1
|
Chang CY, Aponick A. Enantioselective Synthesis of Allylic Sulfones via Rhodium-Catalyzed Direct Hydrosulfonylation of Allenes and Alkynes. J Am Chem Soc 2024; 146:16996-17002. [PMID: 38875709 DOI: 10.1021/jacs.4c05629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
A highly regio- and enantioselective hydrosulfonylation using commercially available sodium sulfinates is reported, providing the first direct asymmetric rhodium-catalyzed hydrosulfonylation of allenes/alkynes to synthesize chiral allylic sulfones. Ligand screening studies demonstrated the indispensable role of the C1-symmetric P,N-ligand (Rax,S,S)-StackPhim for achieving both high regioselecitivity (>20:1) and enantioselectivity (up to 97% ee). Notably, the operationally simple method and mild conditions allow for the rapid preparation of chiral allylic sulfones with a wide scope of functional groups. Moreover, the use of sodium tert-butyldimethylsilyloxymethanesulfinate enables the collective synthesis of various chiral sulfone derivatives after simple transformations of the protected hydroxymethyl product.
Collapse
Affiliation(s)
- Chieh-Yu Chang
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Kushwaha AK, Kamal A, Singh HK, Maury SK, Mondal T, Singh S. Photoinduced, Metal-Free Hydroacylation of Aromatic Alkynes for Synthesis of α,β-Unsaturated Ketones via C(sp 3)-H Functionalization. Org Lett 2024; 26:1416-1420. [PMID: 38329826 DOI: 10.1021/acs.orglett.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Despite the notable advancements made over the past decade in achieving carbon-carbon bonds by transition-metal-catalyzed cross-coupling processes, metal-free cross-coupling reactions for hydroacylation of aromatic alkynes via C(sp3)-H functionalization are still rare and highly desired. Here we report a metal-free reliable approach for the synthesis of α,β-unsaturated ketones (chalcones) via C(sp3)-H functionalization using MeCN:H2O as green solvent, Eosin Y as organic photocatalyst, and ambient air as oxidant. More significantly, this strategy can effectively transform a variety of methyl arenes and aromatic alkynes into the desired product. With high atom efficiency, use of green solvents, metal-free nature, environmental friendliness, and visible light as a renewable energy source, this method is compatible with biologically active molecules.
Collapse
Affiliation(s)
- Ambuj Kumar Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Arsala Kamal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Himanshu Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Suresh Kumar Maury
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Tusar Mondal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| |
Collapse
|
3
|
Adhikari P, Hazarika N, Bhattacharyya K, Das A. Chromium-Catalyzed Cross-Coupling of Methyl Ketones with Cyclic Ketones toward the Selective Synthesis of β-Branched β,γ-Unsaturated Ketones. Org Lett 2024; 26:286-291. [PMID: 38165838 DOI: 10.1021/acs.orglett.3c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Chromium-catalyzed cross-coupling of methyl ketones with cyclic ketones to β-branched β,γ-unsaturated ketones are reported. Interestingly, single-crossed aldol condensation products are formed, even in reactions in which a mixture of products is possible. The reaction is highly chemoselective and regioselective. This catalytic route gives a unique opportunity to integrate the chemistry of the synthetic challenge cross-coupling reaction of ketones and the alkene migration reaction into a reaction pot.
Collapse
Affiliation(s)
- Priyanka Adhikari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | | | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
4
|
Adhikari P, Bhattacharyya D, Deori K, Sarmah BK, Das A. Chemo- and Regioselective Catalytic Cross-Coupling Reaction of Ketones for the Synthesis of β, γ-Disubstituted β, γ-Unsaturated Ketones. Chemistry 2023:e202303206. [PMID: 38140820 DOI: 10.1002/chem.202303206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
C-C bond forming reaction of ketone with aldehyde is well-studied for the synthesis of α, β-unsaturated ketones, however, the reaction with two different ketones to unsaturated carbonyl compound has not yet been systematically studied. Probably due to the relatively low reactivity of ketones as electrophiles (aldol acceptors), its propensity for retro-aldol reaction. The reactions often suffer from unsatisfactory chemoselectivity (self- vs. crossed aldol products) and regioselectivity (thermodynamic vs. kinetic enolate). In this quest, we report here for the first time selective cross-coupling reaction of ketones to β-branched β, γ-unsaturated ketones by using ruthenium catalysis. Interestingly, single crossed aldol condensation products are formed even in reactions where a mixture of products is possible. Reaction is highly chemoselective, regioselective and produces H2 O as the only byproducts making the protocol environmentally benign. Method is compatible with a wide variety of sensitive functional group and applicable for even problematic aliphatic ketones as substrates. Notably, acetone was found as a three-carbon feedstock for the syntheses of simple β, γ-unsaturated ketone compounds. The process can further be extended to the gram-scale reaction and late-stage functionalization of natural products. With the help of DFT calculations, several control experiments, and deuterium-labeling experiments, the mechanistic finding demonstrated that initial aldol-condensation of ketones to a β, β-disubstituted α, β-unsaturated ketone, which further isomerizes to a β, γ- unsaturated ketone via η3 -allyl ruthenium complex.
Collapse
Affiliation(s)
- Priyanka Adhikari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Dipanjan Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Kritartha Deori
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
- Department of Chemistry, Sonari College, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| |
Collapse
|
5
|
Spinello BJ, Strong ZH, Ortiz E, Evarts MM, Krische MJ. Intermolecular Metal-Catalyzed C‒C Coupling of Unactivated Alcohols or Aldehydes for Convergent Ketone Construction beyond Premetalated Reagents. ACS Catal 2023; 13:10976-10987. [PMID: 38464997 PMCID: PMC10923551 DOI: 10.1021/acscatal.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Intermolecular metal-catalyzed C‒C couplings of unactivated primary alcohols or aldehydes to form ketones are catalogued. Reactions are classified on the basis of pronucleophile. Protocols involving premetalated reagents or reactants that incorporate directing groups are not covered. These methods represent an emerging alternative to classical multi-step protocols for ketone construction that exploit premetalated reagents, and/or steps devoted to redox manipulations and carboxylic acid derivatization.
Collapse
Affiliation(s)
- Brian J Spinello
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Zachary H Strong
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Maddie M Evarts
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
6
|
Min XT, Mei YK, Chen BZ, He LB, Song TT, Ji DW, Hu YC, Wan B, Chen QA. Rhodium-Catalyzed Deuterated Tsuji-Wilkinson Decarbonylation of Aldehydes with Deuterium Oxide. J Am Chem Soc 2022; 144:11081-11087. [PMID: 35709491 DOI: 10.1021/jacs.2c04422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The recent surge in the applications of deuterated drug candidates has rendered an urgent need for diverse deuterium labeling techniques. Herein, an efficient Rh-catalyzed deuterated Tsuji-Wilkinson decarbonylation of naturally available aldehydes with D2O is developed. In this reaction, D2O not only acts as a deuterated reagent and solvent but also promotes Rh-catalyzed decarbonylation. In addition, decarbonylative strategies for the synthesis of terminal monodeuterated alkenes from α,β-unsaturated aldehydes are within reach.
Collapse
Affiliation(s)
- Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong-Kang Mei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing-Zhi Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Bowen He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Bartolo ND, Demkiw KM, Read JA, Valentín EM, Yang Y, Dillon AM, Hu CT, Ward MD, Woerpel KA. Conformationally Biased Ketones React Diastereoselectively with Allylmagnesium Halides. J Org Chem 2022; 87:3042-3065. [PMID: 35167300 PMCID: PMC9022492 DOI: 10.1021/acs.joc.1c02844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The addition of the highly reactive reagent allylmagnesium halide to α-substituted acyclic chiral ketones proceeded with high stereoselectivity. The stereoselectivity cannot be analyzed by conventional stereochemical models because these reactions do not conform to the requirements of those models. Instead, the stereoselectivity arises from the approach of the nucleophile to the most accessible diastereofaces of the lowest-energy conformations of the ketones. High stereoselectivity is expected, and the stereochemical outcome can be predicted, with conformationally biased ketones that have sterically distinguishable diastereofaces wherein only one face is accessible for nucleophilic addition. The conformations of the ketones can be determined by a combination of computational modeling and, in some cases, structure determination by X-ray crystallography.
Collapse
Affiliation(s)
- Nicole D. Bartolo
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Krystyna M. Demkiw
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Jacquelyne A. Read
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | | | - Yingying Yang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Alexandra M. Dillon
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Chunhua T. Hu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Michael D. Ward
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| |
Collapse
|
8
|
Wu M, Ruan X, Han Z, Gong L. Palladium‐Catalyzed Cascade C−H Functionalization/Asymmetric Allylation Reaction of Aryl α‐Diazoamides and Allenes: Lewis Acid Makes a Difference. Chemistry 2022; 28:e202104218. [DOI: 10.1002/chem.202104218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Min‐Song Wu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Xiao‐Yun Ruan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Zhi‐Yong Han
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
9
|
Iwumene NUN, Moseley DF, Pullin RDC, Willis MC. Diverse saturated heterocycles from a hydroacylation/conjugate addition cascade. Chem Sci 2022; 13:1504-1511. [PMID: 35222935 PMCID: PMC8809418 DOI: 10.1039/d1sc06900d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Rhodium-catalyzed hydroacylation using alkynes substituted with pendant nucleophiles, delivers linear α,β-unsaturated enone intermediates with excellent regioselectivity. These adducts are used to construct a broad range of diversely substituted, saturated O-, N- and S-heterocycles in a one-pot process. Judicious choice of cyclisation conditions enabled isolation of O-heterocycles with high levels of diastereoselectivity. A variety of derivatisation reactions are also performed, generating functionalised hydroacylation products. This sequence serves as a general approach for the synthesis of fully saturated heterocycles.
Collapse
Affiliation(s)
- Ndidi U N Iwumene
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Daniel F Moseley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Robert D C Pullin
- Vertex Pharmaceuticals (Europe) Ltd 86-88 Jubilee Avenue, Milton Park Abingdon OX14 4RW UK
| | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
10
|
Ortiz E, Shezaf JZ, Chang YH, Gonçalves TP, Huang KW, Krische MJ. Understanding Halide Counterion Effects in Enantioselective Ruthenium-Catalyzed Carbonyl (α-Aryl)allylation: Alkynes as Latent Allenes and Trifluoroethanol-Enhanced Turnover in The Conversion of Ethanol to Higher Alcohols via Hydrogen Auto-transfer. J Am Chem Soc 2021; 143:16709-16717. [PMID: 34606271 PMCID: PMC8749865 DOI: 10.1021/jacs.1c07857] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystallographic characterization of RuX(CO)(η3-C3H5)(JOSIPHOS), where X = Cl, Br, or I, reveals a halide-dependent diastereomeric preference that defines metal-centered stereogenicity and, therefrom, the enantioselectivity of C-C coupling in ruthenium-catalyzed anti-diastereo- and enantioselective C-C couplings of primary alcohols with 1-aryl-1-propynes to form products of carbonyl anti-(α-aryl)allylation. Computational studies reveal that a non-classical hydrogen bond between iodide and the aldehyde formyl CH bond stabilizes the favored transition state for carbonyl addition. An improved catalytic system enabling previously unattainable transformations was developed that employs an iodide-containing precatalyst, RuI(CO)3(η3-C3H5), in combination with trifluoroethanol, as illustrated by the first enantioselective ruthenium-catalyzed C-C couplings of ethanol to form higher alcohols.
Collapse
Affiliation(s)
- Eliezer Ortiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Z Shezaf
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Hsiang Chang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Théo P Gonçalves
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Seo S, Gao M, Paffenholz E, Willis MC. Sequential Catalytic Functionalization of Aryltriazenyl Aldehydes for the Synthesis of Complex Benzenes. ACS Catal 2021; 11:6091-6098. [PMID: 34306807 PMCID: PMC8291607 DOI: 10.1021/acscatal.1c01722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Indexed: 11/29/2022]
Abstract
![]()
We demonstrate that
aryltriazenes can promote three distinctive
types of C–H functionalization reactions, allowing the preparation
of complex benzene molecules with diverse substitution patterns. 2-Triazenylbenzaldehydes
are shown to be efficient substrates for Rh(I)-catalyzed intermolecular
alkyne hydroacylation reactions. The resulting triazene-substituted
ketone products can then undergo either a Rh(III)-catalyzed C–H
activation, or an electrophilic aromatic substitution reaction, achieving
multifunctionalization of the benzene core. Subsequent triazene derivatization
provides traceless products.
Collapse
Affiliation(s)
- Sangwon Seo
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Ming Gao
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Eva Paffenholz
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Michael C. Willis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
12
|
Xiang M, Ghosh A, Krische MJ. Diastereo- and Enantioselective Ruthenium-Catalyzed C-C Coupling of 1-Arylpropynes and Alcohols: Alkynes as Chiral Allylmetal Precursors in Carbonyl anti-(α-Aryl)allylation. J Am Chem Soc 2021; 143:2838-2845. [PMID: 33555867 DOI: 10.1021/jacs.0c12242] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly tractable 1-aryl-1-propynes, which are readily accessible via Sonogashira coupling, serve as chiral allylmetal pronucleophiles in ruthenium-JOSIPHOS-catalyzed anti-diastereo- and enantioselective aldehyde (α-aryl)allylations with primary aliphatic or benzylic alcohol proelectrophiles. This method enables convergent construction of homoallylic sec-phenethyl alcohols bearing tertiary benzylic stereocenters. Both steric and electronic features of aryl sulfonic acid additives were shown to contribute to the efficiency with which a more selective and productive iodide-bound ruthenium catalyst is formed. As corroborated by isotopic labeling studies, a dual catalytic process is operative in which alkyne-to-allene isomerization is followed by allene-carbonyl reductive coupling via hydrogen auto-transfer. Crossover of ruthenium hydrides emanating from these two discrete catalytic events is observed. The utility of this method is illustrated by conversion of selected reaction products to the corresponding phenethylamines and the first total syntheses of the neolignan natural products (-)-crataegusanoids A-D.
Collapse
Affiliation(s)
- Ming Xiang
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - Ankan Ghosh
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Minami Y, Miyamoto H, Nakajima Y. Palladium/Carboxylic Acid‐catalyzed Alkenylation of Furfural and its Derivatives Using Alkynes. ChemCatChem 2021. [DOI: 10.1002/cctc.202001685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yasunori Minami
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3) National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Hitomi Miyamoto
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3) National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3) National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
14
|
Zhang S, Duan X, Li P. Access to Stereodefined Multifunctionalized β,
γ‐Unsaturated
Ketones
via
Chemo‐, Regio‐ and Diastereoselective
Copper‐Catalyzed
Diborylation of
Cross‐Conjugated
Enynones
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Xinhua Duan
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 China
- State Key Laboratory of Elemento‐Organic Chemistry, Nankai University Tianjin 300071 China
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
15
|
Kim YB, Kim D, Dighe SU, Chang S, Park JW. Cobalt-Hydride-Catalyzed Hydrosilylation of 3-Alkynes Accompanying π-Bond Migration. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yeong Bum Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Shashikant U. Dighe
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jung-Woo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
16
|
Öztürk BÖ, Sarıaslan B, Aşkun M, Tunalı Z, Şehitoğlu SK. One-pot synthesis of α,β-unsaturated ketones through sequential alkyne dimerization/hydration reactions using the Hoveyda–Grubbs catalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj02410h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of HG2/PCy3 and CCl3COOH/p-TsOH·H2O through one-pot alkyne dimerization/hydration reactions gave α,β-unsaturated ketones in quantitative yields within 2.5–4 h.
Collapse
Affiliation(s)
- Bengi Özgün Öztürk
- Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe-Ankara, Turkey
| | - Begüm Sarıaslan
- Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe-Ankara, Turkey
- Hacettepe University, Graduate School of Science and Engineering, 06800, Beytepe-Ankara, Turkey
| | - Mina Aşkun
- Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe-Ankara, Turkey
| | - Zeynep Tunalı
- Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe-Ankara, Turkey
| | | |
Collapse
|
17
|
Lee S, Lee S, Lee Y. Copper-Catalyzed Hydroalumination of Allenes with Diisobutylaluminum Hydride: Synthesis of Allylic Ketones with α-Quaternary Centers via Tandem Allylation/Oppenauer Oxidation. Org Lett 2020; 22:5806-5810. [PMID: 32654493 DOI: 10.1021/acs.orglett.0c01876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and straightforward approach to allylaluminum reagent synthesis through Cu-catalyzed hydroalumination of readily accessible allenes with diisobutylaluminum hydride is described. The N-heterocyclic carbene-based copper complex promotes hydride addition to various functionalized allenes under mild reaction conditions. The catalytic reaction is applied to a highly selective one-pot synthesis of allylic ketones with α-tertiary and α-quaternary centers through tandem nucleophilic addition of in situ-generated allylaluminums to aldehydes/Oppenauer oxidation.
Collapse
Affiliation(s)
- Sangback Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sanghyun Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
18
|
Shirai T, Iwasaki T, Kanemoto K, Yamamoto Y. Cationic Iridium/Chiral Bisphosphine‐Catalyzed Enantioselective Hydroacylation of Ketones. Chem Asian J 2020; 15:1858-1862. [DOI: 10.1002/asia.202000386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Tomohiko Shirai
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| | - Tomoya Iwasaki
- Department of Materials Science and Engineering National Institute of Technology Kochi College 200-1 Monobe otsu Nankoku Kochi 783-8508 Japan
| | - Kazuya Kanemoto
- Department of Applied Chemistry Institute of Science and Engineering Chuo University Kasuga 1–3-27 Bunkyo-ku Tokyo 112-8551 Japan
| | - Yasunori Yamamoto
- Division of Applied Chemistry and Frontier Chemistry Center (FCC) Faculty of Engineering Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
19
|
Jafarpour F, Azizzade M, Golpazir-Sorkheh Y, Navid H, Rajai-Daryasarei S. Divergent Synthesis of α-Aroyloxy Ketones and Indenones: A Controlled Domino Radical Reaction for Di- and Trifunctionalization of Alkynes. J Org Chem 2020; 85:8287-8294. [DOI: 10.1021/acs.joc.0c00967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Farnaz Jafarpour
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6619, Iran
| | - Meysam Azizzade
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6619, Iran
| | | | - Hamed Navid
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6619, Iran
| | | |
Collapse
|
20
|
Ji DW, Yang F, Chen BZ, Min XT, Kuai CS, Hu YC, Chen QA. Rhodium-catalyzed regio- and enantioselective allylic alkylation of pyrazol-5-ones with alkynes. Chem Commun (Camb) 2020; 56:8468-8471. [DOI: 10.1039/d0cc04002a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An atom-economical, regio- and enantioselective allylic alkylation of pyrazol-5-ones with alkynes was developed under rhodium catalysis.
Collapse
Affiliation(s)
- Ding-Wei Ji
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
- University of Chinese Academy of Sciences
| | - Fan Yang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Bing-Zhi Chen
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
- University of Chinese Academy of Sciences
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
- University of Chinese Academy of Sciences
| | - Chang-Sheng Kuai
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
21
|
Wang Y, Zhu J, Durham AC, Lindberg H, Wang YM. α-C–H Functionalization of π-Bonds Using Iron Complexes: Catalytic Hydroxyalkylation of Alkynes and Alkenes. J Am Chem Soc 2019; 141:19594-19599. [DOI: 10.1021/jacs.9b11716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Austin C. Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Haley Lindberg
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
22
|
Ren W, Zuo QM, Niu YN, Yang SD. Palladium-NHC-Catalyzed Allylic Alkylation of Pronucleophiles with Alkynes. Org Lett 2019; 21:7956-7960. [PMID: 31513418 DOI: 10.1021/acs.orglett.9b02937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The palladium-N-heterocyclic carbene (NHC)-catalyzed allylic alkylation of various pronucleophiles with alkynes has been accomplished under mild conditions. The protocol exhibits broad functional group compatibility and high atom economy. Moreover, the catalytic process avoids the use of external oxidants and acid as additives.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Qian-Ming Zuo
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Yan-Ning Niu
- Department of Teaching and Research , Nanjing Forestry University , Huaian 223003 , P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| |
Collapse
|
23
|
Chen J, Guo P, Zhang J, Rong J, Sun W, Jiang Y, Loh T. Synthesis of Functionalized α‐Vinyl Aldehydes from Enaminones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Pan Guo
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jianguo Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jiaxin Rong
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Wangbin Sun
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Yaojia Jiang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Teck‐Peng Loh
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637616 Singapore
| |
Collapse
|
24
|
Chen J, Guo P, Zhang J, Rong J, Sun W, Jiang Y, Loh T. Synthesis of Functionalized α‐Vinyl Aldehydes from Enaminones. Angew Chem Int Ed Engl 2019; 58:12674-12679. [DOI: 10.1002/anie.201906213] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jie Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Pan Guo
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jianguo Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jiaxin Rong
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Wangbin Sun
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Yaojia Jiang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Teck‐Peng Loh
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637616 Singapore
| |
Collapse
|
25
|
Ding W, Ho YKT, Okuda Y, Wijaya CK, Tan ZH, Yoshikai N. Cobalt-Catalyzed Hydroacylative Dimerization of Allenes Leading to Skipped Dienes. Org Lett 2019; 21:6173-6178. [PMID: 31334661 DOI: 10.1021/acs.orglett.9b02465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A cobalt-diphosphine catalyst has been found to promote a selective 1:2 coupling reaction between aldehydes and allenes to form β,δ-dialkylidene ketones, featuring skipped diene moieties, with high regioselectivities and stereoselectivities. The reaction is distinct from previously reported, rhodium-catalyzed aldehyde-allene 1:2 coupling to afford β,γ-dialkylidene ketones bearing 1,3-diene moieties. The present hydroacylative dimerization involves a unique allene/allene oxidative cyclization mode to form a C1-C2 linkage between the allene molecules.
Collapse
Affiliation(s)
- Wei Ding
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Yan King Terence Ho
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Yasuhiro Okuda
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,Department of Applied Chemistry and Biotechnology, Faculty of Engineering , Okayama University of Science , 1-1 Ridai-cho , Kita-ku , Okayama 700-0005 , Japan
| | - Christopher Kevin Wijaya
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Zheng Hao Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| |
Collapse
|
26
|
Ji DW, Hu YC, Zheng H, Zhao CY, Chen QA, Dong VM. A regioselectivity switch in Pd-catalyzed hydroallylation of alkynes. Chem Sci 2019; 10:6311-6315. [PMID: 31341584 PMCID: PMC6598511 DOI: 10.1039/c9sc01527b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
By exploiting the reactivity of a vinyl-Pd species, we control the regioselectivity in hydroallylation of alkynes under Pd-hydride catalysis. A monophosphine ligand and carboxylic acid combination promotes 1,5-dienes through a pathway involving isomerization of alkynes to allenes. In contrast, a bisphosphine ligand and copper cocatalyst favor 1,4-dienes via a mechanism that involves transmetalation. Our study highlights how to access different isomers by diverting a common organometallic intermediate.
Collapse
Affiliation(s)
- Ding-Wei Ji
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China .
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China .
| | - Hao Zheng
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China .
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chao-Yang Zhao
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China .
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China .
| | - Vy M Dong
- Department of Chemistry , University of California , Irvine , California 92697-2025 , USA
| |
Collapse
|
27
|
Alam MN, K M L, Maity P. A removable functional group strategy for regiodivergent Wittig rearrangement products. Org Biomol Chem 2019; 16:8922-8926. [PMID: 30431052 DOI: 10.1039/c8ob02221f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[1,2] and [2,3] Wittig rearrangements are competing reaction pathways, often leading to uncontrollable product distribution. We employ a single removable functional group to fulfill the dual role of attaining a reversible [2,3] and stabilizing radical intermediate for the [1,2] path to obtain both the Wittig products selectively for a broad range of substrates.
Collapse
Affiliation(s)
- Md Nirshad Alam
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India.
| | | | | |
Collapse
|
28
|
Straker RN, Formica M, Lupton JD, Niu J, Willis MC. An enamine controlling group for rhodium-catalyzed intermolecular hydroacylation. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Mechanism for Co(dppp)-catalyzed regioselective intermolecular hydroacylation of 1,3-dienes and benzaldehydes: Insights from density functional calculations. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.04.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Barwick-Silk J, Hardy S, Willis MC, Weller AS. Rh(DPEPhos)-Catalyzed Alkyne Hydroacylation Using β-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale. J Am Chem Soc 2018; 140:7347-7357. [PMID: 29763563 DOI: 10.1021/jacs.8b04086] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detailed mechanism of the hydroacylation of β-amido-aldehyde, 2,2-dimethyl-3-morpholino-3-oxopropanal, with 1-octyne using [Rh( cis-κ2-P,P-DPEPhos)(acetone)2][BArF4]-based catalysts, is described [ArF = (CF3)2C6H3]. A rich mechanistic landscape of competing and interconnected hydroacylation and cyclotrimerization processes is revealed. An acyl-hydride complex, arising from oxidative addition of aldehyde, is the persistent resting state during hydroacylation, and quaternary substitution at the β-amido-aldehyde strongly disfavors decarbonylation. Initial rate, KIE, and labeling studies suggest that the migratory insertion is turnover-limiting as well as selectivity determining for linear/branched products. When the concentration of free aldehyde approaches zero at the later stages of catalysis alkyne cyclotrimerization becomes competitive, to form trisubstituted hexylarenes. At this point, the remaining acyl-hydride turns over in hydroacylation and the free alkyne is now effectively in excess, and the resting state moves to a metallacyclopentadiene and eventually to a dormant α-pyran-bound catalyst complex. Cyclotrimerization thus only becomes competitive when there is no aldehyde present in solution, and as aldehyde binds so strongly to form acyl-hydride when this happens will directly correlate to catalyst loading: with low loadings allowing for free aldehyde to be present for longer, and thus higher selectivites to be obtained. Reducing the catalyst loading from 20 mol % to 0.5 mol % thus leads to a selectivity increase from 96% to ∼100%. An optimized hydroacylation reaction is described that delivers gram scale of product, at essentially quantitative levels, using no excess of either reagent, at very low catalyst loadings, using minimal solvent, with virtually no workup.
Collapse
Affiliation(s)
- James Barwick-Silk
- Department of Chemistry, Chemistry Research Laboratories , University of Oxford , Mansfield Road , Oxford OX1 4TA , U.K
| | - Simon Hardy
- Early Chemical Development , Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca , Macclesfield SK10 2NA , U.K
| | - Michael C Willis
- Department of Chemistry, Chemistry Research Laboratories , University of Oxford , Mansfield Road , Oxford OX1 4TA , U.K
| | - Andrew S Weller
- Department of Chemistry, Chemistry Research Laboratories , University of Oxford , Mansfield Road , Oxford OX1 4TA , U.K
| |
Collapse
|
31
|
Cera G, Lanzi M, Balestri D, Della Ca’ N, Maggi R, Bigi F, Malacria M, Maestri G. Synthesis of Carbolines via Palladium/Carboxylic Acid Joint Catalysis. Org Lett 2018; 20:3220-3224. [DOI: 10.1021/acs.orglett.8b01072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gianpiero Cera
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Matteo Lanzi
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Davide Balestri
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicola Della Ca’
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Raimondo Maggi
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Franca Bigi
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Max Malacria
- UPMC Sorbonne Université, IPCM (UMR CNRS 8232), 4 place Jussieu, C. 229, 75005 Paris, France
| | - Giovanni Maestri
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
32
|
Fang X, Zeng Y, Li Q, Wu Z, Yao H, Lin A. Redox-Neutral Atom-Economic Pd(0)-Catalyzed Dearomatization of β-Naphthols with Alkynes toward Naphthalenones. Org Lett 2018; 20:2530-2533. [DOI: 10.1021/acs.orglett.8b00662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinxin Fang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuye Zeng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zijun Wu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
33
|
|
34
|
Cruz FA, Zhu Y, Tercenio QD, Shen Z, Dong VM. Alkyne Hydroheteroarylation: Enantioselective Coupling of Indoles and Alkynes via Rh-Hydride Catalysis. J Am Chem Soc 2017; 139:10641-10644. [PMID: 28742333 PMCID: PMC6824589 DOI: 10.1021/jacs.7b05893] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report an enantioselective coupling between alkynes and indoles. A Rh-hydride catalyst isomerizes alkynes to generate a metal-allyl species that can be trapped with both aromatic and heteroaromatic nucleophiles.
Collapse
Affiliation(s)
- Faben A. Cruz
- Department of Chemistry, University of California, Irvine, CA 92697 USA
| | - Yamin Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Department of Chemistry, University of California, Irvine, CA 92697 USA
| | | | - Zengming Shen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Vy M. Dong
- Department of Chemistry, University of California, Irvine, CA 92697 USA
| |
Collapse
|
35
|
Coxon TJ, Fernández M, Barwick-Silk J, McKay AI, Britton LE, Weller AS, Willis MC. Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation. J Am Chem Soc 2017; 139:10142-10149. [DOI: 10.1021/jacs.7b05713] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Thomas J. Coxon
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - Maitane Fernández
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - James Barwick-Silk
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - Alasdair I. McKay
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - Louisa E. Britton
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - Andrew S. Weller
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - Michael C. Willis
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| |
Collapse
|
36
|
Zheng WF, Xu QJ, Kang Q. Rhodium/Lewis Acid Catalyzed Regioselective Addition of 1,3-Dicarbonyl Compounds to Internal Alkynes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wei-Feng Zheng
- Key
Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, People’s Republic of China
- College
of Materials Science and Engineering, Fujian Normal University, 8 Shangsan Road, Fuzhou 350007 People’s Republic of China
| | - Qiu-Jing Xu
- College
of Materials Science and Engineering, Fujian Normal University, 8 Shangsan Road, Fuzhou 350007 People’s Republic of China
| | - Qiang Kang
- Key
Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
37
|
Turnbull BWH, Chae J, Oliver S, Evans PA. Regio- and stereospecific rhodium-catalyzed allylic alkylation with an acyl anion equivalent: an approach to acyclic α-ternary β,γ-unsaturated aryl ketones. Chem Sci 2017; 8:4001-4005. [PMID: 28553542 PMCID: PMC5433512 DOI: 10.1039/c6sc05705e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/16/2017] [Indexed: 11/21/2022] Open
Abstract
The regio- and stereospecific rhodium-catalyzed allylic alkylation of secondary allylic carbonates with cyanohydrin pronucleophiles facilitates the direct construction of acyclic α-ternary β,γ-unsaturated aryl ketones. Interestingly, this study illustrates the impact of deaggregating agents on regiocontrol and the electronic nature of the aryl component to suppress olefin isomerization. In addition, we demonstrate that the dimethylamino substituent, which modulates the pKa of the α-ternary β,γ-unsaturated aryl ketone, provides a useful synthetic handle for further functionalization via Kumada cross-coupling of the aryl trimethylammonium salt. Finally, the stereospecific alkylation of a chiral nonracemic secondary allylic carbonate affords the enantioenriched α-ternary aryl ketone, which was employed in a formal synthesis of trichostatic acid to illustrate that the allylic alkylation proceeds with net retention of configuration.
Collapse
Affiliation(s)
- Ben W H Turnbull
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , K7L 3N6 , Ontario , Canada .
| | - Jungha Chae
- Department of Chemistry , The University of Liverpool , Crown Street , Liverpool , L69 7ZD , UK
| | - Samuel Oliver
- Department of Chemistry , The University of Liverpool , Crown Street , Liverpool , L69 7ZD , UK
| | - P Andrew Evans
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , K7L 3N6 , Ontario , Canada .
| |
Collapse
|
38
|
Wang F, Meng Q. Mechanism for ruthenium hydride-catalyzed regioselective hydroacylation of enones and aldehydes to give 1,3-diketones: Insights from density functional calculations. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Wang F, Meng Q. Theoretical Studies for Switching Regioselectivity in Ruthenium Hydride-Catalyzed Alkyne Hydroacylation. ChemistrySelect 2017. [DOI: 10.1002/slct.201601968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fen Wang
- College of Chemistry and Material Science; Shandong Agricultural University; Daizong Road No. 61. Taian Shandong 271018 China
- College of Chemistry and Chemical Engineering; Taishan University; Dongyue Road No. 525, Taian Shandong 271000 China
| | - Qingxi Meng
- College of Chemistry and Material Science; Shandong Agricultural University; Daizong Road No. 61. Taian Shandong 271018 China
| |
Collapse
|
40
|
Kim JH, Song T, Chung YK. Rhodium-Catalyzed Intermolecular Carbonylative [2 + 2 + 1] Cycloaddition of Alkynes Using Alcohol as the Carbon Monoxide Source for the Formation of Cyclopentenones. Org Lett 2017; 19:1248-1251. [PMID: 28218859 DOI: 10.1021/acs.orglett.7b00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regioselective rhodium-catalyzed intermolecular carbonylative [2 + 2 + 1] cycloaddition of alkynes using alcohol as a CO surrogate to access 4-methylene-2-cyclopenten-1-ones has been developed. In this transformation, the alcohol performs multiple roles, including generating the Rh-H intermediate, functioning as the CO source, and assisting in the isomerization of the alkyne. Alkynes can act as both the olefin and the alkyne partner in the cyclopentenone core.
Collapse
Affiliation(s)
- Ju Hyun Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University , Seoul 08826, Republic of Korea
| | - Taemoon Song
- Department of Chemistry, College of Natural Sciences, Seoul National University , Seoul 08826, Republic of Korea
| | - Young Keun Chung
- Department of Chemistry, College of Natural Sciences, Seoul National University , Seoul 08826, Republic of Korea
| |
Collapse
|
41
|
Cruz FA, Dong VM. Stereodivergent Coupling of Aldehydes and Alkynes via Synergistic Catalysis Using Rh and Jacobsen's Amine. J Am Chem Soc 2017; 139:1029-1032. [PMID: 28074655 PMCID: PMC9141309 DOI: 10.1021/jacs.6b10680] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report an enantioselective coupling between α-branched aldehydes and alkynes to generate vicinal quaternary and tertiary carbon stereocenters. The choice of Rh and organocatalyst combination allows for access to all possible stereoisomers with high enantio-, diastereo-, and regioselectivity. Our study highlights the power of catalysis to activate two common functional groups and provide access to divergent stereoisomers and constitutional structures.
Collapse
Affiliation(s)
- Faben A. Cruz
- Department of Chemistry, University of California, Irvine, California, 92697, United States
| | - Vy M. Dong
- Department of Chemistry, University of California, Irvine, California, 92697, United States
| |
Collapse
|
42
|
Fernández M, Castaing M, Willis MC. Sequential catalysis: exploiting a single rhodium(i) catalyst to promote an alkyne hydroacylation-aryl boronic acid conjugate addition sequence. Chem Sci 2017; 8:536-540. [PMID: 28451201 PMCID: PMC5351800 DOI: 10.1039/c6sc03066a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
We demonstrate that a single Rh(i) complex can promote two mechanistically distinct C-C bond-forming reactions - alkyne hydroacylation and aryl boronic acid conjugate addition - to deliver substituted ketone products from the controlled assembly of three readily available fragments. This is a rare example of a Rh(i)/Rh(iii) cycle and a redox neutral Rh(i) cycle being promoted by a single catalyst. The process is broad in scope, allowing significant variation of all three reaction components. Incorporation of an enantiomerically pure bis-phosphine ligand renders the process enantioselective. Superior levels of enantioselectivity (up to >99% ee) can be achieved from using a two catalyst system, whereby two Rh(i) complexes, one incorporating an achiral bis-phosphine ligand and the second a chiral diene ligand, are introduced at the start of the reaction sequence.
Collapse
Affiliation(s)
- Maitane Fernández
- Department of Chemistry , University of Oxford , Chemical Research Laboratory , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Matthias Castaing
- Department of Chemistry , University of Oxford , Chemical Research Laboratory , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Michael C Willis
- Department of Chemistry , University of Oxford , Chemical Research Laboratory , Mansfield Road , Oxford , OX1 3TA , UK .
| |
Collapse
|
43
|
Meng Q, Wang F. Mechanisms for nickel(0)/N-heterocyclic carbene-catalyzed intramolecular alkene hydroacylation: insights from a DFT study. J Mol Model 2016; 23:11. [PMID: 28004289 DOI: 10.1007/s00894-016-3186-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
Density functional calculations have been applied to study and elucidate nickel(0)/N-heterocyclic carbene-catalyzed intramolecular alkene hydroacylation. The calculations showed that nickel(0)-catalyzed intramolecular alkene hydroacylation involved four potential reaction channels (I, II, III, and IV), and pathway IV was predicted to be more favorable than the other three. Two pathways, I and II, had three steps (oxidative addition, hydrogen migration, reductive elimination), and the rate-determining step was hydrogen migration. Pathway III proceeded through oxidative cyclization, β-hydride elimination, and hydrogen migration, and the rate-determining step was β-hydride elimination. Pathway IV included four steps (oxidative cyclization, dimerization, β-hydride elimination, hydrogen migration), and the rate-determining step was again β-hydride elimination. Oxidative cyclization was easy and led to rapid dimerization, greatly reducing the free energy of β-hydride elimination. The binuclear nickelacycle intermediate was observed in Ogoshi's experiments, and it was identified by nuclear magnetic resonance (NMR). The dominant product was the five-membered benzocyclic ketone p1. All results agreed with Ogoshi's experiments. Graphical Abstract Nickel(0)-catalyzed intramolecular alkene hydroacylation involved four potential reaction channels. The binuclear nickelacycle intermediate was important, and the dimerization greatly reduced the free energy of the β-hydride elimination.
Collapse
Affiliation(s)
- Qingxi Meng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| | - Fen Wang
- Department of Chemistry, Taishan University, Taian, Shandong, 271021, People's Republic of China
| |
Collapse
|
44
|
Bouisseau A, Glancy J, Willis MC. Two-Component Assembly of Thiochroman-4-ones and Tetrahydrothiopyran-4-ones Using a Rhodium-Catalyzed Alkyne Hydroacylation/Thio-Conjugate-Addition Sequence. Org Lett 2016; 18:5676-5679. [PMID: 27779887 DOI: 10.1021/acs.orglett.6b02909] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
β'-Thio-substituted-enones, assembled from the combination of β-tert-butylthio-substituted aldehydes and alkynes, using rhodium catalysis, are shown to smoothly undergo in situ intramolecular S-conjugate addition to deliver a range of S-heterocycles in a one-pot process. Aryl, alkenyl, and alkyl aldehydes can all be employed, to provide thiochroman-4-ones, hexahydro-4H-thiochromen-4-ones, and tetrahydrothiopyran-4-ones, respectively. A variety of in situ oxidations are also performed, allowing access to S,S-dioxide derivatives, as well as unsaturated variants.
Collapse
Affiliation(s)
- Anaïs Bouisseau
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Mansfield Road, Oxford, OX1 3TA, U.K
| | - John Glancy
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Mansfield Road, Oxford, OX1 3TA, U.K
| | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
45
|
Bouisseau A, Gao M, Willis MC. Traceless Rhodium-Catalyzed Hydroacylation Using Alkyl Aldehydes: The Enantioselective Synthesis of β-Aryl Ketones. Chemistry 2016; 22:15624-15628. [PMID: 27666437 PMCID: PMC5396316 DOI: 10.1002/chem.201604035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 11/06/2022]
Abstract
A one-pot three-step sequence involving Rh-catalyzed alkene hydroacylation, sulfide elimination and Rh-catalyzed aryl boronic acid conjugate addition gave products of traceless chelation-controlled hydroacylation employing alkyl aldehydes. The stereodefined β-aryl ketones were obtained in good yields with excellent control of enantioselectivity. Good variation of all three reaction components is possible.
Collapse
Affiliation(s)
- Anaïs Bouisseau
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ming Gao
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
46
|
Yang C, Zhang K, Wu Z, Yao H, Lin A. Cooperative Palladium/Proline-Catalyzed Direct α-Allylic Alkylation of Ketones with Alkynes. Org Lett 2016; 18:5332-5335. [DOI: 10.1021/acs.orglett.6b02649] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chi Yang
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of
Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Kaifan Zhang
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of
Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zijun Wu
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of
Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of
Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of
Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
47
|
|
48
|
Ogiwara Y, Miyake M, Kochi T, Kakiuchi F. Syntheses of RuHCl(CO)(PAr3)3 and RuH2(CO)(PAr3)3 Containing Various Triarylphosphines and Their Use for Arylation of Sterically Congested Aromatic C–H Bonds. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00540] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yohei Ogiwara
- Department
of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Masashi Miyake
- Department
of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department
of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department
of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
49
|
Kotipalli T, Kavala V, Konala A, Janreddy D, Kuo CW, Yao CF. Reagent/Substituent Switching Approach for the Synthesis of Substituted 1,3,4-Oxadiazole/1,3,4-Oxadiazoline and 1,2,4-Triazole Derivatives from N-Substituted Hydrazides. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Trimurtulu Kotipalli
- Department of Chemistry; National Taiwan Normal University; 88, Sec. 4, Tingchow Road Taipei Taiwan 116, R.O.C
| | - Veerababurao Kavala
- Department of Chemistry; National Taiwan Normal University; 88, Sec. 4, Tingchow Road Taipei Taiwan 116, R.O.C
| | - Ashok Konala
- Department of Chemistry; National Taiwan Normal University; 88, Sec. 4, Tingchow Road Taipei Taiwan 116, R.O.C
| | - Donala Janreddy
- Department of Chemistry; National Taiwan Normal University; 88, Sec. 4, Tingchow Road Taipei Taiwan 116, R.O.C
| | - Chu-Wei Kuo
- Department of Chemistry; National Taiwan Normal University; 88, Sec. 4, Tingchow Road Taipei Taiwan 116, R.O.C
| | - Ching-Fa Yao
- Department of Chemistry; National Taiwan Normal University; 88, Sec. 4, Tingchow Road Taipei Taiwan 116, R.O.C
| |
Collapse
|
50
|
Gao S, Wu Z, Fang X, Lin A, Yao H. Palladium-Catalyzed Dearomative Allylic Alkylation of Indoles with Alkynes To Synthesize Indolenines with C3-Quarternary Centers. Org Lett 2016; 18:3906-9. [DOI: 10.1021/acs.orglett.6b01947] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shang Gao
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of
Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zijun Wu
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of
Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinxin Fang
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of
Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of
Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of
Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|