of the most powerful chemical transformations to build C-C bonds and construct cyclic structures. This named reaction has been widely used in synthesizing natural products and drug molecules. Driven by the synthetic importance of the Diels-Alder reaction, identifying the enzyme that stereoselectively catalyzes the Diels-Alder reaction has become an intriguing research area in natural product biosynthesis and biocatalysis. With significant progress in sequencing and bioinformatics, dozens of Diels-Alderases have been characterized in microbial natural product biosynthesis. However, few are evolutionally dedicated to catalyzing an intermolecular Diels-Alder reaction with a concerted mechanism.This Account summarizes our endeavors to hunt for the naturally occurring intermolecular Diels-Alderase from plants. Our research journey started from the biomimetic syntheses of D-A-type terpenoids and flavonoids, showing that plants use both nonenzymatic and enzymatic intermolecular [4 + 2] cycloadditions to create complex molecules. Inspired by the biomimetic syntheses, we identify an intermolecular Diels-Alderase hidden in the biosynthetic pathway of mulberry Diels-Alder-type cycloadducts using a biosynthetic intermediate probe-based target identification strategy. This enzyme, MaDA, is an endo-selective Diels-Alderase and is then functionally characterized as a standalone intermolecular Diels-Alderase with a concerted but asynchronous mechanism. We also discover the exo-selective intermolecular Diels-Alderases in Morus plants. Both the endo- and exo-selective Diels-Alderases feature a broad substrate scope, but their mechanisms for controlling the endo/exo pathway are different. These unique intermolecular Diels-Alderases phylogenetically form a subgroup of FAD-dependent enzymes that can be found only in moraceous plants, explaining why this type of [4 + 2] cycloadduct is unique to moraceous plants. Further studies of the evolutionary mechanism reveal that an FAD-dependent oxidocyclase could acquire the Diels-Alderase activity via four critical amino acid mutations and then gradually lose its original oxidative activity to become a standalone Diels-Alderase during the natural evolution. Based on these insights, we designed new Diels-Alderases and achieved the diversity-oriented chemoenzymatic synthesis of D-A products using either naturally occurring or engineered Diels-Alderases.Overall, this Account describes our decade-long efforts to discover the intermolecular Diels-Alderases in Morus plants, particularly highlighting the importance of biomimetic synthesis and chemical proteomics in discovering new intermolecular Diels-Alderases from plants. Meanwhile, this Account also covers the evolutionary and catalytic mechanism study of intermolecular Diels-Alderases that may provide new insights into how to discover and design new Diels-Alderases as powerful biocatalysts for organic synthesis.
Collapse
Affiliation(s)
- Lei Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi Ding
- School of Life Science, Tsinghua University, Beijing 100084, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Maschio L, Back CR, Alnawah J, Bowen JI, Johns ST, Mbatha SZ, Han LC, Lees NR, Zorn K, Stach JEM, Hayes MA, van der Kamp MW, Pudney CR, Burston SG, Willis CL, Race PR. Delineation of the complete reaction cycle of a natural Diels-Alderase. Chem Sci 2024; 15:11572-11583. [PMID: 39055018 PMCID: PMC11268479 DOI: 10.1039/d4sc02908a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
The Diels-Alder reaction is one of the most effective methods for the synthesis of substituted cyclohexenes. The development of protein catalysts for this reaction remains a major priority, affording new sustainable routes to high value target molecules. Whilst a small number of natural enzymes have been shown capable of catalysing [4 + 2] cycloadditions, there is a need for significant mechanistic understanding of how these prospective Diels-Alderases promote catalysis to underpin their development as biocatalysts for use in synthesis. Here we present a molecular description of the complete reaction cycle of the bona fide natural Diels-Alderase AbyU, which catalyses formation of the spirotetronate skeleton of the antibiotic abyssomicin C. This description is derived from X-ray crystallographic studies of AbyU in complex with a non-transformable synthetic substrate analogue, together with transient kinetic analyses of the AbyU catalysed reaction and computational reaction simulations. These studies reveal the mechanistic intricacies of this enzyme system and establish a foundation for the informed reengineering of AbyU and related biocatalysts.
Collapse
Affiliation(s)
- Laurence Maschio
- School of Biochemistry, University Walk, University of Bristol BS8 1TD UK
| | - Catherine R Back
- School of Biochemistry, University Walk, University of Bristol BS8 1TD UK
| | - Jawaher Alnawah
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS UK
- Department of Chemistry, King Faisal University, College of Science Al-Ahsa 31982 Saudi Arabia
| | - James I Bowen
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS UK
| | - Samuel T Johns
- School of Biochemistry, University Walk, University of Bristol BS8 1TD UK
| | | | - Li-Chen Han
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS UK
| | - Nicholas R Lees
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS UK
| | - Katja Zorn
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca Pepparedsleden 1 431 83 Mölndal Sweden
| | - James E M Stach
- School of Natural and Environmental Sciences, Newcastle University NE1 7RU UK
| | - Martin A Hayes
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca Pepparedsleden 1 431 83 Mölndal Sweden
| | | | - Christopher R Pudney
- Department of Biology and Biochemistry, University of Bath Claverton Down BA2 7AY UK
| | - Steven G Burston
- School of Biochemistry, University Walk, University of Bristol BS8 1TD UK
| | | | - Paul R Race
- School of Natural and Environmental Sciences, Newcastle University NE1 7RU UK
| |
Collapse
|
4
|
Wu Z, Xia Z, Tang Z, Li J, Liu W. Mutasynthesis generates nine new pyrroindomycins. Org Biomol Chem 2024; 22:2813-2818. [PMID: 38511276 DOI: 10.1039/d4ob00239c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Pyrroindomycins (PYRs) represent the only spirotetramate natural products discovered in nature, and possess potent activities against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Their unique structure and impressive biological activities make them attractive targets for synthesis and biosynthesis; however, the discovery and generation of new PYRs remains challenging. To date, only the initial components A and B have been reported. Herein, we report a mutasynthesis approach for the generation of nine new PYRs with varying acyl modifications on their deoxy-trisaccharide moieties. This was achieved by blocking the formation of the acyl group 1,8-dihydropyrrolo[2,3-b]indole (DHPI) via gene pyrK1 inactivation and supplying chemical acyl precursors. The gene pyrK1 encodes a DUF1864 family protein that probably catalyzes the oxidative transformation of L-tryptophan to DHPI, and its deletion results in the abolishment of DHPI-containing PYRs and the accumulation of three new PYRs either without acyl modification or with DHPI replaced by benzoic acid and pyrrole-2-carboxylic acid. Capitalizing on the capacity of the ΔpyrK1 mutant to produce new PYRs, we have successfully developed a mutasynthesis strategy for the generation of six novel PYR analogs with various aromatic acid modifications on their deoxy-trisaccharide moieties, showcasing the potential for generating structurally diverse PYRs. Overall, this research contributes significantly to understanding the biosynthesis of PYRs and offers valuable perspectives on their structural diversity.
Collapse
Affiliation(s)
- Zhuhua Wu
- National key Laboratory of Lead druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Copernicus Road, Shanghai 201203, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Zhengxiang Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Department of Pharmacy, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Zhijun Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Ji'an Li
- National key Laboratory of Lead druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Copernicus Road, Shanghai 201203, China.
| | - Wen Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
5
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Aghi A, Sau S, Kumar A. Fe(III)-catalyzed stereoselective synthesis of deoxyglycosides using stable bifunctional deoxy-phenylpropiolate glycoside donors. Carbohydr Res 2024; 536:109051. [PMID: 38325069 DOI: 10.1016/j.carres.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Herein, we report a mild and economical route for the stereoselective synthesis of 2-deoxy and 2,6-dideoxyglycosides via FeCl3-catalyzed activation of bench stable deoxy-phenylpropiolate glycosyl donors (D-PPGs). Optimized reaction conditions work well under additive-free conditions to afford the corresponding 2-deoxy and 2,6-dideoxyglycosides in good yields with high α-anomeric selectivity by reacting with sugar and non-sugar-based acceptors. The optimized conditions were also extended for disarmed D-PPG donors. In addition, the developed strategy is amenable to high-scale-up synthesis.
Collapse
Affiliation(s)
- Anjali Aghi
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Sankar Sau
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India.
| |
Collapse
|
7
|
Zorn K, Back CR, Barringer R, Chadimová V, Manzo‐Ruiz M, Mbatha SZ, Mobarec J, Williams SE, van der Kamp MW, Race PR, Willis CL, Hayes MA. Interrogation of an Enzyme Library Reveals the Catalytic Plasticity of Naturally Evolved [4+2] Cyclases. Chembiochem 2023; 24:e202300382. [PMID: 37305956 PMCID: PMC10946715 DOI: 10.1002/cbic.202300382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Stereoselective carbon-carbon bond forming reactions are quintessential transformations in organic synthesis. One example is the Diels-Alder reaction, a [4+2] cycloaddition between a conjugated diene and a dienophile to form cyclohexenes. The development of biocatalysts for this reaction is paramount for unlocking sustainable routes to a plethora of important molecules. To obtain a comprehensive understanding of naturally evolved [4+2] cyclases, and to identify hitherto uncharacterised biocatalysts for this reaction, we constructed a library comprising forty-five enzymes with reported or predicted [4+2] cycloaddition activity. Thirty-one library members were successfully produced in recombinant form. In vitro assays employing a synthetic substrate incorporating a diene and a dienophile revealed broad-ranging cycloaddition activity amongst these polypeptides. The hypothetical protein Cyc15 was found to catalyse an intramolecular cycloaddition to generate a novel spirotetronate. The crystal structure of this enzyme, along with docking studies, establishes the basis for stereoselectivity in Cyc15, as compared to other spirotetronate cyclases.
Collapse
Affiliation(s)
- Katja Zorn
- Compound Synthesis and Management, Discovery SciencesBiopharmaceuticals R&DAstraZenecaPepparedsleden 1431 83MölndalSweden
| | | | - Rob Barringer
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
| | - Veronika Chadimová
- Compound Synthesis and Management, Discovery SciencesBiopharmaceuticals R&DAstraZenecaPepparedsleden 1431 83MölndalSweden
| | | | | | - Juan‐Carlos Mobarec
- Mechanistic and Structural BiologyBiopharmaceuticals R&DAstraZenecaCambridgeCB21 6GHUK
| | | | | | - Paul R. Race
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
| | | | - Martin A. Hayes
- Compound Synthesis and Management, Discovery SciencesBiopharmaceuticals R&DAstraZenecaPepparedsleden 1431 83MölndalSweden
| |
Collapse
|
8
|
Tian W, Chen X, Zhang J, Zheng M, Wei G, Deng Z, Qu X. Biosynthesis of Tetronates by a Nonribosomal Peptide Synthetase-Polyketide Synthase System. Org Lett 2023; 25:1628-1632. [PMID: 36876998 DOI: 10.1021/acs.orglett.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
A cryptic tetronate biosynthetic pathway was identified in Kitasatospora niigatensis DSM 44781 via heterologous expression. Distinct from the currently known biosynthetic pathways, this system utilizes a partially functional nonribosomal peptide synthetase and a broadly selective polyketide synthase to direct the assembly and lactonization of the tetronate scaffold. By employing a permissive crotonyl-CoA reductase/carboxylase to provide different extender units, seven new tetronates (kitaniitetronins A-G) were obtained via precursor-directed biosynthesis.
Collapse
Affiliation(s)
- Wenya Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinru Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Guangzheng Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
9
|
Selective cycloadditions. Nat Chem 2023; 15:167-169. [PMID: 36717614 DOI: 10.1038/s41557-022-01123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Wang H, Zou Y, Li M, Tang Z, Wang J, Tian Z, Strassner N, Yang Q, Zheng Q, Guo Y, Liu W, Pan L, Houk KN. A cyclase that catalyses competing 2 + 2 and 4 + 2 cycloadditions. Nat Chem 2023; 15:177-184. [PMID: 36690833 DOI: 10.1038/s41557-022-01104-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/01/2022] [Indexed: 01/24/2023]
Abstract
Cycloaddition reactions are among the most widely used reactions in chemical synthesis. Nature achieves these cyclization reactions with a variety of enzymes, including Diels-Alderases that catalyse concerted 4 + 2 cycloadditions, but biosynthetic enzymes with 2 + 2 cyclase activity have yet to be discovered. Here we report that PloI4, a β-barrel-fold protein homologous to the exo-selective 4 + 2 cyclase that functions in the biosynthesis of pyrroindomycins, catalyses competitive 2 + 2 and 4 + 2 cycloaddition reactions. PloI4 is believed to catalyse an endo-4 + 2 cycloaddition in the biosynthesis of pyrrolosporin A; however, when the substrate precursor of pyrroindomycins was treated with PloI4, an exo-2 + 2 adduct was produced in addition to the exo- and endo-4 + 2 adducts. Biochemical characterizations, computational analyses, (co)crystal structures and mutagenesis outcomes have allowed the catalytic versatility of PloI4 to be rationalized. Mechanistic studies involved the directed engineering of PloI4 to variants that produced the exo-4 + 2, endo-4 + 2 or exo-2 + 2 product preferentially. This work illustrates an enzymatic thermal 2 + 2 cycloaddition and provides evidence of a process through which an enzyme evolves along with its substrate for specialization and activity improvement.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Miao Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiabao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry, Shanghai Normal University, Shanghai, China
| | - Zhenhua Tian
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.,Abiochem Biotechnology Co., Ltd, Shanghai, China
| | - Nina Strassner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Qian Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Qingfei Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Yujiao Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China. .,Department of Chemistry, Shanghai Normal University, Shanghai, China.
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Liu Y, Feng J, Pan H, Zhang X, Zhang Y. Genetically engineered bacterium: Principles, practices, and prospects. Front Microbiol 2022; 13:997587. [PMID: 36312915 PMCID: PMC9606703 DOI: 10.3389/fmicb.2022.997587] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Advances in synthetic biology and the clinical application of bacteriotherapy enable the use of genetically engineered bacteria (GEB) to combat various diseases. GEB act as a small 'machine factory' in the intestine or other tissues to continuously produce heterologous proteins or molecular compounds and, thus, diagnose or cure disease or work as an adjuvant reagent for disease treatment by regulating the immune system. Although the achievements of GEBs in the treatment or adjuvant therapy of diseases are promising, the practical implementation of this new therapeutic modality remains a grand challenge, especially at the initial stage. In this review, we introduce the development of GEBs and their advantages in disease management, summarize the latest research advances in microbial genetic techniques, and discuss their administration routes, performance indicators and the limitations of GEBs used as platforms for disease management. We also present several examples of GEB applications in the treatment of cancers and metabolic diseases and further highlight their great potential for clinical application in the near future.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Hangcheng Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Mastachi-Loza S, Ramírez-Candelero TI, Benítez-Puebla LJ, Fuentes-Benítes A, González-Romero C, Vázquez MA. Chalcones, a Privileged Scaffold: Highly Versatile Molecules in [4+2] Cycloadditions. Chem Asian J 2022; 17:e202200706. [PMID: 35976743 DOI: 10.1002/asia.202200706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Indexed: 11/09/2022]
Abstract
Chalcones are aromatic ketones found in nature as the central core of many biological compounds. They have a wide range of biological activity and are biogenetic precursors of other important molecules such as flavonoids. Their pharmacological relevance makes them a privileged scaffold, advantageous for seeking alternative therapies in medicinal chemistry. Due to their structural diversity and ease of synthesis, they are often employed as building blocks for chemical transformations. Chalcones have a carbonyl conjugated system with two electrophilic centers that are commonly used for nucleophilic additions, as described in numerous articles. They can also participate in Diels-Alder reactions, which are [4+2] cycloadditions between a diene and a dienophile. This microreview presents a chronological survey of studies on chalcones as dienes and dienophiles in Diels-Alder cycloadditions. Although these reactions occur in nature, isolation of chalcones from plants yields very small quantities. Contrarily, synthesis leads to large quantities at a low cost. Hence, novel methodologies have been developed for [4+2] cycloadditions, with chalcones serving as a 2π or 4π electron system.
Collapse
Affiliation(s)
- Salvador Mastachi-Loza
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, Departamento de Química, MEXICO
| | - Tania I Ramírez-Candelero
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Luis J Benítez-Puebla
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, Departamento de Química, MEXICO
| | - Aydee Fuentes-Benítes
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Carlos González-Romero
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Miguel A Vázquez
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, CHEMISTRY, NORIA ALTA S/N, 36050, GUANAJUATO, MEXICO
| |
Collapse
|
13
|
Zhu HJ, Zhang B, Wei W, Liu SH, Xiang L, Zhu J, Jiao RH, Igarashi Y, Bashiri G, Liang Y, Tan RX, Ge HM. AvmM catalyses macrocyclization through dehydration/Michael-type addition in alchivemycin A biosynthesis. Nat Commun 2022; 13:4499. [PMID: 35922406 PMCID: PMC9349299 DOI: 10.1038/s41467-022-32088-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Macrocyclization is an important process that affords morphed scaffold in biosynthesis of bioactive natural products. Nature has adapted diverse biosynthetic strategies to form macrocycles. In this work, we report the identification and characterization of a small enzyme AvmM that can catalyze the construction of a 16-membered macrocyclic ring in the biosynthesis of alchivemycin A (1). We show through in vivo gene deletion, in vitro biochemical assay and isotope labelling experiments that AvmM catalyzes tandem dehydration and Michael-type addition to generate the core scaffold of 1. Mechanistic studies by crystallography, DFT calculations and MD simulations of AvmM reveal that the reactions are achieved with assistance from the special tenuazonic acid like moiety of substrate. Our results thus uncover an uncharacterized macrocyclization strategy in natural product biosynthesis. Macrocyclization is an important process in bioactive natural product synthesis. Here, the authors report on the study of a macrocyclic ring constructing enzyme in the biosynthesis of alchivemycin A and using gene deletion, biochemical assays and isotope labelling show the enzyme catalyses tandem dehydration and Michael-type addition.
Collapse
Affiliation(s)
- Hong Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wanqing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiapeng Zhu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, 939-0398, Japan
| | - Ghader Bashiri
- Laboratory of Molecular and Microbial Biochemistry, School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Mori T, Nakashima Y, Chen H, Hoshino S, Mitsuhashi T, Abe I. Structure-based redesign of Fe(II)/2-oxoglutarate-dependent oxygenase AndA to catalyze spiro-ring formation. Chem Commun (Camb) 2022; 58:5510-5513. [PMID: 35420093 DOI: 10.1039/d2cc00736c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Structure- and mechanism-based redesign of the Fe(II)/2-oxoglutarate-dependent oxygenase AndA was performed. The function of AndA was expanded to catalyze a spiro-ring formation reaction from an isomerization reaction. The redesigned AndA variants produced two unnatural novel spiro-ring containing compounds through two and three consecutive oxidation reactions.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Heping Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
15
|
Jeon BS, Huang TY, Ruszczycky MW, Choi SH, Kim N, Franklin JL, Hung SC, Liu HW. Byproduct formation during the biosynthesis of spinosyn A and evidence for an enzymatic interplay to prevent its formation. Tetrahedron 2022; 103. [PMID: 35685987 DOI: 10.1016/j.tet.2021.132569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Biosynthesis of spinosyn A in Saccharopolyspora spinosa involves a 1,4-dehydration followed by an intramolecular [4 + 2]-cycloaddition catalyzed by SpnM and SpnF, respectively. The cycloaddition also takes place in the absence of SpnF leading to questions regarding its mechanism of catalysis and biosynthetic role. Substrate analogs were prepared with an unactivated dienophile or an acyclic structure and found to be unreactive consistent with the importance of these features for cyclization. The SpnM-catalyzed dehydration reaction was also found to yield a byproduct corresponding to the C11 = C12 cis isomer of the SpnF substrate. This byproduct is stable both in the presence and absence of SpnF; however, relative production of the SpnM product and byproduct could be shifted in favor of the former by including SpnF or the dehydrogenase SpnJ in the reaction. This result suggests a potential interplay between the enzymes of spinosyn A biosynthesis that may help to improve the efficiency of the pathway.
Collapse
Affiliation(s)
- Byung-Sun Jeon
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Teng-Yi Huang
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Sei-Hyun Choi
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Namho Kim
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Joseph Livy Franklin
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.,Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
16
|
Enzymatic control of endo- and exo-stereoselective Diels–Alder reactions with broad substrate scope. Nat Catal 2021. [DOI: 10.1038/s41929-021-00717-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Suzuki T, Watanabe S, Ikeda W, Kobayashi S, Tanino K. Biomimetic Total Syntheses of (+)-Chloropupukeananin, (-)-Chloropupukeanolide D, and Chloropestolides. J Org Chem 2021; 86:15597-15605. [PMID: 34672579 DOI: 10.1021/acs.joc.1c02108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloropupukeananin, chloropupukeanolides, and chloropestolides are a family of structurally complex bioactive natural products that possess highly functionalized tricyclo[4.3.1.03,7]decane or bicyclo[2.2.2]octane skeletons. Biosynthesis of the chloropupukeananin family is triggered by the intermolecular heterodimeric Diels-Alder reaction between maldoxin and iso-A82775C; however, the enzymes involved have not yet been identified. We herein report the one-pot biomimetic synthesis of chloropupukeananin and chloropupukeanolide D. Moreover, the effect of the solvent on the intermolecular Diels-Alder reaction of siccayne and maldoxin suggested that the biosynthesis of the chloropupukeananin family involves a Diels-Alderase-catalyzed heterodimeric Diels-Alder reaction.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Soichiro Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Wataru Ikeda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Susumu Kobayashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
18
|
Zhang Z, Zhou T, Yang T, Fukaya K, Harunari E, Saito S, Yamada K, Imada C, Urabe D, Igarashi Y. Nomimicins B-D, new tetronate-class polyketides from a marine-derived actinomycete of the genus Actinomadura. Beilstein J Org Chem 2021; 17:2194-2202. [PMID: 34497672 PMCID: PMC8404215 DOI: 10.3762/bjoc.17.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
Three new tetronate-class polyketides, nomimicins B, C, and D, along with nomimicin, hereafter named nomimicin A, were isolated from the culture extract of Actinomadura sp. AKA43 collected from floating particles in the deep-sea water of Sagami Bay, Japan. The structures of nomimicins B, C, and D were elucidated through the interpretation of NMR and MS analytical data, and the absolute configuration was determined by combination of NOESY/ROESY and ECD analyses. Nomimicins B, C, and D showed antimicrobial activity against Gram-positive bacteria, Kocuria rhizophila and Bacillus subtilis, with MIC values in the range of 6.5 to 12.5 μg/mL. Nomimicins B and C also displayed cytotoxicity against P388 murine leukemia cells with IC50 values of 33 and 89 μM, respectively.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tao Zhou
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Taehui Yang
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shun Saito
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Katsuhisa Yamada
- DHC Corporation, 2-7-1 Minami-Azabu, Minato-ku, Tokyo 106-8571, Japan
| | - Chiaki Imada
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
19
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
20
|
Xu G, Yang S. Diverse evolutionary origins of microbial [4 + 2]-cyclases in natural product biosynthesis. Int J Biol Macromol 2021; 182:154-161. [PMID: 33836196 DOI: 10.1016/j.ijbiomac.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Natural [4 + 2]-cyclases catalyze concerted cycloaddition during biosynthesis of over 400 natural products reported. Microbial [4 + 2]-cyclases are structurally diverse with a broad range of substrates. Thus far, about 52 putative microbial [4 + 2]-cyclases of 13 different types have been characterized, with over 20 crystal structures. However, how these cyclases have evolved during natural product biosynthesis remains elusive. Structural and phylogenetic analyses suggest that these different types of [4 + 2]-cyclases might have diverse evolutionary origins, such as reductases, dehydratases, methyltransferases, oxidases, etc. Divergent evolution of enzyme function might have occurred in these different families. Understanding the independent evolutionary history of these cyclases would provide new insights into their catalysis mechanisms and the biocatalyst design.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Suiqun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
21
|
Hashimoto T, Hashimoto J, Kagaya N, Nishimura T, Suenaga H, Nishiyama M, Kuzuyama T, Shin-Ya K. A novel oxazole-containing tetraene compound, JBIR-159, produced by heterologous expression of the cryptic trans-AT type polyketide synthase biosynthetic gene cluster. J Antibiot (Tokyo) 2021; 74:354-358. [PMID: 33558648 DOI: 10.1038/s41429-021-00410-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/09/2022]
Abstract
Using genome mining approach, we identified a novel biosynthetic gene cluster containing trans-AT type PKS genes from Streptomyces versipellis 4083-SVS6. A bacterial artificial chromosome (BAC) clone, pKU503JL68_PN1_P10-C12, accommodating the entire biosynthetic gene cluster was obtained from a BAC library. Heterologous expression of the biosynthetic gene cluster in Streptomyces lividans TK23 led to the production of a novel polyene compound, JBIR-159. We report herein the biosynthetic gene cluster for JBIR-159, and the heterologous expression, isolation, structure determination and a brief biological activity.
Collapse
Affiliation(s)
- Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | - Noritaka Kagaya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Takehiro Nishimura
- Technology Research Association for Next Generation Natural Products Chemistry, Tokyo, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Kuzuyama
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan. .,Biotechnology Research Center, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
22
|
Gao Y, Zhao Y, He X, Deng Z, Jiang M. Challenges of functional expression of complex polyketide biosynthetic gene clusters. Curr Opin Biotechnol 2021; 69:103-111. [PMID: 33422913 DOI: 10.1016/j.copbio.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/28/2022]
Abstract
Polyketide natural products are valuable sources of bioactive molecules such as nutraceuticals and pharmaceuticals. The tremendous development of the genome sequence database revealed that the majority of the biosynthetic gene clusters (BGCs) are cryptic. Activation of these cryptic BGCs and identification of the related products is essential for finding more lead compounds for pharmaceuticals. On the other hand, 99% of microbes in nature cannot be cultured in regular conditions, which greatly hinders the efforts to explore their biosynthetic potentials. Expression of polyketide BGCs in heterologous hosts with better growth, good genetic characteristics, and amenable molecular tools is a robust approach to identify new polyketides and characterize their biosynthesis. This review outlines the challenges in the heterologous production of polyketide BGCs of bacterial origins.
Collapse
Affiliation(s)
- Yaojie Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yuchun Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
23
|
Nogawa T, Terai A, Amagai K, Hashimoto J, Futamura Y, Okano A, Fujie M, Satoh N, Ikeda H, Shin-Ya K, Osada H, Takahashi S. Heterologous Expression of the Biosynthetic Gene Cluster for Verticilactam and Identification of Analogues. JOURNAL OF NATURAL PRODUCTS 2020; 83:3598-3605. [PMID: 33216528 DOI: 10.1021/acs.jnatprod.0c00755] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Verticilactam and the new geometric isomers, verticilactams B and C, were produced by heterologous expression of the biosynthetic gene cluster for verticilactam using the Streptomyces avermitilis SUKA17 strain. Only verticilactam, a compound with a characteristic β-ketoamide unit within a 16-membered polyketide macrolactam conjugated with an octalin skeleton, had been previously reported having been isolated from Streptomyces spiroverticillatus JC-8444. In this report, minor verticilactam derivatives were isolated from the transformed strain, and their structures elucidated by spectral analysis. Verticilactam B was a geometric isomer at Δ17 and Δ19, and verticilactam C was the Δ19 and Δ21 isomer. In addition, the absolute configuration of verticilactam was confirmed by ECD analysis and NMR chemical shifts. The stereochemistry assignments of the hydroxy groups at C-10 and C-12 were supported by the domain organization of the polyketide synthase identified in the verticilactam gene cluster. Verticilactam showed moderate activity against the malaria parasite Plasmodium falciparum 3D7 strain with no significant cytotoxicity or antimicrobial effects.
Collapse
Affiliation(s)
- Toshihiko Nogawa
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsutaka Terai
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keita Amagai
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Yushi Futamura
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akiko Okano
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Manabu Fujie
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- The Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shunji Takahashi
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- The Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
24
|
The biosynthetic pathway to tetromadurin (SF2487/A80577), a polyether tetronate antibiotic. PLoS One 2020; 15:e0239054. [PMID: 32925967 PMCID: PMC7489565 DOI: 10.1371/journal.pone.0239054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/30/2020] [Indexed: 12/03/2022] Open
Abstract
The type I polyketide SF2487/A80577 (herein referred to as tetromadurin) is a polyether tetronate ionophore antibiotic produced by the terrestrial Gram-positive bacterium Actinomadura verrucosospora. Tetromadurin is closely related to the polyether tetronates tetronasin (M139603) and tetronomycin, all of which are characterised by containing a tetronate, cyclohexane, tetrahydropyran, and at least one tetrahydrofuran ring. We have sequenced the genome of Actinomadura verrucosospora to identify the biosynthetic gene cluster responsible for tetromadurin biosynthesis (the mad gene cluster). Based on bioinformatic analysis of the 32 genes present within the cluster a plausible biosynthetic pathway for tetromadurin biosynthesis is proposed. Functional confirmation of the mad gene cluster is obtained by performing in-frame deletions in each of the genes mad10 and mad31, which encode putative cyclase enzymes responsible for cyclohexane and tetrahydropyran formation, respectively. Furthermore, the A. verrucosospora Δmad10 mutant produces a novel tetromadurin metabolite that according to mass spectrometry analysis is analogous to the recently characterised partially cyclised tetronasin intermediate lacking its cyclohexane and tetrahydropyran rings. Our results therefore elucidate the biosynthetic machinery of tetromadurin biosynthesis and lend support for a conserved mechanism of cyclohexane and tetrahydropyran biosynthesis across polyether tetronates.
Collapse
|
25
|
Clinger JA, Wang X, Cai W, Zhu Y, Miller MD, Zhan CG, Van Lanen SG, Thorson JS, Phillips GN. The crystal structure of AbsH3: A putative flavin adenine dinucleotide-dependent reductase in the abyssomicin biosynthesis pathway. Proteins 2020; 89:132-137. [PMID: 32852843 DOI: 10.1002/prot.25994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 11/06/2022]
Abstract
Natural products and natural product-derived compounds have been widely used for pharmaceuticals for many years, and the search for new natural products that may have interesting activity is ongoing. Abyssomicins are natural product molecules that have antibiotic activity via inhibition of the folate synthesis pathway in microbiota. These compounds also appear to undergo a required [4 + 2] cycloaddition in their biosynthetic pathway. Here we report the structure of an flavin adenine dinucleotide-dependent reductase, AbsH3, from the biosynthetic gene cluster of novel abyssomicins found in Streptomyces sp. LC-6-2.
Collapse
Affiliation(s)
| | - Xiachang Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Wenlong Cai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Yanyan Zhu
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | | - Chang-Guo Zhan
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas, USA.,Department of Chemistry, Rice University, Houston, Texas, USA
| |
Collapse
|
26
|
Li Q, Ding W, Tu J, Chi C, Huang H, Ji X, Yao Z, Ma M, Ju J. Nonspecific Heme-Binding Cyclase, AbmU, Catalyzes [4 + 2] Cycloaddition during Neoabyssomicin Biosynthesis. ACS OMEGA 2020; 5:20548-20557. [PMID: 32832808 PMCID: PMC7439702 DOI: 10.1021/acsomega.0c02776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 05/05/2023]
Abstract
Diels-Alder (DA) [4 + 2]-cycloaddition reactions rank among the most powerful transformations in synthetic organic chemistry; biosynthetic examples, however, are few and far between. We report here a heme-binding cyclase, AbmU, that catalyzes an essential [4 + 2] cycloaddition during neoabyssomicin scaffold assembly. In vivo genetic and in vitro biochemical analyses strongly suggest that AbmU catalyzes an intramolecular and stereoselective [4 + 2] cycloaddition to form a spirotetronate skeleton from an acyclic substrate featuring both a terminal 1,3-diene and an exo-methylene group. Biochemical assays and X-ray diffraction analyses reveal that AbmU binds nonspecifically to a heme b cofactor and that this association does not play a catalytic role in AbmU catalysis. A detailed study of the AbmU crystal structure reveals a unique mode of substrate binding and reaction catalysis; His160 forms a H-bond with the C-1 carbonyl O-atom of the acyclic substrate, and the imidazole of the same amino acid directs the tetronate moiety of acyclic substrate toward the terminal Δ10,11, Δ12,13-diene moiety, thereby facilitating intramolecular DA chemistry. Our findings expand upon what is known about mechanistic diversities available to biosynthetic [4 + 2] cyclases and help to lay the foundation for the use of AbmU in possible industrial applications.
Collapse
Affiliation(s)
- Qinglian Li
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjuan Ding
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| | - Jiajia Tu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Changbiao Chi
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongbo Huang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaoqi Ji
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| | - Ziwei Yao
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| | - Ming Ma
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianhua Ju
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| |
Collapse
|
27
|
Gao L, Su C, Du X, Wang R, Chen S, Zhou Y, Liu C, Liu X, Tian R, Zhang L, Xie K, Chen S, Guo Q, Guo L, Hano Y, Shimazaki M, Minami A, Oikawa H, Huang N, Houk KN, Huang L, Dai J, Lei X. FAD-dependent enzyme-catalysed intermolecular [4+2] cycloaddition in natural product biosynthesis. Nat Chem 2020; 12:620-628. [DOI: 10.1038/s41557-020-0467-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/14/2020] [Indexed: 01/21/2023]
|
28
|
Novel macrolactam compound produced by the heterologous expression of a large cryptic biosynthetic gene cluster of Streptomyces rochei IFO12908. J Antibiot (Tokyo) 2019; 73:171-174. [DOI: 10.1038/s41429-019-0265-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022]
|
29
|
Jamieson CS, Ohashi M, Liu F, Tang Y, Houk KN. The expanding world of biosynthetic pericyclases: cooperation of experiment and theory for discovery. Nat Prod Rep 2019; 36:698-713. [PMID: 30311924 DOI: 10.1039/c8np00075a] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: 2000 to 2018 Pericyclic reactions are a distinct class of reactions that have wide synthetic utility. Before the recent discoveries described in this review, enzyme-catalyzed pericyclic reactions were not widely known to be involved in biosynthesis. This situation is changing rapidly. We define the scope of pericyclic reactions, give a historical account of their discoveries as biosynthetic reactions, and provide evidence that there are many enzymes in nature that catalyze pericyclic reactions. These enzymes, the "pericyclases," are the subject of this review.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles 90095, USA.
| | | | | | | | | |
Collapse
|
30
|
Drulyte I, Obajdin J, Trinh CH, Kalverda AP, van der Kamp MW, Hemsworth GR, Berry A. Crystal structure of the putative cyclase IdmH from the indanomycin nonribosomal peptide synthase/polyketide synthase. IUCRJ 2019; 6:1120-1133. [PMID: 31709067 PMCID: PMC6830212 DOI: 10.1107/s2052252519012399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/05/2019] [Indexed: 05/08/2023]
Abstract
Indanomycin is biosynthesized by a hybrid nonribosomal peptide synthase/polyketide synthase (NRPS/PKS) followed by a number of 'tailoring' steps to form the two ring systems that are present in the mature product. It had previously been hypothesized that the indane ring of indanomycin was formed by the action of IdmH using a Diels-Alder reaction. Here, the crystal structure of a selenomethionine-labelled truncated form of IdmH (IdmH-Δ99-107) was solved using single-wavelength anomalous dispersion (SAD) phasing. This truncated variant allows consistent and easy crystallization, but importantly the structure was used as a search model in molecular replacement, allowing the full-length IdmH structure to be determined to 2.7 Å resolution. IdmH is a homodimer, with the individual protomers consisting of an α+β barrel. Each protomer contains a deep hydrophobic pocket which is proposed to constitute the active site of the enzyme. To investigate the reaction catalysed by IdmH, 88% of the backbone NMR resonances were assigned, and using chemical shift perturbation of [15N]-labelled IdmH it was demonstrated that indanomycin binds in the active-site pocket. Finally, combined quantum mechanical/molecular mechanical (QM/MM) modelling of the IdmH reaction shows that the active site of the enzyme provides an appropriate environment to promote indane-ring formation, supporting the assignment of IdmH as the key Diels-Alderase catalysing the final step in the biosynthesis of indanomycin through a similar mechanism to other recently characterized Diels-Alderases involved in polyketide-tailoring reactions. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:IUCrJ:S2052252519012399.
Collapse
Affiliation(s)
- Ieva Drulyte
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Jana Obajdin
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Chi H. Trinh
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, England
| | - Glyn R. Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Alan Berry
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| |
Collapse
|
31
|
Little R, Paiva FCR, Jenkins R, Hong H, Sun Y, Demydchuk Y, Samborskyy M, Tosin M, Leeper FJ, Dias MVB, Leadlay PF. Unexpected enzyme-catalysed [4+2] cycloaddition and rearrangement in polyether antibiotic biosynthesis. Nat Catal 2019. [DOI: 10.1038/s41929-019-0351-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
33
|
Braddock AA, Theodorakis EA. Marine Spirotetronates: Biosynthetic Edifices That Inspire Drug Discovery. Mar Drugs 2019; 17:md17040232. [PMID: 31010150 PMCID: PMC6521127 DOI: 10.3390/md17040232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Spirotetronates are actinomyces-derived polyketides that possess complex structures and exhibit potent and unexplored bioactivities. Due to their anticancer and antimicrobial properties, they have potential as drug hits and deserve further study. In particular, abyssomicin C and tetrocarcin A have shown significant promise against antibiotic-resistant S. aureus and tuberculosis, as well as for the treatment of various lymphomas and solid tumors. Improved synthetic routes to these compounds, particularly the class II spirotetronates, are needed to access sufficient quantities for structure optimization and clinical applications.
Collapse
Affiliation(s)
- Alexander A Braddock
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA.
| | - Emmanuel A Theodorakis
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
34
|
Palazzotto E, Tong Y, Lee SY, Weber T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv 2019; 37:107366. [PMID: 30853630 DOI: 10.1016/j.biotechadv.2019.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.
Collapse
Affiliation(s)
- Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Yaojun Tong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea.
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
35
|
Chang Z, Ansbacher T, Zhang L, Yang Y, Ko TP, Zhang G, Liu W, Huang JW, Dai L, Guo RT, Major DT, Chen CC. Crystal structure of LepI, a multifunctional SAM-dependent enzyme which catalyzes pericyclic reactions in leporin biosynthesis. Org Biomol Chem 2019; 17:2070-2076. [PMID: 30628619 DOI: 10.1039/c8ob02758g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LepI is a novel multifunctional enzyme that catalyzes stereoselective dehydration, Diels-Alder reaction, and retro-Claisen rearrangement. Here we report the crystal structure of LepI in complex with its co-factor S-adenosyl methionine (SAM). LepI forms a tetramer via the N-terminal helical domain and binds to a SAM molecule in the C-terminal catalytic domain. The binding modes of various LepI substrates are investigated by docking simulations, which suggest that the substrates are bound via both hydrophobic and hydrophilic forces, as well as cation-π interactions with the positively charged SAM. The reaction starts with a dehydration step in which H133 possibly deprotonates the pyridone hydroxyl group of the substrate, while D296 might protonate an alkyl-chain hydroxyl group. Subsequent pericyclization may be facilitated by the correct fold of the substrate's alkyl chain and a thermodynamic driving force towards σ-bonds at the expense of π-bonds. These results provide structural insights into LepI catalysis and are important in understanding the mechanism of enzymatic pericyclization.
Collapse
Affiliation(s)
- Zhenying Chang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zheng K, Hong R. Stereoconfining macrocyclizations in the total synthesis of natural products. Nat Prod Rep 2019; 36:1546-1575. [DOI: 10.1039/c8np00094h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review covers selected examples of point chirality-forming macrocyclizations in natural product total synthesis in the past three decades.
Collapse
Affiliation(s)
- Kuan Zheng
- Key Laboratory of Synthetic Chemistry of Natural Substances
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Ran Hong
- Key Laboratory of Synthetic Chemistry of Natural Substances
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
37
|
Hashimoto T, Hashimoto J, Kozone I, Amagai K, Kawahara T, Takahashi S, Ikeda H, Shin-ya K. Biosynthesis of Quinolidomicin, the Largest Known Macrolide of Terrestrial Origin: Identification and Heterologous Expression of a Biosynthetic Gene Cluster over 200 kb. Org Lett 2018; 20:7996-7999. [DOI: 10.1021/acs.orglett.8b03570] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Keita Amagai
- Technology Research Association for Next Generation Natural Products Chemistry, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Teppei Kawahara
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Shunji Takahashi
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- The Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
38
|
Quijano-Quiñones RF, Castro-Segura CS, Mena-Rejón GJ, Quesadas-Rojas M, Cáceres-Castillo D. Biosynthesis of Grandione: An Example of Tandem Hetero Diels-Alder/Retro-Claisen Rearrangement Reaction? Molecules 2018; 23:molecules23102505. [PMID: 30274324 PMCID: PMC6222908 DOI: 10.3390/molecules23102505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/18/2022] Open
Abstract
Mechanistic theoretical studies about the feasibility of the traditional proposed mechanism of formation for icetexane diterpene dimer grandione were assessed using density functional method at the M06-2X/6-31G(d,p) level of theory. Bulk water solvent effects were taken into account implicitly using the polarizable continuum model (SCI-PCM). The results were compared with the selectivity found in the biomimetic synthesis performed by experimental research groups. The relative free energy calculation shows that the one-step H-DA formation mechanism nominated in the literature is not a viable mechanism. We found that an alternative competing Tandem pathway is consistent with the experimental trends. Thus, our results suggested that the compound grandione is formed via a H-DA/retro-Claisen rearrangement and not by the traditional H-DA mechanism proposed early in the experimental studies. The H-DA initial step produce a biecyclic adduct followed by a domino retro-Claisen rearrangement that releases the energy strain of the bicyclic intermediary. Steric issues and hyperconjugation interactions are the mainly factors driving the reaction nature and the selectivity in the formation reaction. Finally, the enzymatic assistance for dimer formation was analyzed in terms of the calculated transition state energy barrier.
Collapse
Affiliation(s)
| | | | - Gonzalo J Mena-Rejón
- Chemistry Faculty, Autonomous University of Yucatan, 97069 Mérida, Yucatán, Mexico.
| | | | | |
Collapse
|
39
|
Kato N, Nogawa T, Takita R, Kinugasa K, Kanai M, Uchiyama M, Osada H, Takahashi S. Control of the Stereochemical Course of [4+2] Cycloaddition during trans
-Decalin Formation by Fsa2-Family Enzymes. Angew Chem Int Ed Engl 2018; 57:9754-9758. [DOI: 10.1002/anie.201805050] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Naoki Kato
- Natural Product Biosynthesis Research Unit; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Toshihiko Nogawa
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Ryo Takita
- Advanced Elements Chemistry Research Team; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kiyomi Kinugasa
- Natural Product Biosynthesis Research Unit; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Misae Kanai
- Advanced Elements Chemistry Research Team; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Advanced Elements Chemistry Research Team; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| |
Collapse
|
40
|
Kato N, Nogawa T, Takita R, Kinugasa K, Kanai M, Uchiyama M, Osada H, Takahashi S. Control of the Stereochemical Course of [4+2] Cycloaddition during trans
-Decalin Formation by Fsa2-Family Enzymes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Naoki Kato
- Natural Product Biosynthesis Research Unit; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Toshihiko Nogawa
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Ryo Takita
- Advanced Elements Chemistry Research Team; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kiyomi Kinugasa
- Natural Product Biosynthesis Research Unit; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Misae Kanai
- Advanced Elements Chemistry Research Team; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Advanced Elements Chemistry Research Team; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| |
Collapse
|
41
|
Abstract
Enzymes in biosynthetic pathways, especially in plant and microbial metabolism, generate structural and functional group complexity in small molecules by conversion of acyclic frameworks to cyclic scaffolds via short, efficient routes. The distinct chemical logic used by several distinct classes of cyclases, oxidative and non-oxidative, has recently been elucidated by genome mining, heterologous expression, and genetic and mechanistic analyses. These include enzymes performing pericyclic transformations, pyran synthases, tandem acting epoxygenases, and epoxide "hydrolases", as well as oxygenases and radical S-adenosylmethionine enzymes that involve rearrangements of substrate radicals under aerobic or anaerobic conditions.
Collapse
Affiliation(s)
- Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA
| |
Collapse
|
42
|
Zheng Q, Wu Z, Sun P, Chen D, Tian Z, Liu W. A linear hydroxymethyl tetramate undergoes an acetylation-elimination process for exocyclic methylene formation in the biosynthetic pathway of pyrroindomycins. Org Biomol Chem 2018; 15:88-91. [PMID: 27942669 DOI: 10.1039/c6ob02567f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We herein report the isolation and characterization of a key linear intermediate in the biosynthetic pathway of pyrroindomycins, the potent spirotetramate natural products produced by Streptomyces rugosporus. This polyene intermediate bears a γ-hydroxymethyl group that is exocyclic to the tetramate moiety, indicating that a serine residue serves as the three-carbon unit for tetramate formation and chain-elongation termination. The further conversion involves an acetylation-elimination of the exocyclic γ-hydroxymethyl group to generate a γ-methylene group, which is indispensable for intramolecular [4 + 2] cross-bridging to construct the characteristic pentacyclic core. The findings presented in this study provide new insights into the biosynthesis of pyrroindomycins, and thus suggest a common paradigm for both spirotetramates and spirotetronates in processing the exocyclic γ-hydroxymethyl group of the five-membered heterocycle.
Collapse
Affiliation(s)
- Qingfei Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Zhuhua Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Peng Sun
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. and Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. and Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| | - Zhenhua Tian
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. and Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
43
|
Abstract
![]()
The enzyme SpnF, involved in the
biosynthesis of spinosyn A, catalyzes
a formal [4+2] cycloaddition of a 22-membered macrolactone, which
may proceed as a concerted [4+2] Diels–Alder reaction or a
stepwise [6+4] cycloaddition followed by a Cope rearrangement. Quantum
mechanics/molecular mechanics (QM/MM) calculations combined with free
energy simulations show that the Diels–Alder pathway is favored
in the enzyme environment. OM2/CHARMM free energy simulations for
the SpnF-catalyzed reaction predict a free energy barrier of 22 kcal/mol
for the concerted Diels–Alder process and provide no evidence
of a competitive stepwise pathway. Compared with the gas phase, the
enzyme lowers the Diels–Alder barrier significantly, consistent
with experimental observations. Inspection of the optimized geometries
indicates that the enzyme may prearrange the substrate within the
active site to accelerate the [4+2] cycloaddition and impede the [6+4]
cycloaddition through interactions with active-site residues. Judging
from partial charge analysis, we find that the hydrogen bond between
the Thr196 residue of SpnF and the substrate C15 carbonyl group contributes
to the enhancement of the rate of the Diels–Alder reaction.
QM/MM simulations show that the substrate can easily adopt a reactive
conformation in the active site of SpnF because interconversion between
the C5–C6 s-trans and s-cis conformers is facile. Our QM/MM study suggests that the enzyme SpnF
does behave as a Diels-Alderase.
Collapse
Affiliation(s)
- Yiying Zheng
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
44
|
Abstract
The enzymes catalyzing a Diels-Alder-type reaction have been attractive targets for organic chemists for years. Recently, Zheng et al. (2016) reported the structure of a formal monofunctional Diels-Alderase PyrI4 complexed with the product and unveiled a detailed catalytic mechanism of a highly important enzyme.
Collapse
Affiliation(s)
- Hideaki Oikawa
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
45
|
Investigation of the mechanism of the SpnF-catalyzed [4+2]-cycloaddition reaction in the biosynthesis of spinosyn A. Proc Natl Acad Sci U S A 2017; 114:10408-10413. [PMID: 28874588 DOI: 10.1073/pnas.1710496114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Diels-Alder reaction is one of the most common methods to chemically synthesize a six-membered carbocycle. While it has long been speculated that the cyclohexene moiety found in many secondary metabolites is also introduced via similar chemistry, the enzyme SpnF involved in the biosynthesis of the insecticide spinosyn A in Saccharopolyspora spinosa is the first enzyme for which catalysis of an intramolecular [Formula: see text]-cycloaddition has been experimentally verified as its only known function. Since its discovery, a number of additional standalone [Formula: see text]-cyclases have been reported as potential Diels-Alderases; however, whether their catalytic cycles involve a concerted or stepwise cyclization mechanism has not been addressed experimentally. Here, we report direct experimental interrogation of the reaction coordinate for the [Formula: see text]-carbocyclase SpnF via the measurement of [Formula: see text]-secondary deuterium kinetic isotope effects (KIEs) at all sites of [Formula: see text] rehybridization for both the nonenzymatic and enzyme-catalyzed cyclization of the SpnF substrate. The measured KIEs for the nonenzymatic reaction are consistent with previous computational results implicating an intermediary state between formation of the first and second carbon-carbon bonds. The KIEs measured for the enzymatic reaction suggest a similar mechanism of cyclization within the enzyme active site; however, there is evidence that conformational restriction of the substrate may play a role in catalysis.
Collapse
|
46
|
Wang X, Elshahawi SI, Cai W, Zhang Y, Ponomareva LV, Chen X, Copley GC, Hower JC, Zhan CG, Parkin S, Rohr J, Van Lanen SG, Shaaban KA, Thorson JS. Bi- and Tetracyclic Spirotetronates from the Coal Mine Fire Isolate Streptomyces sp. LC-6-2. JOURNAL OF NATURAL PRODUCTS 2017; 80:1141-1149. [PMID: 28358212 PMCID: PMC5558431 DOI: 10.1021/acs.jnatprod.7b00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The structures of 12 new "enantiomeric"-like abyssomicin metabolites (abyssomicins M-X) from Streptomyces sp. LC-6-2 are reported. Of this set, the abyssomicin W (11) contains an unprecedented 8/6/6/6 tetracyclic core, while the bicyclic abyssomicin X (12) represents the first reported naturally occurring linear spirotetronate. Metabolite structures were determined based on spectroscopic data and X-ray crystallography, and Streptomyces sp. LC-6-2 genome sequencing also revealed the corresponding putative biosynthetic gene cluster.
Collapse
Affiliation(s)
- Xiachang Wang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Wenlong Cai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yinan Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiabin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Gregory C. Copley
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, United States
| | - James C. Hower
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, United States
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Khaled A. Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
47
|
Abstract
Oxidative cyclizations are important transformations that occur widely during natural product biosynthesis. The transformations from acyclic precursors to cyclized products can afford morphed scaffolds, structural rigidity, and biological activities. Some of the most dramatic structural alterations in natural product biosynthesis occur through oxidative cyclization. In this Review, we examine the different strategies used by nature to create new intra(inter)molecular bonds via redox chemistry. This Review will cover both oxidation- and reduction-enabled cyclization mechanisms, with an emphasis on the former. Radical cyclizations catalyzed by P450, nonheme iron, α-KG-dependent oxygenases, and radical SAM enzymes are discussed to illustrate the use of molecular oxygen and S-adenosylmethionine to forge new bonds at unactivated sites via one-electron manifolds. Nonradical cyclizations catalyzed by flavin-dependent monooxygenases and NAD(P)H-dependent reductases are covered to show the use of two-electron manifolds in initiating cyclization reactions. The oxidative installations of epoxides and halogens into acyclic scaffolds to drive subsequent cyclizations are separately discussed as examples of "disappearing" reactive handles. Last, oxidative rearrangement of rings systems, including contractions and expansions, will be covered.
Collapse
Affiliation(s)
- Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Abstract
The enzymology of 135 assembly lines containing primarily cis-acyltransferase modules is comprehensively analyzed, with greater attention paid to less common phenomena. Diverse online transformations, in which the substrate and/or product of the reaction is an acyl chain bound to an acyl carrier protein, are classified so that unusual reactions can be compared and underlying assembly-line logic can emerge. As a complement to the chemistry surrounding the loading, extension, and offloading of assembly lines that construct primarily polyketide products, structural aspects of the assembly-line machinery itself are considered. This review of assembly-line phenomena, covering the literature up to 2017, should thus be informative to the modular polyketide synthase novice and expert alike.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
49
|
Nakano K, Shiroma A, Shimoji M, Tamotsu H, Ashimine N, Ohki S, Shinzato M, Minami M, Nakanishi T, Teruya K, Satou K, Hirano T. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Hum Cell 2017; 30:149-161. [PMID: 28364362 PMCID: PMC5486853 DOI: 10.1007/s13577-017-0168-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
Abstract
PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.
Collapse
Affiliation(s)
- Kazuma Nakano
- Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan.
| | - Akino Shiroma
- Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Makiko Shimoji
- Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Hinako Tamotsu
- Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Noriko Ashimine
- Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Shun Ohki
- Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Misuzu Shinzato
- Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Maiko Minami
- Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | | | - Kuniko Teruya
- Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Kazuhito Satou
- Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Takashi Hirano
- Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| |
Collapse
|
50
|
Lin CI, McCarty RM, Liu HW. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. Angew Chem Int Ed Engl 2017; 56:3446-3489. [PMID: 27505692 PMCID: PMC5477795 DOI: 10.1002/anie.201603291] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/05/2023]
Abstract
Chemical reactions that are named in honor of their true, or at least perceived, discoverers are known as "name reactions". This Review is a collection of biological representatives of named chemical reactions. Emphasis is placed on reaction types and catalytic mechanisms that showcase both the chemical diversity in natural product biosynthesis as well as the parallels with synthetic organic chemistry. An attempt has been made, whenever possible, to describe the enzymatic mechanisms of catalysis within the context of their synthetic counterparts and to discuss the mechanistic hypotheses for those reactions that are currently active areas of investigation. This Review has been categorized by reaction type, for example condensation, nucleophilic addition, reduction and oxidation, substitution, carboxylation, radical-mediated, and rearrangements, which are subdivided by name reactions.
Collapse
Affiliation(s)
- Chia-I Lin
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Reid M McCarty
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| |
Collapse
|