1
|
Xin Y, Niu WH, Shang JH, Li N, Zhu HT, Li XN, Yang XZ, Zhang YJ. New ent-cleistanthanes and ent-pimaras diterpenoids with potential cytotoxicity from Phyllanthus franchetianus H. Lév. Fitoterapia 2025; 180:106334. [PMID: 39638072 DOI: 10.1016/j.fitote.2024.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Seven diterpenoids including five ent-cleistanthanes (1, 2, 4-6) and two ent-pimaranes (3, 7) were isolated for the first time from the aerial part of Phyllanthus franchetianus H. Lév. Their structures were elucidated on the basis of the extensive spectroscopic analyses, single-crystal X-ray diffraction and ECD analysis. Phyllanthanes A-C (1-3) are new compounds. Notably, the ent-cleistanthanes 1 and 4-5 exhibited moderate cytotoxicity against five human cancer (HL-60, A549, HepG2, MDA-MB-231, SW480) (IC50 = 5.01-32.41 μM) and one normal BEAS-2B (IC50 = 20.45-24.33 μM) cell lines.
Collapse
Affiliation(s)
- Ying Xin
- State Key Laboratory of Phytochemistry & Natural Medicines (CAS), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Chongqing Three Gorges Medical College, Chongqing 404120, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang-Hui Niu
- State Key Laboratory of Phytochemistry & Natural Medicines (CAS), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia-Huan Shang
- State Key Laboratory of Phytochemistry & Natural Medicines (CAS), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Na Li
- State Key Laboratory of Phytochemistry & Natural Medicines (CAS), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry & Natural Medicines (CAS), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry & Natural Medicines (CAS), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xing-Zhi Yang
- State Key Laboratory of Phytochemistry & Natural Medicines (CAS), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry & Natural Medicines (CAS), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
2
|
Chen SS, Zheng CY, Yang GZ, Zhou JS, He SJ, Fan YY, Yue JM. Highly oxygenated steroids with immunosuppressive activity from Solanum undatum. Org Biomol Chem 2024; 23:83-89. [PMID: 39513641 DOI: 10.1039/d4ob01642d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Solanum undatum is a medicinal plant used for the treatment of oedema, rheumatoid arthritis and toothache, from which seven highly oxygenated steroids (1-7), including three new ones (1-3), have been characterized. Compound 1 is a new steroidal carboxylic acid featuring a cyclohexa-2,5-dien-1-one moiety and compounds 2 and 3 are new withanolide analogs with a 1,6-dimethyl-3,7-dioxabicyclo[4.1.0]heptan-2-ol terminus. Their structures and absolute configurations were determined by a combination of spectroscopic data, quantum chemical calculations, single-crystal X-ray diffraction, and the NMR-based phenylglycine methyl ester (PGME) method. An immunosuppressive activity assay revealed that compounds 2-7 exhibited substantial activities against the proliferation of T and B lymphocytes in vitro, with IC50 values ranging from 1.60 to 7.89 μM and 0.90 to 6.90 μM, respectively. Notably, compound 6 showed selective inhibitory effect toward B cells with the highest selective index (SI = 40.5). Preliminary structure-activity relationships of compounds 1-7 suggest that the terminal 1,6-dimethyl-3,7-dioxabicyclo[4.1.0]heptan-2-ol or 5,5-spiroacetal moiety is critical for immunosuppressive activity. Our study indicated that they could be promising lead compounds for immunosuppressive agents.
Collapse
Affiliation(s)
- Shu-Shuai Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Guan-Zhou Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jun-Su Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
3
|
Addae-Mensah I, Dziwornu GA, Chama MA, Osei-Safo D. The dichapetalins and dichapetalin-type compounds: structural diversity, bioactivity, and future research perspectives. Nat Prod Rep 2024; 41:1579-1603. [PMID: 38963155 DOI: 10.1039/d3np00039g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Covering mainly from 2013 up to 2023 with relevant references to work done before 2013First reported in 1995, the dichapetalins and analogous compounds constitute a novel class of natural dammarane-type merotriterpenoids characterized by their unique 2-phenylpyrano moiety annellated to ring A of the dammarane skeleton. They have been reported from only two genera: Dichapetalum (Dichapetalaceae) and Phyllanthus (Phyllanthaceae). About 100 novel dichapetalins and dichapetalin-type compounds, including the acutissimatriterpenes and their antitumour and other bioactivities have been reported. In the present review, we cover the distribution, ethnobotanical and medicinal importance and the diversity of secondary metabolites reported from the two genera Dichapetalum and Phyllanthus from 2013 to date, with appropriate reference to relevant information prior to 2013. We also propose and discuss possible biosynthetic pathways, antitumour activity against a broad range of human and murine cancer cell lines, structure activity relationships, and other biological activities and mechanisms of action. Finally, the review deals with future perspectives which include expansion of the structural diversity and bioactivity scope, possible simplification of the structural complexity of the compounds to enhance their drug-likeness, in silico studies, and continuation of the search for new dichapetalins and dichapetalin-type compounds from the over 200 Dichapetalum and over 1200 Phyllanthus species yet to be investigated. It is envisaged that the present review will stimulate further multidisciplinary and interdisciplinary studies.
Collapse
Affiliation(s)
| | - Godwin Akpeko Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Mary Anti Chama
- Department of Chemistry, University of Ghana, Legon, Accra, Ghana.
| | - Dorcas Osei-Safo
- Department of Chemistry, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
4
|
Zhou YK, Zhang ZY, Liu HY, Li YH, Zhang ZC, Chen JH, Yang Z. Stereoselective Construction of the ABCDE Pentacyclic Motif of Phainanoids via Norrish-Yang Photocyclization Reaction. Org Lett 2024; 26:8217-8221. [PMID: 39311758 DOI: 10.1021/acs.orglett.4c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A Norrish-Yang photocyclization reaction has been applied to regio- and stereoselective construction of the ABCDE pentacyclic motif of natural product phainanoids. The observed substrate conformation control implicates this powerful reaction could be applied to the construction of structurally diverse natural product scaffolds.
Collapse
Affiliation(s)
- Yi-Ke Zhou
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen-Yu Zhang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hao-Yuan Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuan-He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhong-Chao Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jia-Hua Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
5
|
Jeon BK, Cho SY, Lee DH. Stereoselective Approach to the Core Structure of (+)-Phainanoid A via Strategically Engineered Cascade Polyene Cyclization. Org Lett 2024; 26:8079-8083. [PMID: 39291842 DOI: 10.1021/acs.orglett.4c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Stereoselective synthesis of 3b and its cascade polyene cyclization to 18b have been described. Acyclic polyene 3b was prepared from allyl bromide 4 and 1,3-dithiane 5, and intermediates 4 and 5 were synthesized from the commercially available geraniol (6) and cyclopenten-2-one (8), respectively, using enantioselective reduction of ketone, Johnson-Claisen rearrangement, and the Suzuki reaction as key steps. Au(I)-mediated diastereoselective polyene cyclization of 3b efficiently afforded tetracyclic compound 18b.
Collapse
Affiliation(s)
- Bo Keun Jeon
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - So Yong Cho
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Duck Hyung Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| |
Collapse
|
6
|
Shao F, Shen Q, Yang Z, Yang W, Lu Z, Zheng J, Zhang L, Li H. Research Progress of Natural Active Substances with Immunosuppressive Activity. Molecules 2024; 29:2359. [PMID: 38792220 PMCID: PMC11124018 DOI: 10.3390/molecules29102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The increasing prevalence of autoimmune diseases globally has prompted extensive research and the development of immunosuppressants. Currently, immunosuppressive drugs such as cyclosporine, rapamycin, and tacrolimus have been utilized in clinical practice. However, long-term use of these drugs may lead to a series of adverse effects. Therefore, there is an urgent need to explore novel drug candidates for treating autoimmune diseases. This review aims to find potential candidate molecules for natural immunosuppressive compounds derived from plants, animals, and fungi over the past decade. These compounds include terpenoids, alkaloids, phenolic compounds, flavonoids, and others. Among them, compounds 49, 151, 173, 200, 204, and 247 have excellent activity; their IC50 were less than 1 μM. A total of 109 compounds have good immunosuppressive activity, with IC50 ranging from 1 to 10 μM. These active compounds have high medicinal potential. The names, sources, structures, immunosuppressive activity, and the structure-activity relationship were summarized and analyzed.
Collapse
Affiliation(s)
- Fei Shao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Qiying Shen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Zhengfei Yang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Wenqian Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Zixiang Lu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Jie Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Liming Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Hangying Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
- Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
7
|
Xie ZX, Cui YS, Liu XH, Yao JY, He SJ, Zhou B, Yue JM. Sesquiterpenoids and Cytochalasins with Immunosuppressive Activity from Sonchus wightianus. Chem Biodivers 2024; 21:e202400256. [PMID: 38361228 DOI: 10.1002/cbdv.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
The plant species, Sonchus wightianus DC., was historically used in China for both medicinal and dietary uses. In present study, seven new guaiane sesquiterpenoids (1-7) and one cytochalasin (8), along with five known guaianes (9-13) and two known cytochalasins (14 and 15), were isolated from the whole plants of S. wightianus. These guaianes showed structural variations in the substituents at C-8 and/or C-15, and compounds 6 and 7 are two sesquiterpenoid glycoside derivatives. Their structures were determined by extensive analysis of spectroscopic, electronic circular dichroism, and X-ray diffraction data, and chemical method. Biological tests revealed that compounds 5 and 8 are potent and selective immunosuppressive reagents.
Collapse
Affiliation(s)
- Zhi-Xiang Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 xianlin Road, Nanjing, 210023, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Yong-Sheng Cui
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 xianlin Road, Nanjing, 210023, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Xi-Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 xianlin Road, Nanjing, 210023, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Jia-Ying Yao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, P. R. China
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, P. R. China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 xianlin Road, Nanjing, 210023, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| |
Collapse
|
8
|
Zhang DL, Wang Y, Liu JB, Chen Q, Li SY, Jin DJ, Tang SA. Dichapetalin-type triterpenoids from Dichapetalum longipetalum and their anti-inflammatory activity. PHYTOCHEMISTRY 2024; 217:113900. [PMID: 37898415 DOI: 10.1016/j.phytochem.2023.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
A phytochemical research on the twigs of Dichapetalum longipetalum (Turcz.) Engl. Resulted in five undescribed dichapetalin-type triterpenoids 1-5. Their chemical structures were determined by spectroscopic analysis of HR-ESIMS and NMR spectra and the absolute configuration of compound 1 was completely elucidated by single crystal X-ray crystallography. Through preliminary anti-inflammatory activity assessment, compound 1 exhibited inhibitory effect on LPS-induced NO production in RAW264.7 murine macrophages with an IC50 value of 2.09 μM.
Collapse
Affiliation(s)
- Dong-Li Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Yue Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Jing-Bo Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Qian Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Shao-Yong Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - De-Jun Jin
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 571199, PR China.
| | - Sheng-An Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China.
| |
Collapse
|
9
|
Zheng CY, Zhao JX, Yuan CH, Peng X, Geng M, Ai J, Fan YY, Yue JM. Unprecedented sesterterpenoids, orientanoids A-C: discovery, bioinspired total synthesis and antitumor immunity. Chem Sci 2023; 14:13410-13418. [PMID: 38033907 PMCID: PMC10685275 DOI: 10.1039/d3sc04238c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Sesterterpenoids are a very rare class of important natural products. Three new skeletal spiro sesterterpenoids, named orientanoids A-C (1-3), were isolated from Hedyosmum orientale. Their structures were determined by a combination of spectroscopic data, X-ray crystallography, and total synthesis. To obtain adequate materials for biological research, the bioinspired total syntheses of 1-3 were effectively achieved in 7-8 steps in overall yields of 2.3-6.4% from the commercially available santonin without using any protecting groups. In addition, this work also revised the stereochemistry of hedyosumins B (6) and C (10) as 11R-configuration. Tumor-associated macrophages (TAMs) have emerged as important therapeutic targets in cancer therapy. The in-depth biological evaluation revealed that these sesterterpenoids antagonized the protumoral and immunosuppressive functional phenotype of macrophages in vitro. Among them, the most potent and major compound 1 inhibited protumoral M2-like macrophages and activated cytotoxic CD8+ T cells, and consequently inhibited tumor growth in vivo.
Collapse
Affiliation(s)
- Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Chang-Hao Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Xia Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| |
Collapse
|
10
|
Liu HY, Zhang ZY, Zhou YK, Chen JH, Yang Z, Li YH. Synthesis towards Phainanoid F: Photo-induced 6π-Electrocyclization for Constructing Contiguous All-Carbon Quaternary Centers. Chem Asian J 2023; 18:e202300622. [PMID: 37677108 DOI: 10.1002/asia.202300622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
In this paper, we report an efficient strategy for synthesizing the DEFGH rings of phainanoid F. The key to the construction of the 13,30-cyclodammarane skeleton of the molecule was a photo-induced 6π-electrocyclization and a homoallylic elimination. Notably, this is a rare example of using electrocyclization reaction to simultaneously construct two vicinal quaternary carbons in total synthesis. The strategy outlined here forms the basis of our total synthesis of Phainanoid F, and it could also serve as a generally applicable approach for synthesizing other natural products containing similar 13,30-cyclodammarane skeletons.
Collapse
Affiliation(s)
- Hao-Yuan Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zhen-Yu Zhang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yi-Ke Zhou
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jia-Hua Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zhen Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Chemical Oncogenomic, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yuan-He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
11
|
Ji K, Liu W, Yin W, Kong X, Xu H, Lai ZW, Li JY, Yue JM. A new class of potent liver injury protective compounds: Structural elucidation, total synthesis and bioactivity study. Acta Pharm Sin B 2023; 13:3414-3424. [PMID: 37655332 PMCID: PMC10465957 DOI: 10.1016/j.apsb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 09/02/2023] Open
Abstract
A new class of potent liver injury protective compounds, phychetins A-D (1-4) featuring an unique 6/6/5/6/5 pentacyclic framework, were isolated and structurally characterized from a Chinese medicinal plant Phyllanthus franchetianus. Compounds 2-4 are three pairs of enantiomers that were initially obtained in a racemic manner, and were further separated by chiral HPLC preparation. Compounds 1-4 were proposed to be originated biosynthetically from a coexisting lignan via an intramolecular Friedel-Crafts reaction as the key step. A bioinspired total synthesis strategy was thus designated, and allowed the effective syntheses of compounds 2-4 in high yields. Some of compounds exhibited significant anti-inflammatory activities in vitro via suppressing the production of pro-inflammatory cytokine IL-1β. Notably, compound 4, the most active enantiomeric pair in vitro, displayed prominent potent protecting activity against liver injury at a low dose of 3 mg/kg in mice, which could serve as a promising lead for the development of acute liver injury therapeutic agent.
Collapse
Affiliation(s)
- Kailong Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weihang Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangrong Kong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Honghong Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zeng-Wei Lai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
12
|
Zhou JS, Yao JY, Gao Y, Liu QF, Zhou B, He SJ, Zhao JX, Yue JM. Sumatranins A-J: Lignans with Immunosuppressive Activity from Cleistanthus sumatranus. JOURNAL OF NATURAL PRODUCTS 2023; 86:1606-1614. [PMID: 37307145 DOI: 10.1021/acs.jnatprod.3c00300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemical investigation of the twigs of Cleistanthus sumatranus (Phyllanthaceae) led to the isolation of 10 undescribed lignans, sumatranins A-J (1-10). Compounds 1-4 are unprecedented furopyran lignans characterized by a unique 2,3,3a,9a-tetrahydro-4H-furo[2,3-b]chromene heterotricyclic framework. Compounds 9 and 10 are rare 9'-nor-dibenzylbutane lignans. Structures were established based on analyses of spectroscopic data, X-ray crystallographic data, and experimental ECD spectra. Immunosuppressive assays revealed compounds 3 and 9 displayed moderate inhibitory effects with good selectivity indexes against LPS-induced B lymphocyte proliferation.
Collapse
Affiliation(s)
- Jun-Su Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jia-Ying Yao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, 818 Meiling Avenue, Nanchang, Jiangxi 330004, People's Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yuan Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Qun-Fang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, People's Republic of China
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, People's Republic of China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, People's Republic of China
| |
Collapse
|
13
|
Xun L, Zhang Z, Zhou Y, Qin S, Fu S, Liu B. Stereodivergent Construction of [5,5]-Oxaspirolactones of Phainanoids. J Org Chem 2023; 88:3987-3991. [PMID: 36883240 DOI: 10.1021/acs.joc.2c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A stereodivergent synthesis of [5,5]-oxaspirolactones of phainanoids is presented herein. Through precisely tuning the inherent substitution differences on cyclopropanol, a palladium-catalyzed cascade carbonylative lactonization enables the stereodivergent synthesis of [5,5]-oxaspirolactones of phainanoids.
Collapse
Affiliation(s)
- Lizhi Xun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhijiang Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Song Qin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
14
|
Xie J, Zheng Z, Liu X, Zhang N, Choi S, He C, Dong G. Asymmetric Total Synthesis of (+)-Phainanoid A and Biological Evaluation of the Natural Product and Its Synthetic Analogues. J Am Chem Soc 2023; 145:4828-4852. [PMID: 36799470 DOI: 10.1021/jacs.2c13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Here, we report our detailed efforts toward the synthesis of phainanoids, a novel class of dammarane-type triterpenoids with potent immunosuppressive activities and unique structural features. Systematic model studies have been carried out, and efficient approaches have been established to construct the benzofuranone-based 4,5-spirocycle, the D/E/F tricyclic core, the [4.3.1] propellane, and the 5,5-oxaspirolactone moieties. The asymmetric synthesis of (+)-phainanoid A has been achieved through kinetic resolution of the tricyclic core followed by diastereoselective installation of the A/B/C and G/H rings and fragment coupling with the enantioenriched I/J rings. In addition, novel estrone-derived phainanoid analogues have been prepared. The immunosuppressive and cell survival assays revealed that (+)-phainanoid A and some of its synthetic analogues can specifically inhibit stimulation-induced lymphocyte proliferation but not cell survival at their effective concentrations. Preliminary structure-activity relationship information has been obtained, which could inspire future design of immunosuppressive phainanoid analogues.
Collapse
Affiliation(s)
- Jiaxin Xie
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Zhong Zheng
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Xin Liu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Nan Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shinyoung Choi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Zhao JX, Yue JM. Frontier studies on natural products: moving toward paradigm shifts. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Zhou B, Gao XH, Zhang MM, Liu HC, Yue JM. Dichapetalins from the Twigs of Dichapetalum longipetalum with Cytotoxic Activities. JOURNAL OF NATURAL PRODUCTS 2023; 86:209-221. [PMID: 36583957 DOI: 10.1021/acs.jnatprod.2c00971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Continued efforts to expand the structural diversity of dichapetalins and explore further the cytotoxic structure-activity relationships have led to the isolation of 17 undescribed analogues, dichapelonins A-Q (1-17), and three known compounds (18-20) from the twigs of Dichapetalum longipetalum. Compounds 1-17 comprise five compound classes as classified by varied C6-C2 conjugates at the A ring of the 13,30-cyclodammarane skeleton, and their structures were determined by spectroscopic data analysis, experimental electronic circular dichroism measurements, and X-ray crystallography. Biological tests revealed compounds 1-7 with a phenyl-butadiene appendage to be the most potent cytotoxic compound type of those evaluated.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| | - Xin-Hua Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Min-Min Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Hong-Chun Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| |
Collapse
|
17
|
Immunosuppressive steroids from the twigs and leaves of Dysoxylum hongkongense. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Xie J, Dong G. Cyclopropylcarbinyl cation chemistry in synthetic method development and natural product synthesis: cyclopropane formation and skeletal rearrangement. Org Chem Front 2023. [DOI: 10.1039/d3qo00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
In this Review, the underrecognized utilities of the cyclopropylcarbinyl cation chemistry are summarized in cyclopropane synthesis and skeletal rearrangements, and their applications in natural product total synthesis are highlighted.
Collapse
|
19
|
Zhang J, Li Y, Meng G, Lu K, Yan J, Wu J, Li P, Luo L, Chen X, Zhao X, Qiu F. SILAC-based chemoproteomics reveals a neoligan analogue as an anti-inflammatory agent targeting IRGM to ameliorate cytokine storm. Eur J Med Chem 2022; 241:114659. [PMID: 35970074 PMCID: PMC9359778 DOI: 10.1016/j.ejmech.2022.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
Cytokine storm is a key feature of sepsis and severe stage of COVID-19, and the immunosuppression after excessive immune activation is a substantial hazard to human life. Both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are recognized by various pattern recognition receptors (PRRs), which lead to the immune response. A number of neolignan analogues were synthesized in this work and showed powerful anti-inflammation properties linked to the response to innate and adaptive immunity, as well as NP-7 showed considerable anti-inflammatory activity at 100 nM. On the sepsis model caused by cecum ligation and puncture (CLP) in C57BL/6J mice, NP-7 displayed a strong regulatory influence on cytokine release. Then a photo-affinity probe of NP-7 was synthesized and chemoproteomics based on stable isotope labeling with amino acids in cell cultures (SILAC) identified Immunity-related GTPase M (IRGM) as a target suppressing cytokine storm, which was verified by competitive pull-down, cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) and molecular dynamics simulations.
Collapse
Affiliation(s)
- Jichao Zhang
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Li
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guibing Meng
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jiankun Yan
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiangpeng Wu
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengyan Li
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lingling Luo
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xi Chen
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xia Zhao
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, China.
| | - Feng Qiu
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
20
|
Cui JJ, Han YS, Zhou B, Yue JM. Ursane and 24-Noroleanane-Type Triterpenoids with Anti-HIV Activity from the Twigs and Leaves of Antirhea chinensis. Chem Biodivers 2022; 19:e202200716. [PMID: 36008326 DOI: 10.1002/cbdv.202200716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 11/11/2022]
Abstract
Investigations on the twigs and leaves of Antirhea chinensis have led to the discovery of two undescribed pentacyclic triterpenoids ( 1 and 2 ) and nine known analogues. Compounds 1 and 2 , each assigned as the ursane and 24-noroleanane-type triterpenoids, featuring similar oxidation pattern of 3 β ,6 β ,19 α -trihydroxy-28-carboxyl. Their structures were elucidated via comprehensive analyses of spectroscopic data. Compound 1 displayed potent anti-HIV activity (EC 50 = 1.24 μ M) and high selectivity index (SI > 32.3).
Collapse
Affiliation(s)
- Jiao-Jiao Cui
- Lanzhou University, College of Chemistry and Chemical Engineering, 222 South Tianshui Road, Lanzhou, CHINA
| | - Ying-Shan Han
- Lady Davis Institute for Medical Research, McGill University AIDS Centre,, Quebec H3T 1E2, Montreal, CANADA
| | - Bin Zhou
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences, State Key Laboratory of Drug Research, 555 Zuchongzhi Road, 201203, Shanghai, CHINA
| | - Jian-Min Yue
- Shanghai Institute of Materia Medica Chinese Academy of Sciences, State Key Laboratory of Drug Research, 555 Zuchongzhi Road, Shanghai 201203, Shanghai, CHINA
| |
Collapse
|
21
|
Gao X, Wang X, Zhou J, Zhang Y, Liu H, Zhou B, Yue J. Rearranged Dichapetalin‐type Triterpenoids with Cytotoxic Activity from
Dichapetalum gelonioides. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin‐Hua Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 People's Republic of China
| | - Xi‐Yuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 People's Republic of China
| | - Jun‐Su Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 People's Republic of China
| | - Hong‐Chun Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 People's Republic of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 People's Republic of China
| | - Jian‐Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- Research Units of Discovery of New Drug Lead Molecules Chinese Academy of Medical Sciences People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 People's Republic of China
| |
Collapse
|
22
|
Hui C, Wang Z, Xie Y, Liu J. Contemporary synthesis of bioactive cyclobutane natural products. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
New ent-Kaurane and cleistanthane diterpenoids with potential cytotoxicity from Phyllanthus acidus (L.) Skeels. Fitoterapia 2022; 157:105133. [PMID: 35114336 DOI: 10.1016/j.fitote.2022.105133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/20/2022]
Abstract
Six diterpenoids including three ent-kauranes (1-2, 4) and three cleistanthanes (3, 5-6) were isolated from the roots and stems of Phyllanthus acidus (L.) Skeels. Of them, (16S)-ent-16,17,18-tri-hydroxy-19-nor-kaur-4-en-3-one (1), phyllanthone A (2), and 6-hydroxycleistanthol (3) are new compounds, while the ent-kaurane diterpenoids were reported from the titled plant for the first time. Their structures were elucidated on the basis of the extensive spectroscopic analyses. Compounds 2 and 4-6 displayed cytotoxic potential with IC50 values ranging from 1.96 to 29.15 μM. They also showed moderate anti-inflammatory activities (IC50 = 6.30-12.05 μM). Particularly, the new ent-kaurane 2 displayed cytotoxic potential against HL-60 (IC50 = 2.00 μM) and MCF-7 (IC50 = 3.55 μM) cells, and anti-inflammatory activity (IC50 = 6.47 μM).
Collapse
|
24
|
Chen YJ, Xu HB, Liu H, Dong L. Highly-selective synthesis of functionalized spirobenzofuranones and diketones. Org Chem Front 2022. [DOI: 10.1039/d2qo00677d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and atom-economical rhodium(iii)-catalyzed highly-selective hydroacylation for the synthesis of spirobenzofuranones and diketones has been successfully developed.
Collapse
Affiliation(s)
- Yin-Jun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hui-Bei Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Xie J, Liu X, Zhang N, Choi S, Dong G. Bidirectional Total Synthesis of Phainanoid A via Strategic Use of Ketones. J Am Chem Soc 2021; 143:19311-19316. [PMID: 34766765 DOI: 10.1021/jacs.1c11117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the total synthesis of phainanoid A, a unique dammarane-type triterpenoid (DTT), using an unusual bidirectional synthetic strategy. It features two transition-metal-mediated highly diastereoselective transformations to access the two challenging strained ring systems that branch toward opposite directions from the tricyclic core. This work also highlights the strategic use of ketones (or enol triflates) as versatile handles for rapid growth of molecular complexity in all key transformations, which paves the way for efficient preparations of complex and biologically significant DTTs.
Collapse
Affiliation(s)
- Jiaxin Xie
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Xin Liu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Nan Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shinyoung Choi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
26
|
Sierra S, Dalmau D, Higuera S, Cortés D, Crespo O, Jimenez AI, Pop A, Silvestru C, Urriolabeitia EP. Reactivity of ( Z)-4-Aryliden-5(4 H)-thiazolones: [2 + 2]-Photocycloaddition, Ring-Opening Reactions, and Influence of the Lewis Acid BF 3. J Org Chem 2021; 86:12119-12140. [PMID: 34479406 PMCID: PMC9129068 DOI: 10.1021/acs.joc.1c01458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/29/2022]
Abstract
The irradiation of (Z)-2-phenyl-4-aryliden-5(4H)-thiazolones 2 with blue light (465 nm) in CH2Cl2 solution promotes [2 + 2]-photocycloaddition of the exocyclic C═C bonds and the formation of the dispirocyclobutanes 3. This reaction takes place with high stereoselectivity, given that the ε-isomer (1,3 head-to-tail syn coupling) is formed in more than 90% yield in most of the cases. However, irradiation of 5(4H)-thiazolones 2 with blue light (456 nm) in dry MeOH in the presence of BF3·OEt2 leads to the monospirocyclobutanes 4 with full stereoselectivity, also affording the ε-isomer. A ring-opening reaction of only one of the thiazolone rings appears to have taken place in 4 upon methanolysis, leading to the corresponding ester and thioamide groups. The treatment of free 4-aryliden-5(4H)-thiazolones 2 with a base in alcohol (NaOR/ROH) also produces a ring-opening reaction of the heterocycle by methanolysis, although, under these reaction conditions, further intramolecular S-attack at the exocyclic C(H)═C bond and cyclization is observed, forming the dihydrothiazoles 5 or 6 as mixtures of cis (RS/SR)- and trans (RR/SS)-isomers with high diastereomeric excess. trans-(RR/SS)-Dihydrothiazoles 6 can be isolated as pure diastereoisomers by column chromatography. Surprisingly, dihydrothiazoles 5 can also be obtained by the treatment of 4-aryliden-5(4H)-thiazolones 2 with BF3·OEt2 in methanol in the absence of a base.
Collapse
Affiliation(s)
- Sonia Sierra
- Instituto
de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - David Dalmau
- Instituto
de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Sheila Higuera
- Instituto
de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Darío Cortés
- Instituto
de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Olga Crespo
- Instituto
de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ana I. Jimenez
- Instituto
de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Alexandra Pop
- Supramolecular
Organic and Organometallic Chemistry Centre, Department of Chemistry,
Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Str. Arany Janos 11, 400028 Cluj−Napoca, Romania
| | - Cristian Silvestru
- Supramolecular
Organic and Organometallic Chemistry Centre, Department of Chemistry,
Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Str. Arany Janos 11, 400028 Cluj−Napoca, Romania
| | - Esteban P. Urriolabeitia
- Instituto
de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
27
|
Chen S, Zhang Z, Jiang C, Zhao C, Luo H, Huang J, Yang Z. Stereoselective Synthesis of trans-Decalin-Based Spirocarbocycles via Photocyclization of 1,2-Diketones. ACS OMEGA 2021; 6:18848-18859. [PMID: 34337224 PMCID: PMC8320103 DOI: 10.1021/acsomega.1c02054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Diastereoselective synthesis of the trans-decalin-based α-hydroxyl butanone spirocarbocycles bearing all-carbon quaternary stereogenic centers has been achieved via Norrish-Yang photocyclization of trans-decalin-substituted-2,3-butanediones using daylight. Density functional theory (DFT) calculations suggest that this diastereoselective reaction is affected by both substrate conformation and intramolecular hydrogen bonds. The developed chemistry could be applied to synthesizing the derivatives of the trans-decalin-based biologically important natural products.
Collapse
Affiliation(s)
- Sijia Chen
- State
Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate
School, Shenzhen 518055, China
| | - Zhongchao Zhang
- State
Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate
School, Shenzhen 518055, China
| | - Chongguo Jiang
- State
Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate
School, Shenzhen 518055, China
| | - Chunbo Zhao
- State
Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate
School, Shenzhen 518055, China
| | - Haojie Luo
- State
Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate
School, Shenzhen 518055, China
| | - Jun Huang
- State
Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate
School, Shenzhen 518055, China
| | - Zhen Yang
- State
Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate
School, Shenzhen 518055, China
- Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education and Beijing National Laboratory for Molecular Science
(BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Shenzhen
Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
28
|
New cytotoxic dichapetalins in the leaves of Phyllanthus acidus: Identification, quantitative analysis, and preliminary toxicity assessment. Bioorg Chem 2021; 114:105125. [PMID: 34217976 DOI: 10.1016/j.bioorg.2021.105125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022]
Abstract
The young leaves of Phyllanthus acidus (Euphorbiaceae) are commonly used as edible vegetables in Indonesia, Thailand, and India, and their water infusions as dieting aids for people trying to remain slim. However, it is regarded as a poisonous plant in Malaya, and current researches are insufficient to provide a conclusion on its toxicity and safety under large doses. In this study, we firstly found that the refined nonpolar extracts of P. acidus leaves showed significant cytotoxic effect against BEAS-2B and L02 normal cell lines with IC50 values of 2.15 and 1.64 mg/mL, respectively. Further bioactivity-guided isolation produced four new rare dichapetalins (pacidusins A-D) from the most active fraction. Their structures including absolute configurations were elucidated by extensive spectroscopic data and X-ray diffraction analysis. All the isolated dichapetalins exhibited moderate cytotoxicity against, BEAS-2B and L02 normal cell lines with IC50 values ranging from 12.44 to 22.55 μM, as well as five human cancer cell lines with IC50 values ranging from 3.38 to 22.38 μM. Furthermore, the content of the main dichapetalins in the leaves were determined by analytical HPLC, which showed that the leaves contained a very high amount of the four isolated dichapetalins with a total yield of 0.488 mg/g of dry plant material. These toxic dichapetalins may lead to adverse health effects in higher doses. Our findings indicate that the dichapetalin containing leaves may not be suitable for consumption in large quantities as food, but demonstrate their potency as anti-cancer agents for new drug discovery.
Collapse
|
29
|
Zhou B, Gao XH, Zhang MM, Zheng CY, Liu HC, Yue JM. Discovery of four modified classes of triterpenoids delineated a metabolic cascade: compound characterization and biomimetic synthesis. Chem Sci 2021; 12:9831-9838. [PMID: 34349957 PMCID: PMC8293979 DOI: 10.1039/d1sc02710g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/18/2021] [Indexed: 02/05/2023] Open
Abstract
Chemical studies on Dichapetalum gelonioides have afforded 18 highly modified complex triterpenoids belonging to four compound classes as defined by the newly adapted functional motifs associated with the A ring of the molecules. Their structures were determined by solid data acquired by diverse methods. The biosynthetic pathway for the four compound classes was rationalized via cascade modifications involving diverse chemical events. The subsequent biomimetic syntheses afforded all the desired products, including compounds 16 and 19 that were not obtained in our purification, which validated the proposed biosynthetic pathway. Besides, some compounds exhibited strong cytotoxic activities, especially 2 and 4 showed nanomolar potency against the NAMALWA tumor cell line, and a gross structure–activity relationship (SAR) of these compounds against the tested tumor cell lines was delineated. Characterization of four classes of highly modified triterpenoids from Dichapetalum gelonioides sheds light on an unprecedented biosynthetic cascade, which was validated by the subsequent biomimetic syntheses. Moreover, some isolates exhibited nanomolar cytotoxic activities.![]()
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republic of China
| | - Xin-Hua Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republic of China
| | - Min-Min Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republic of China
| | - Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republic of China
| | - Hong-Chun Liu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republic of China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republic of China
| |
Collapse
|
30
|
Dembitsky VM, Gloriozova TA, Poroikov VV. Antitumor Profile of Carbon-Bridged Steroids (CBS) and Triterpenoids. Mar Drugs 2021; 19:324. [PMID: 34205074 PMCID: PMC8228860 DOI: 10.3390/md19060324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the rare group of carbon-bridged steroids (CBS) and triterpenoids found in various natural sources such as green, yellow-green, and red algae, marine sponges, soft corals, ascidians, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in amoebas, fungi, fungal endophytes, and plants. For convenience, the presented CBS and triterpenoids are divided into four groups, which include: (a) CBS and triterpenoids containing a cyclopropane group; (b) CBS and triterpenoids with cyclopropane ring in the side chain; (c) CBS and triterpenoids containing a cyclobutane group; (d) CBS and triterpenoids containing cyclopentane, cyclohexane or cycloheptane moieties. For the comparative characterization of the antitumor profile, we have added several semi- and synthetic CBS and triterpenoids, with various additional rings, to identify possible promising sources for pharmacologists and the pharmaceutical industry. About 300 CBS and triterpenoids are presented in this review, which demonstrate a wide range of biological activities, but the most pronounced antitumor profile. The review summarizes biological activities both determined experimentally and estimated using the well-known PASS software. According to the data obtained, two-thirds of CBS and triterpenoids show moderate activity levels with a confidence level of 70 to 90%; however, one third of these lipids demonstrate strong antitumor activity with a confidence level exceeding 90%. Several CBS and triterpenoids, from different lipid groups, demonstrate selective action on different types of tumor cells such as renal cancer, sarcoma, pancreatic cancer, prostate cancer, lymphocytic leukemia, myeloid leukemia, liver cancer, and genitourinary cancer with varying degrees of confidence. In addition, the review presents graphical images of the antitumor profile of both individual CBS and triterpenoids groups and individual compounds.
Collapse
Affiliation(s)
- Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, Bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, Bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| |
Collapse
|
31
|
Yan B, Zhou M, Li J, Li X, He S, Zuo J, Sun H, Li A, Puno P. (−)‐Isoscopariusin A, a Naturally Occurring Immunosuppressive Meroditerpenoid: Structure Elucidation and Scalable Chemical Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bing‐Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Shi‐Jun He
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Ping Zuo
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Han‐Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
32
|
Yan B, Zhou M, Li J, Li X, He S, Zuo J, Sun H, Li A, Puno P. (−)‐Isoscopariusin A, a Naturally Occurring Immunosuppressive Meroditerpenoid: Structure Elucidation and Scalable Chemical Synthesis. Angew Chem Int Ed Engl 2021; 60:12859-12867. [PMID: 33620745 DOI: 10.1002/anie.202100288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Bing‐Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Shi‐Jun He
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Ping Zuo
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Han‐Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
33
|
Rozen S, Vints I, Lerner A, Hod O, Brothers EN, Moncho S. The Chemistry of Short-Lived α-Fluorocarbocations. J Org Chem 2021; 86:3882-3889. [PMID: 33615796 PMCID: PMC8023664 DOI: 10.1021/acs.joc.0c02731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The present study of the chemistry
of short-lived α-fluorocarbocations
reveals that even inactive methyl carbons can serve as nucleophiles,
attacking a cationic center. This, in turn, facilitates the synthesis
of a cyclopropane ring in certain triterpene backbones. We report
the synthesis of compounds similar to 2, containing a
bridgehead cyclopropane, and compounds of type 3 with
an 11 membered bicyclic ring consisting of two bridgehead double bonds
(anti-Bredt) within a triterpene skeleton. The synthesis involves
three unconventional chemical processes: (a) a methyl group serving
as a nucleophile; (b) the unexpected and unprecedented synthesis of
a strained system in the absence of an external neighboring trigger;
and (c) the formation of an 11-membered bicyclic diene ring within
a triterpenoid skeleton. An α-fluorocarbocation mechanism is
proposed and supported by density functional theory calculations.
Collapse
Affiliation(s)
- Shlomo Rozen
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Inna Vints
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ana Lerner
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel.,Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Oded Hod
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Edward N Brothers
- Science Program, Texas A&M University at Qatar, Education City, Doha 23874, Qatar
| | - Salvador Moncho
- Science Program, Texas A&M University at Qatar, Education City, Doha 23874, Qatar
| |
Collapse
|
34
|
Xu QQ, Zhang C, Zhang YL, Lei JL, Kong LY, Luo JG. Dimeric guaianes from leaves of Xylopia vielana as snail inhibitors identified by high content screening. Bioorg Chem 2021; 108:104646. [PMID: 33484941 DOI: 10.1016/j.bioorg.2021.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
The transcriptional repressor Snail trriggers epithelial-mesenchymal transition (EMT), the process allowing cancer cells with invasive and metastasis properties. In this study, we screened medicinal plants for the Snail inhibitory active components by high content screen (HCS) and found that the crude extract of Xylopia vielana leaves showed potential activity. Subsequently, bioassay-guided isolation of the extract of Xylopia vielana was performed to obtain twenty-four dimeric guaianes (1-24), including 16 new analogues (1-5, 8-11, 13-15, 17, 18, 21, and 22). Their structures were elucidated by the comprehensive application of multiple spectroscopic methods. Compounds 1, 11, 12, and 16 were initially identified as the active compounds. Wound healing assay, transwell migration assay and western blot experiments verified that compounds 1 and 12 inhibited the expression of Snail in a concentration-dependent manner, and compound 12 was verified as a potent tumor migration inhibitory agent. This work showed a practical strategy for the discovery of new Snail inhibitors from natural products and provided potential insights for dimeric guaianes as anticancer lead compounds specifically targeting Snail protein.
Collapse
Affiliation(s)
- Qi-Qi Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ya-Long Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jian-Li Lei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
35
|
Bhowmik A, Das S, Sarkar W, Saidalavi KM, Mishra A, Roy A, Deb I. Diastereoselective Spirocyclization via Intramolecular C(
sp
3
)−H Bond Functionalization Triggered by Sequential [1,5]‐Hydride Shift/Cyclization Process: Approach to Spiro‐tetrahydroquinolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arup Bhowmik
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Sumit Das
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
- Academy of Scientific and Innovative Research (AcSIR). Kamla Nehru Nagar 201002 Ghaziabad India
| | - Writhabrata Sarkar
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - K. M. Saidalavi
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Aniket Mishra
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Anupama Roy
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Indubhusan Deb
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
36
|
Zhou M, Peng X, Zhou J, Liu Y, Meng X, Ruan H. Triterpenoids from the stems and leaves of Schisandra incarnata. PHYTOCHEMISTRY 2020; 177:112448. [PMID: 32570050 DOI: 10.1016/j.phytochem.2020.112448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Six undescribed triterpenoids, schincarins A‒F, categorized as the preschisanartane (schincarin A), 3,4-secocycloartane (schincarins B‒D), 3,4; 9,10-disecocycloartane (schincarin E), and 3,4-secolanostane (schincarin F) classes, along with twelve known analogues, were obtained from the stems and leaves of Schisandra incarnata Stapf. Their structures were elucidated on the basis of extensive spectroscopic analyses. The absolute configuration of schincarin A was corroborated by analysis of the experimental ECD spectrum, and single-crystal X-ray diffraction with Mo Kα irradiation. Schincarin A represented the first example of preschisanartane-type triterpenoid with two oxa-bridged hemiketals. Among the selected compounds which were evaluated for immunosuppressive activities, schincarin C and kadsudilactone A showed potential inhibition against ConA-induced T-cell proliferation with IC50 values of 5.83 and 6.32 μM, and LPS-induced B cell proliferation with IC50 values of 10.21 and 11.49 μM, respectively.
Collapse
Affiliation(s)
- Ming Zhou
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Hangkonglu 13, Wuhan, 430030, People's Republic of China; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Xiaogang Peng
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Hangkonglu 13, Wuhan, 430030, People's Republic of China
| | - Jia Zhou
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Hangkonglu 13, Wuhan, 430030, People's Republic of China
| | - Ye Liu
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Hangkonglu 13, Wuhan, 430030, People's Republic of China; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Xianggao Meng
- College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Hanli Ruan
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Hangkonglu 13, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
37
|
Azizollahi H, Pérez‐Gómez M, Mehta VP, García‐López J. Synthesis of [3.4]‐Spirooxindoles through Cascade Carbopalladation of Skipped Dienes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hamid Azizollahi
- Grupo de Química OrganometálicaUniversidad de Murcia Campus de Espinardo 30100 Murcia Spain
- Department of ChemistryFaculty of ScienceFerdowsi University of Mashhad 91775-1436 Mashhad Iran
| | - Marta Pérez‐Gómez
- Grupo de Química OrganometálicaUniversidad de Murcia Campus de Espinardo 30100 Murcia Spain
| | - Vaibhav P. Mehta
- Grupo de Química OrganometálicaUniversidad de Murcia Campus de Espinardo 30100 Murcia Spain
| | | |
Collapse
|
38
|
Diastereoselective [3 + 3] cycloaddition reaction of 2-arylideneindan-1,3-diones with β-naphthols: Efficient assemble of immunosuppressive pentacyclic chromanes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Zhang DD, Xu JB, Fan YY, Gan LS, Zhang H, Yue JM. Daphnillonins A and B: Alkaloids Representing Two Unknown Carbon Skeletons from Daphniphyllum longeracemosum. J Org Chem 2020; 85:3742-3747. [PMID: 32031379 DOI: 10.1021/acs.joc.9b03310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two highly rearranged daphniphyllum alkaloids, daphnillonins A (1) and B (2), were isolated from Daphniphyllum longeracemosum and structurally characterized by a combination of diverse methods, including the calculation of electronic circular dichroism. Compound 1 possesses an unprecedented carbon architecture with a very unique 8-methyl-6-azabicyclo[3.2.1]octane moiety, and compound 2 represents a new carbon skeleton with an uncommon 7/6/5/7/5/5-fused ring system. The biosynthetic pathways for the two alkaloids were proposed with the concurrent major alkaloids as the precursors.
Collapse
Affiliation(s)
- Dong-Dong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Jin-Biao Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Li-She Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hua Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| |
Collapse
|
40
|
Abstract
This review covers newly isolated triterpenoids that have been reported during 2015.
Collapse
|
41
|
Li J, Gao K, Bian M, Ding H. Recent advances in the total synthesis of cyclobutane-containing natural products. Org Chem Front 2020. [DOI: 10.1039/c9qo01178a] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent developments of strategies on the construction of cyclobutanes and their application in complex natural product synthesis are discussed.
Collapse
Affiliation(s)
- Jinshan Li
- Institute of Medicinal Natural Products
- School of Advanced Study
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Kai Gao
- Institute of Medicinal Natural Products
- School of Advanced Study
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Ming Bian
- School of Chemistry and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P.R. China
| | - Hanfeng Ding
- Institute of Medicinal Natural Products
- School of Advanced Study
- Taizhou University
- Taizhou 318000
- P. R. China
| |
Collapse
|
42
|
Azizollahi H, Mehta VP, García-López JA. Pd-catalyzed cascade reactions involving skipped dienes: from double carbopalladation to remote C-C cleavage. Chem Commun (Camb) 2019; 55:10281-10284. [PMID: 31396607 DOI: 10.1039/c9cc04817k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two ligand-controlled cascade reactions relying on the intramolecular carbopalladation of skipped dienes. The use of a bulky monodentate phosphine ligand affords [4,5]-spirocycles via sequential double carbopalladation, however bidentate phosphines promote a remote β-C-elimination process which does not rely on the use of strained or sterically hindered substrates.
Collapse
Affiliation(s)
- Hamid Azizollahi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Mashhad, Iran
| | | | | |
Collapse
|
43
|
Zhou H, Guoruoluo Y, Tuo Y, Zhou J, Zhang H, Wang W, Xiang M, Aisa HA, Yao G. Cassiabudanols A and B, Immunostimulative Diterpenoids with a Cassiabudane Carbon Skeleton Featuring a 3-Oxatetracyclo[6.6.1.0 2,6.0 10,14]pentadecane Scaffold from Cassia Buds. Org Lett 2019; 21:549-553. [PMID: 30601013 DOI: 10.1021/acs.orglett.8b03883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two novel diterpenoids, cassiabudanols A (1) and B (2), were isolated from cassia buds. Their structures were determined by comprehensive spectroscopic analysis and single-crystal X-ray diffraction. Compounds 1 and 2 possess an unprecedented 11,14- cyclo-8,14:12,13-di- seco-isoryanodane (cassiabudane) carbon skeleton featuring a unique 3-oxatetracyclo[6.6.1.02,6.010,14]pentadecane bridged system, and their biosynthetic pathways are proposed. Compounds 1 and 2 exhibited significant immunostimulative activity, and the mode of action of 2 involves upregulating CD4+ and CD8+ T cells and downregulating Tregs.
Collapse
Affiliation(s)
- Haofeng Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Yindengzhi Guoruoluo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China.,State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry of Arid Zone , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
| | - Yali Tuo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Junfei Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Wei Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Ming Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Haji Akber Aisa
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry of Arid Zone , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
44
|
McAlpine JB, Chen SN, Kutateladze A, MacMillan JB, Appendino G, Barison A, Beniddir MA, Biavatti MW, Bluml S, Boufridi A, Butler MS, Capon RJ, Choi YH, Coppage D, Crews P, Crimmins MT, Csete M, Dewapriya P, Egan JM, Garson MJ, Genta-Jouve G, Gerwick WH, Gross H, Harper MK, Hermanto P, Hook JM, Hunter L, Jeannerat D, Ji NY, Johnson TA, Kingston DGI, Koshino H, Lee HW, Lewin G, Li J, Linington RG, Liu M, McPhail KL, Molinski TF, Moore BS, Nam JW, Neupane RP, Niemitz M, Nuzillard JM, Oberlies NH, Ocampos FMM, Pan G, Quinn RJ, Reddy DS, Renault JH, Rivera-Chávez J, Robien W, Saunders CM, Schmidt TJ, Seger C, Shen B, Steinbeck C, Stuppner H, Sturm S, Taglialatela-Scafati O, Tantillo DJ, Verpoorte R, Wang BG, Williams CM, Williams PG, Wist J, Yue JM, Zhang C, Xu Z, Simmler C, Lankin DC, Bisson J, Pauli GF. The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Nat Prod Rep 2019; 36:35-107. [PMID: 30003207 PMCID: PMC6350634 DOI: 10.1039/c7np00064b] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/20/2022]
Abstract
Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.
Collapse
Affiliation(s)
- James B McAlpine
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Shao-Nong Chen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Andrei Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - John B MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Giovanni Appendino
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Universita` del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | | | - Mehdi A Beniddir
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Stefan Bluml
- University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Asmaa Boufridi
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Young H Choi
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - David Coppage
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Michael T Crimmins
- Kenan and Caudill Laboratories of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marie Csete
- University of Southern California, Huntington Medical Research Institutes, 99 N. El Molino Ave., Pasadena, CA 91101, USA
| | - Pradeep Dewapriya
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Joseph M Egan
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Mary J Garson
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Grégory Genta-Jouve
- C-TAC, UMR 8638 CNRS, Faculté de Pharmacie de Paris, Paris-Descartes University, Sorbonne, Paris Cité, 4, Aveue de l'Observatoire, 75006 Paris, France
| | - William H Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Harald Gross
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Precilia Hermanto
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luke Hunter
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Damien Jeannerat
- University of Geneva, Department of Organic Chemistry, 30 quai E. Ansermet, CH 1211 Geneva 4, Switzerland
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China
| | - Tyler A Johnson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Guy Lewin
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Jie Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Tadeusz F Molinski
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Bradley S Moore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Joo-Won Nam
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ram P Neupane
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Matthias Niemitz
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jean-Marc Nuzillard
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Nicholas H Oberlies
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | | | - Guohui Pan
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - D Sai Reddy
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Jean-Hugues Renault
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - José Rivera-Chávez
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Wolfgang Robien
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Carla M Saunders
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Thomas J Schmidt
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Seger
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ben Shen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Steinbeck
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Hermann Stuppner
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Sonja Sturm
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Orazio Taglialatela-Scafati
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Dean J Tantillo
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Robert Verpoorte
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bin-Gui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China and Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Craig M Williams
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip G Williams
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Julien Wist
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jian-Min Yue
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Chen Zhang
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Zhengren Xu
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Charlotte Simmler
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - David C Lankin
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Jonathan Bisson
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Guido F Pauli
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| |
Collapse
|
45
|
YANG GX, MA GL, LI H, HUANG T, XIONG J, HU JF. Advanced natural products chemistry research in China between 2015 and 2017. Chin J Nat Med 2018; 16:881-906. [DOI: 10.1016/s1875-5364(18)30131-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Indexed: 10/27/2022]
|
46
|
Zhou M, Zhou J, Liu J, Liang JJ, Peng XG, Duan FF, Ruan HL. Parasubindoles A-G, Seven Eremophilanyl Indoles from the Whole Plant of Parasenecio albus. J Org Chem 2018; 83:12122-12128. [PMID: 30198718 DOI: 10.1021/acs.joc.8b02089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Parasubindoles A-G (1-7), seven eremophilanyl indoles with an unprecedented 12 H-cyclopentane[ b]naphthalenespiro-1,3'-indole skeleton, were isolated from the whole plant of Parasenecio albus. Their structures with absolute configurations were elucidated by spectroscopic methods, single-crystal X-ray diffraction, and ECD analyses. Plausible biosynthetic pathways of 1-7 were postulated.
Collapse
Affiliation(s)
- Ming Zhou
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , Huazhong University of Science and Technology , Wuhan 430030 , P. R. China
| | - Jia Zhou
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , Huazhong University of Science and Technology , Wuhan 430030 , P. R. China
| | - Junjun Liu
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , Huazhong University of Science and Technology , Wuhan 430030 , P. R. China
| | - Jing-Jing Liang
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , Huazhong University of Science and Technology , Wuhan 430030 , P. R. China
| | - Xiao-Gang Peng
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , Huazhong University of Science and Technology , Wuhan 430030 , P. R. China
| | - Fang-Fang Duan
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , Huazhong University of Science and Technology , Wuhan 430030 , P. R. China
| | - Han-Li Ruan
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , Huazhong University of Science and Technology , Wuhan 430030 , P. R. China
| |
Collapse
|
47
|
Liu Y, Yu HY, Xu HZ, Liu JJ, Meng XG, Zhou M, Ruan HL. Alkaloids with Immunosuppressive Activity from the Bark of Pausinystalia yohimbe. JOURNAL OF NATURAL PRODUCTS 2018; 81:1841-1849. [PMID: 30059216 DOI: 10.1021/acs.jnatprod.8b00324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ten new alkaloids (1-10), including two pairs of enantiomeric mixtures (5a,b and 6a,b), and 15 known analogues (11-25) were obtained from the bark of Pausinystalia yohimbe. The structures of 1-25 were established by spectroscopic methods, and the absolute configurations of compounds 1-10 were resolved by X-ray diffraction and ECD data analyses. The in vitro immunosuppressive activities of selected isolates were tested. Compounds 11 and 16 exhibited moderate inhibition with IC50 values of 16.8 and 27.6 μM against ConA-induced T lymphocyte proliferation and 13.5 and 40.5 μM against LPS-induced B lymphocyte proliferation, respectively.
Collapse
Affiliation(s)
- Ye Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
- Medical Science Research Center , Zhongnan Hospital of Wuhan University , Wuhan 430071 , People's Republic of China
| | - Heng-Yi Yu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Hong-Zhe Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jun-Jun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Xiang-Gao Meng
- College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China
| | - Ming Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Han-Li Ruan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
48
|
Phenylacetylene-bearing 3,4-seco-cleistanthane diterpenoids from the roots of Phyllanthus glaucus. Fitoterapia 2018; 128:79-85. [DOI: 10.1016/j.fitote.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 11/21/2022]
|
49
|
Kim YY, Pyun YM, Jeon BK, Lee DH. Stereoselective Synthesis of [4.3.1]Propellane Fragment of Phainanoids A-F. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yun Yeong Kim
- Department of Chemistry; Sogang University; Seoul 04107 Republic of Korea
| | - Yu Mi Pyun
- Department of Chemistry; Sogang University; Seoul 04107 Republic of Korea
| | - Bo Keun Jeon
- Department of Chemistry; Sogang University; Seoul 04107 Republic of Korea
| | - Duck-Hyung Lee
- Department of Chemistry; Sogang University; Seoul 04107 Republic of Korea
| |
Collapse
|
50
|
Liu H, Zhu G, Fan Y, Du Y, Lan M, Xu Y, Zhu W. Natural Products Research in China From 2015 to 2016. Front Chem 2018; 6:45. [PMID: 29616210 PMCID: PMC5869933 DOI: 10.3389/fchem.2018.00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
This review covers the literature published by chemists from China during the 2015-2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.
Collapse
Affiliation(s)
- Haishan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guoliang Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yaqin Fan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuqi Du
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Lan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yibo Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|