1
|
Barpuzary B, Negria S, Chaput JC. Improved synthesis and polymerase recognition of 7-deaza-7-modified α-l-threofuranosyl guanosine analogs. RSC Adv 2024; 14:19701-19706. [PMID: 38903677 PMCID: PMC11188673 DOI: 10.1039/d4ra03029j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Threofuranosyl nucleic acid (TNA), an artificial genetic polymer known for its nuclease resistance and acid stability, has grown in popularity as a genetically-encoded material for applications in synthetic biology and biomedicine. TNA oligonucleotide synthesis requires enzymatic or solid phase synthesis pathways that rely on monomer building blocks that are not commercially available and can only be obtained by chemical synthesis. Here we present a synthetic route to 7-deaza-7-modified tGTP and phosphoramidite analogs that is operationally simpler than our previously described strategy. The new methodology offers an HPLC-free route to tGTP analogs that are recognized by engineered TNA polymerases and can be incorporated with continued TNA synthesis.
Collapse
Affiliation(s)
- Bhawna Barpuzary
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697-3958 USA
| | - Sergey Negria
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697-3958 USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697-3958 USA
- Department of Chemistry, University of California Irvine CA 92697-3958 USA
- Department of Molecular Biology and Biochemistry, University of California CA 92697-3958 USA
- Department of Chemical and Biomolecular Engineering, University of California Irvine CA 92697-3958 USA
| |
Collapse
|
2
|
Depmeier H, Kath-Schorr S. Expanding the Horizon of the Xeno Nucleic Acid Space: Threose Nucleic Acids with Increased Information Storage. J Am Chem Soc 2024; 146:7743-7751. [PMID: 38442021 DOI: 10.1021/jacs.3c14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Xeno nucleic acids (XNAs) constitute a class of synthetic nucleic acid analogues characterized by distinct, non-natural modifications within the tripartite structure of the nucleic acid polymers. While most of the described XNAs contain a modification in only one structural element of the nucleic acid scaffold, this work explores the XNA chemical space to create more divergent variants with modifications in multiple parts of the nucleosidic scaffold. Combining the enhanced nuclease resistance of α-l-threofuranosyl nucleic acid (TNA) and the almost natural-like replication efficiency and fidelity of the unnatural hydrophobic base pair (UBP) TPT3:NaM, novel modified nucleoside triphosphates with a dual modification pattern were synthesized. We investigated the enzymatic incorporation of these nucleotide building blocks by XNA-compatible polymerases and confirmed the successful enzymatic synthesis of TPT3-modified TNA, while the preparation of NaM-modified TNA presented greater challenges. This study marks the first enzymatic synthesis of TNA with an expanded genetic alphabet (exTNA), opening promising opportunities in nucleic acid therapeutics, particularly for the selection and evolution of nuclease-resistant, high-affinity aptamers with increased chemical diversity.
Collapse
Affiliation(s)
- Hannah Depmeier
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, Cologne 50939, Germany
| | - Stephanie Kath-Schorr
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, Cologne 50939, Germany
| |
Collapse
|
3
|
Konieczna J, Wrońska K, Kalińska M, Liberek B, Nowacki A. Conformational preferences of guanine-containing threose nucleic acid building blocks in B3LYP studies. Carbohydr Res 2024; 537:109055. [PMID: 38373388 DOI: 10.1016/j.carres.2024.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
In this paper, detailed and systematic gas-phase B3LYP conformational studies of four monomers of threose nucleic acid (TNA) with guanine attached at the C1' atom and bearing different substituents (OH, OP(=O)OH2 and OCH3) in the C2' and C3' positions of the α-l-threofuranose moiety are presented. All exocyclic single-bond (χ, ε and γ) rotations, as well as the ν0-ν4 endocyclic torsion angles, were taken into consideration. Three (threoguanosines TG1-TG3) or two (TG4) energy minima were found for the rotation about the χ torsion angle. The syn orientation (the A rotamer family) is strongly privileged in geometries TG1 and TG2, whereas the anti orientation (the C rotamer family) and the syn orientation are observed to be in equilibrium (with populations of 56% and 44%, respectively) for TG3. In the case of TG4, the high-anti orientation (the B rotamer family) turned out to be by far the most favourable, with the contribution exceeding 90% in equilibrium. Such a preference can be attributed to the inability of H-bonding between sugar and nucleobase and possibly because of the steric strains. The low-energy conformers of TG1-TG4 occupy the northeastern (P ∼ 40°) and/or southern (P ∼ 210°) parts of the pseudorotational wheel, which fits the A- and B-type DNA helices quite well. Additionally, in the case of TG4, some relatively stable geometries have the furanoid ring in conformation lying on the northwestern part of the pseudorotational wheel (P ∼ 288°).
Collapse
Affiliation(s)
- Justyna Konieczna
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Karolina Wrońska
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Marta Kalińska
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Beata Liberek
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Andrzej Nowacki
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland.
| |
Collapse
|
4
|
Wang J, Yu H. Threose nucleic acid as a primitive genetic polymer and a contemporary molecular tool. Bioorg Chem 2024; 143:107049. [PMID: 38150936 DOI: 10.1016/j.bioorg.2023.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Nucleic acids serve a dual role as both genetic materials in living organisms and versatile molecular tools for various applications. Threose nuclei acid (TNA) stands out as a synthetic genetic polymer, holding potential as a primitive genetic material and as a contemporary molecular tool. In this review, we aim to provide an extensive overview of TNA research progress in these two key aspects. We begin with a retrospect of the initial discovery of TNA, followed by an in-depth look at the structural features of TNA duplex and experimental assessment of TNA as a possible RNA progenitor during early evolution of life on Earth. In the subsequent section, we delve into the recent development of TNA molecular tools such as aptamers, catalysts and antisense oligonucleotides. We emphasize the practical application of functional TNA molecules in the realms of targeted protein degradation and selective gene silencing. Our review culminates with a discussion of future research directions and the technical challenges that remain to be addressed in the field of TNA research.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
5
|
Enzymatic Synthesis of Vancomycin-Modified DNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248927. [PMID: 36558056 PMCID: PMC9782525 DOI: 10.3390/molecules27248927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Many potent antibiotics fail to treat bacterial infections due to emergence of drug-resistant strains. This surge of antimicrobial resistance (AMR) calls in for the development of alternative strategies and methods for the development of drugs with restored bactericidal activities. In this context, we surmised that identifying aptamers using nucleotides connected to antibiotics will lead to chemically modified aptameric species capable of restoring the original binding activity of the drugs and hence produce active antibiotic species that could be used to combat AMR. Here, we report the synthesis of a modified nucleoside triphosphate equipped with a vancomycin moiety on the nucleobase. We demonstrate that this nucleotide analogue is suitable for polymerase-mediated synthesis of modified DNA and, importantly, highlight its compatibility with the SELEX methodology. These results pave the way for bacterial-SELEX for the identification of vancomycin-modified aptamers.
Collapse
|
6
|
An RNA-cleaving threose nucleic acid enzyme capable of single point mutation discrimination. Nat Chem 2022; 14:350-359. [PMID: 34916596 DOI: 10.1038/s41557-021-00847-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 10/25/2021] [Indexed: 01/19/2023]
Abstract
Threose nucleic acid has been considered a potential evolutionary progenitor of RNA because of its chemical simplicity, base pairing properties and capacity for higher-order functions such as folding and specific ligand binding. Here we report the in vitro selection of RNA-cleaving threose nucleic acid enzymes. One such enzyme, Tz1, catalyses a site-specific RNA-cleavage reaction with an observed pseudo first-order rate constant (kobs) of 0.016 min-1. The catalytic activity of Tz1 is maximal at 8 mM Mg2+ and remains relatively constant from pH 5.3 to 9.0. Tz1 preferentially cleaves a mutant epidermal growth factor receptor RNA substrate with a single point substitution, while leaving the wild-type intact. We demonstrate that Tz1 mediates selective gene silencing of the mutant epidermal growth factor receptor in eukaryotic cells. The identification of catalytic threose nucleic acids provides further experimental support for threose nucleic acid as an ancestral genetic and functional material. The demonstration of Tz1 mediating selective knockdown of intracellular RNA suggests that functional threose nucleic acids could be developed for future biomedical applications.
Collapse
|
7
|
Hoff K, Halpain M, Garbagnati G, Edwards JS, Zhou W. Enzymatic Synthesis of Designer DNA Using Cyclic Reversible Termination and a Universal Template. ACS Synth Biol 2020; 9:283-293. [PMID: 31895546 DOI: 10.1021/acssynbio.9b00315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphoramidite chemistry remains the industry standard for DNA synthesis despite significant limitations on the length and yield of the oligonucleotide, time restrictions, and hazardous waste production. Herein, we demonstrate the synthesis of single-stranded oligos on a solid surface by DNA polymerases and reverse transcriptases. We report the extension of surface-bound oligonucleotides enabled by transient hybridization of as few as two bases to a neighboring strand. When multiple hybridization structures are possible, each templating a different base, a DNA polymerase or reverse transcriptase can extend the oligonucleotide with any of the complementary bases. Therefore, the sequence of the newly synthesized fragment can be controlled by adding only the desired base as a substrate to the reaction solution. We used this enzymatic approach to synthesize a 20 base oligonucleotide by incorporating reversible terminator dNTPs through a two-step cyclic reversible termination process with a corrected stepwise efficiency over 98%. In our approach, a nascent DNA strand that serves as both primer and template is extended through polymerase-controlled sequential addition of 3'-reversibly blocked nucleotides followed by subsequent cleavage of the 3'-capping group. This process enables oligonucleotide synthesis in an environment not permitted by traditional phosphoramidite methods, eliminates the need for hazardous chemicals, has the potential to provide faster and higher yield results, and synthesizes DNA on a solid support with a free 3' end.
Collapse
Affiliation(s)
- Kendall Hoff
- Department of Advanced Research and Development, Centrillion Biosciences, Palo Alto, California 94303, United States
| | - Michelle Halpain
- Department of Advanced Research and Development, Centrillion Biosciences, Palo Alto, California 94303, United States
| | - Giancarlo Garbagnati
- Department of Advanced Research and Development, Centrillion Biosciences, Palo Alto, California 94303, United States
| | - Jeremy S. Edwards
- Department of Advanced Research and Development, Centrillion Biosciences, Palo Alto, California 94303, United States
- Chemistry and Chemical Biology and Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87131, United States
| | - Wei Zhou
- Department of Advanced Research and Development, Centrillion Biosciences, Palo Alto, California 94303, United States
| |
Collapse
|
8
|
Shimo T, Tachibana K, Kawawaki Y, Watahiki Y, Ishigaki T, Nakatsuji Y, Hara T, Kawakami J, Obika S. Enhancement of exon skipping activity by reduction in the secondary structure content of LNA-based splice-switching oligonucleotides. Chem Commun (Camb) 2019; 55:6850-6853. [PMID: 31123731 DOI: 10.1039/c8cc09648a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PAGE and UV melting analysis revealed that longer LNA-based splice-switching oligonucleotides (SSOs) formed secondary structures by themselves, reducing their effective concentration. To avoid such secondary structure formation, we introduced 7-deaza-2'-deoxyguanosine or 2'-deoxyinosine into the SSOs. These modified SSOs, with fewer secondary structures, showed higher exon skipping activities.
Collapse
Affiliation(s)
- Takenori Shimo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rangel AE, Chen Z, Ayele TM, Heemstra JM. In vitro selection of an XNA aptamer capable of small-molecule recognition. Nucleic Acids Res 2019; 46:8057-8068. [PMID: 30085205 PMCID: PMC6144807 DOI: 10.1093/nar/gky667] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023] Open
Abstract
Despite advances in XNA evolution, the binding capabilities of artificial genetic polymers are currently limited to protein targets. Here, we describe the expansion of in vitro evolution techniques to enable selection of threose nucleic acid (TNA) aptamers to ochratoxin A (OTA). This research establishes the first example of an XNA aptamer of any kind to be evolved having affinity to a small-molecule target. Selection experiments against OTA yielded aptamers having affinities in the mid nanomolar range; with the best binders possessing KD values comparable to or better than those of the best previously reported DNA aptamer to OTA. Importantly, the TNA can be incubated in 50% human blood serum for seven days and retain binding to OTA with only a minor change in affinity, while the DNA aptamer is completely degraded and loses all capacity to bind the target. This not only establishes the remarkable biostability of the TNA aptamer, but also its high level of selectivity, as it is capable of binding OTA in a large background of competing biomolecules. Together, this research demonstrates that refining methods for in vitro evolution of XNA can enable the selection of aptamers to a broad range of increasingly challenging target molecules.
Collapse
Affiliation(s)
- Alexandra E Rangel
- Department of Chemistry and the Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Zhe Chen
- Department of Chemistry and the Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Jennifer M Heemstra
- Department of Chemistry and the Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA.,Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Gardner AF, Jackson KM, Boyle MM, Buss JA, Potapov V, Gehring AM, Zatopek KM, Corrêa IR, Ong JL, Jack WE. Therminator DNA Polymerase: Modified Nucleotides and Unnatural Substrates. Front Mol Biosci 2019; 6:28. [PMID: 31069234 PMCID: PMC6491775 DOI: 10.3389/fmolb.2019.00028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
A variant of 9°N DNA polymerase [Genbank ID (AAA88769.1)] with three mutations (D141A, E143A, A485L) and commercialized under the name "Therminator DNA polymerase" has the ability to incorporate a variety of modified nucleotide classes. This Review focuses on how Therminator DNA Polymerase has enabled new technologies in synthetic biology and DNA sequencing. In addition, we discuss mechanisms for increased modified nucleotide incorporation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ivan R Corrêa
- New England Biolabs, Inc., Ipswich, MA, United States
| | | | | |
Collapse
|
11
|
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev 2018; 134:3-21. [PMID: 29626546 DOI: 10.1016/j.addr.2018.04.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of tightly binding to specific targets. These functional nucleic acids are obtained by an in vitro Darwinian evolution method coined SELEX (Systematic Evolution of Ligands by EXponential enrichment). Compared to their proteinaceous counterparts, aptamers offer a number of advantages including a low immunogenicity, a relative ease of large-scale synthesis at affordable costs with little or no batch-to-batch variation, physical stability, and facile chemical modification. These alluring properties have propelled aptamers into the forefront of numerous practical applications such as the development of therapeutic and diagnostic agents as well as the construction of biosensing platforms. However, commercial success of aptamers still proceeds at a weak pace. The main factors responsible for this delay are the susceptibility of aptamers to degradation by nucleases, their rapid renal filtration, suboptimal thermal stability, and the lack of functional group diversity. Here, we describe the different chemical methods available to mitigate these shortcomings. Particularly, we describe the chemical post-SELEX processing of aptamers to include functional groups as well as the inclusion of modified nucleoside triphosphates into the SELEX protocol. These methods will be illustrated with successful examples of chemically modified aptamers used as drug delivery systems, in therapeutic applications, and as biosensing devices.
Collapse
|
12
|
Mei H, Liao JY, Jimenez RM, Wang Y, Bala S, McCloskey C, Switzer C, Chaput JC. Synthesis and Evolution of a Threose Nucleic Acid Aptamer Bearing 7-Deaza-7-Substituted Guanosine Residues. J Am Chem Soc 2018; 140:5706-5713. [PMID: 29667819 DOI: 10.1021/jacs.7b13031] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In vitro selection experiments carried out on artificial genetic polymers require robust and faithful methods for copying genetic information back and forth between DNA and xeno-nucleic acids (XNA). Previously, we have shown that Kod-RI, an engineered polymerase developed to transcribe DNA templates into threose nucleic acid (TNA), can function with high fidelity in the absence of manganese ions. However, the transcriptional efficiency of this enzyme diminishes greatly when individual templates are replaced with libraries of DNA sequences, indicating that manganese ions are still required for in vitro selection. Unfortunately, the presence of manganese ions in the transcription mixture leads to the misincorporation of tGTP nucleotides opposite dG residues in the templating strand, which are detected as G-to-C transversions when the TNA is reverse transcribed back into DNA. Here we report the synthesis and fidelity of TNA replication using 7-deaza-7-modified guanosine base analogues in the DNA template and incoming TNA nucleoside triphosphate. Our findings reveal that tGTP misincorporation occurs via a Hoogsteen base pair in which the incoming tGTP residue adopts a syn conformation with respect to the sugar. Substitution of tGTP for 7-deaza-7-phenyl tGTP enabled the synthesis of TNA polymers with >99% overall fidelity. A TNA library containing the 7-deaza-7-phenyl guanine analogue was used to evolve a biologically stable TNA aptamer that binds to HIV reverse transcriptase with low nanomolar affinity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christopher Switzer
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | | |
Collapse
|
13
|
Bednarko J, Stachurski O, Wielińska J, Kozakiewicz K, Liberek B, Nowacki A. Threocytidines: Insight into the Conformational Preferences of Artificial Threose Nucleic Acid (TNA) Building Blocks in B3LYP Studies. J Mol Graph Model 2018; 80:157-172. [PMID: 29366882 DOI: 10.1016/j.jmgm.2018.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
A systematic DFT conformational studies of four building blocks of TNA with cytosine attached to the C1' atom of the α-L-threofuranose moiety are presented. Structures bearing 2'-OR and 3'-OR substituents, where R represents H, CH3 and phosphate groups, were used in the studies using a B3LYP functional in the gas phase. The χ angle (C2-N1-C1'-O4'), the ν0-ν4 endocyclic torsion angles and the exocyclic torsion angles ε (X-O2'-C2'-C1') and γ (X-O3'-C3'-C2') geometry parameter variations were taken into consideration. Three energy minima, high-anti, anti and syn, were found for the rotation about the C1'-N1 bond. The high-anti orientation of the base with respect to the sugar moiety, turned out to be preferred, regardless of the substituents at the C2' and C3' positions. Other orientations are at least 1.65 kcal/mol higher in Gibbs free energy than the high-anti one. It has been shown that intramolecular H-bonds and the anomeric effect of phosphate groups strongly affect the conformational preferences of the studied compounds. Further, the structure of substituents attached to the sugar moiety influence the pucker of the furanoid ring. The furanoid ring in the global minima of the compound with two OH groups (TC1) in the 2' and 3' positions, and the compound having a 3'-phosphate group (TC2), adopt roughly the same conformation located at the southern range of the pseudorotation wheel, and thus are close to those found in the B type DNA helix. The low-energy high-anti rotamers of the geometry with the phosphate group attached to the sugar ring in the 2' position (TC3) and the geometry with two methoxyl groups (TC4) have their furanoid rings in conformations resembling those found in A DNA and RNA helices (the northern range of the pseudorotation wheel).
Collapse
Affiliation(s)
- Justyna Bednarko
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| | - Oktawian Stachurski
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| | - Justyna Wielińska
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| | - Karol Kozakiewicz
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| | - Beata Liberek
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| | - Andrzej Nowacki
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| |
Collapse
|
14
|
Rosenblum SL, Weiden AG, Lewis EL, Ogonowsky AL, Chia HE, Barrett SE, Liu MD, Leconte AM. Design and Discovery of New Combinations of Mutant DNA Polymerases and Modified DNA Substrates. Chembiochem 2017; 18:816-823. [PMID: 28160372 DOI: 10.1002/cbic.201600701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 11/06/2022]
Abstract
Chemical modifications can enhance the properties of DNA by imparting nuclease resistance and generating more-diverse physical structures. However, native DNA polymerases generally cannot synthesize significant lengths of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2'-modified DNAs; however, it is limited in the length of the products it can synthesize. Here, we rationally designed and characterized ten mutants of SFM19. From this, we identified enzymes with substantially improved activity for the synthesis of 2'F-, 2'OH-, 2'OMe-, and 3'OMe-modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and showed that they are capable of an expanded range of modified DNA synthesis. This work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Aurora G Weiden
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Eliza L Lewis
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Alexie L Ogonowsky
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Hannah E Chia
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Susanna E Barrett
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Mira D Liu
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Aaron M Leconte
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| |
Collapse
|
15
|
Röthlisberger P, Levi-Acobas F, Hollenstein M. New synthetic route to ethynyl-dUTP: A means to avoid formation of acetyl and chloro vinyl base-modified triphosphates that could poison SELEX experiments. Bioorg Med Chem Lett 2017; 27:897-900. [PMID: 28089700 DOI: 10.1016/j.bmcl.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/10/2023]
Abstract
5-Ethynyl-2'-deoxyuridine is a common base-modified nucleoside analogue that has served in various applications including selection experiments for potent aptamers and in biosensing. The synthesis of the corresponding triphosphates involves a mild acidic deprotection step. Herein, we show that this deprotection leads to the formation of other nucleoside analogs which are easily converted to triphosphates. The modified nucleoside triphosphates are excellent substrates for numerous DNA polymerases under both primer extension and PCR conditions and could thus poison selection experiments by blocking sites that need to be further modified. The formation of these nucleoside analogs can be circumvented by application of a new synthetic route that is described herein.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
16
|
Dunn MR, Otto C, Fenton KE, Chaput JC. Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures. ACS Chem Biol 2016; 11:1210-9. [PMID: 26860781 DOI: 10.1021/acschembio.5b00949] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability to synthesize and propagate genetic information encoded in the framework of xeno-nucleic acid (XNA) polymers would inform a wide range of topics from the origins of life to synthetic biology. While directed evolution has produced examples of engineered polymerases that can accept XNA substrates, these enzymes function with reduced activity relative to their natural counterparts. Here, we describe a biochemical strategy that enables the discovery of engineered polymerases with improved activity for a given unnatural polymerase function. Our approach involves identifying specificity determining residues (SDRs) that control polymerase activity, screening mutations at SDR positions in a model polymerase scaffold, and assaying key gain-of-function mutations in orthologous protein architectures. By transferring beneficial mutations between homologous protein structures, we show that new polymerases can be identified that function with superior activity relative to their starting donor scaffold. This concept, which we call scaffold sampling, was used to generate engineered DNA polymerases that can faithfully synthesize RNA and TNA (threose nucleic acid), respectively, on a DNA template with high primer-extension efficiency and low template sequence bias. We suggest that the ability to combine phenotypes from different donor and recipient scaffolds provides a new paradigm in polymerase engineering where natural structural diversity can be used to refine the catalytic activity of synthetic enzymes.
Collapse
Affiliation(s)
- Matthew R. Dunn
- Department
of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | | | | | - John C. Chaput
- Department
of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
17
|
A general strategy for expanding polymerase function by droplet microfluidics. Nat Commun 2016; 7:11235. [PMID: 27044725 PMCID: PMC4822039 DOI: 10.1038/ncomms11235] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/03/2016] [Indexed: 02/07/2023] Open
Abstract
Polymerases that synthesize artificial genetic polymers hold great promise for advancing future applications in synthetic biology. However, engineering natural polymerases to replicate unnatural genetic polymers is a challenging problem. Here we present droplet-based optical polymerase sorting (DrOPS) as a general strategy for expanding polymerase function that employs an optical sensor to monitor polymerase activity inside the microenvironment of a uniform synthetic compartment generated by microfluidics. We validated this approach by performing a complete cycle of encapsulation, sorting and recovery on a doped library and observed an enrichment of ∼1,200-fold for a model engineered polymerase. We then applied our method to evolve a manganese-independent α-L-threofuranosyl nucleic acid (TNA) polymerase that functions with >99% template-copying fidelity. Based on our findings, we suggest that DrOPS is a versatile tool that could be used to evolve any polymerase function, where optical detection can be achieved by Watson–Crick base pairing. Droplet-based optical polymerase sorting employs a fluorescent sensor to monitor polymerase activity inside the microenvironment of uniform water-in-oil emulsions. Here, the authors use this technique to select and isolate single cells for evolution of an unnatural nucleic acid polymerase.
Collapse
|
18
|
Meek KN, Rangel AE, Heemstra JM. Enhancing aptamer function and stability via in vitro selection using modified nucleic acids. Methods 2016; 106:29-36. [PMID: 27012179 DOI: 10.1016/j.ymeth.2016.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/29/2022] Open
Abstract
Nucleic acid aptamers have emerged as a promising alternative to antibodies for use as recognition elements in therapeutics, bioimaging, and analytical applications. A key benefit that aptamers possess relative to antibodies is their ability to be chemically synthesized. This advantage, coupled with the broad range of modified nucleotide building blocks that can be constructed using chemical synthesis, has enabled the discovery and development of modified aptamers having extraordinary affinity, specificity, and biostability. Early efforts to generate modified aptamers focused on selection of a native DNA or RNA aptamer, followed by post-selection trial-and-error testing of modifications. However, recent advances in polymerase engineering and templated nucleic acid synthesis have enabled the direct selection of aptamers having modified backbones and nucleobases. This review will discuss these technological advances and highlight the improvements in aptamer function that have been realized through in vitro selection of non-natural nucleic acids.
Collapse
Affiliation(s)
- Kirsten N Meek
- Department of Chemistry and the Center for Cell and Genome Science, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States
| | - Alexandra E Rangel
- Department of Chemistry and the Center for Cell and Genome Science, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States
| | - Jennifer M Heemstra
- Department of Chemistry and the Center for Cell and Genome Science, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States.
| |
Collapse
|
19
|
Sau SP, Fahmi NE, Liao JY, Bala S, Chaput JC. A Scalable Synthesis of α-L-Threose Nucleic Acid Monomers. J Org Chem 2016; 81:2302-7. [PMID: 26895480 DOI: 10.1021/acs.joc.5b02768] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in polymerase engineering have made it possible to copy information back and forth between DNA and artificial genetic polymers composed of TNA (α-L-threofuranosyl-(3',2') nucleic acid). This property, coupled with enhanced nuclease stability relative to natural DNA and RNA, warrants further investigation into the structural and functional properties of TNA as an artificial genetic polymer for synthetic biology. Here, we report a highly optimized chemical synthesis protocol for constructing multigram quantities of TNA nucleosides that can be readily converted to nucleoside 2'-phosphoramidites or 3'-triphosphates for solid-phase and polymerase-mediated synthesis, respectively. The synthetic protocol involves 10 chemical transformations with three crystallization steps and a single chromatographic purification, which results in an overall yield of 16-23% depending on the identity of the nucleoside (A, C, G, T).
Collapse
Affiliation(s)
- Sujay P Sau
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - Nour Eddine Fahmi
- The Biodesign Institute, Arizona State University , Tempe, Arizona 85287-5301, United States
| | - Jen-Yu Liao
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - Saikat Bala
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| |
Collapse
|
20
|
Yurenko YP, Novotný J, Nikolaienko TY, Marek R. Nucleotides containing variously modified sugars: energetics, structure, and mechanical properties. Phys Chem Chem Phys 2015; 18:1615-28. [PMID: 26672740 DOI: 10.1039/c5cp05478h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The influence of various sugar residue modifications on intrinsic energetic, conformational, and mechanical properties of 2'-deoxyribonucleotide-5'-monophosphates (dNs) was comprehensively investigated using modern quantum chemical approaches. In total, fourteen sugar modifications, including double bonds and heteroatoms (S and N) inside the sugar ring, as well as fluorination in various positions, were analyzed. Among hundreds of possible conformational states of dNs, only two - AI and BI, corresponding to the most biologically significant forms of a double-helical DNA, were considered for each dN. It was established that the most of the studied modifications tend to strongly stabilize either AI or BI conformation of dNs both in the gas phase and in aqueous solution (modelled by implicit solvent models). Therefore, some of these modifications can be used as a tool for reducing structural polymorphism of nucleic acids in solution as well as for designing oligonucleotides with specific structural features. The evaluation of relaxed force constants (RFC) for glycosidic bonds suggests that the majority of the studied modifications of the sugar residue yield increased strengths of glycosidic bonds in dNs, and can therefore be used for designing modified nucleic acids with an increased resistance to abasic lesions. The most significant reinforcement of the glycosidic bond occurs in dNs containing the CF2 group instead of the O4' oxygen and the fluorine atom at the 2'-α-position. The calculation of the RFC and vibrational root-mean-square (VRMS) deviations for conformational degrees of freedom revealed a strong dependence between mechanical properties of dNs and their energetic characteristics. In particular, electronic energies of AI and BI conformers of dNs calculated in vacuo are closely connected with the values of relaxed force constants (RFC) for the δ angle: the higher RFC(δ) values correspond to more energetically favorable conformers.
Collapse
Affiliation(s)
- Yevgen P Yurenko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | | | | | | |
Collapse
|
21
|
Generation of Aptamers with an Expanded Chemical Repertoire. Molecules 2015; 20:16643-71. [PMID: 26389865 PMCID: PMC6332006 DOI: 10.3390/molecules200916643] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023] Open
Abstract
The enzymatic co-polymerization of modified nucleoside triphosphates (dN*TPs and N*TPs) is a versatile method for the expansion and exploration of expanded chemical space in SELEX and related combinatorial methods of in vitro selection. This strategy can be exploited to generate aptamers with improved or hitherto unknown properties. In this review, we discuss the nature of the functionalities appended to nucleoside triphosphates and their impact on selection experiments. The properties of the resulting modified aptamers will be described, particularly those integrated in the fields of biomolecular diagnostics, therapeutics, and in the expansion of genetic systems (XNAs).
Collapse
|