1
|
Park S, Lee K, Padmanaban S, Lee Y. Small Molecule Activation at the acriPNP Pincer-Supported Nickel Sites. Acc Chem Res 2024; 57:3093-3101. [PMID: 39373712 DOI: 10.1021/acs.accounts.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
ConspectusNickel pincer systems have recently attracted much attention for applications in various organometallic reactions and catalysis involving small molecule activation. Their exploration is in part motivated by the presence of nickel in natural systems for efficient catalysis. Among such systems, the nickel-containing metalloenzyme carbon monoxide dehydrogenase (CODH) efficiently and reversibly converts CO2 to CO at its active site. The generated CO moves through a channel from the CODH active site and is transported to a dinuclear nickel site of acetyl-coenzyme A synthase (ACS), which catalyzes organometallic C-S and C-C bond forming reactions. An analogous C-S bond activation process is also mediated by the nickel containing enzyme methyl-coenzyme M reductase (MCR). The nickel centers in these systems feature sulfur- and nitrogen-rich environments, and in the particular case of lactate racemase, an organometallic nickel pincer motif revealing a Ni-C bond is observed. These bioinorganic systems inspired the development of several nickel pincer scaffolds not only to mimic enzyme active sites and their reactivity but also to further extend low-valent organonickel chemistry. In this Account, we detail our continuing efforts in the chemistry of nickel complexes supported by acridane-based PNP pincer ligands focusing on our long-standing interest in biomimetic small molecule activation. We have employed a series of diphosphinoamide pincer ligands to prepare various nickel(II/I/0) complexes and to study the conversion of C1 chemicals such as CO and CO2 to value-added products. In the transformation of C1 chemicals, the key C-O bond cleavage and C-E bond (E = C, N, O, or S, etc.) formation steps typically require overcoming high activation barriers. Interestingly, enzymatic systems overcome such difficulties for C1 conversion and operate efficiently under ambient conditions with the use of nickel organometallic chemistry. Furthermore, we have extended our efforts to the conversion of NOx anions to NO via the sequential deoxygenation by nickel mediated carbonylation, which was applied to catalytic C-N coupling to produce industrially important organonitrogen compound oximes as a strategy for NOx conversion and utilization (NCU). Notably, the rigidified acriPNP pincer backbone that enforces a planar geometry at nickel was found to be an important factor for diversifying organometallic transformations including (a) homolysis of various σ-bonds mediated by T-shaped nickel(I) metalloradical species, (b) C-H bond activation mediated by a nickel(0) dinitrogen species, (c) selective CO2 reactivity of nickel(0)-CO species, (d) C-C bond formation at low-valent nickel(I or 0)-CO sites with iodoalkanes, and (e) catalytic deoxygenation of NOx anions and subsequent C-N coupling of a nickel-NO species with alkyl halides for oxime production. Broadly, our results highlight the importance of molecular design and the rich chemistry of organonickel species for diverse small molecule transformations.
Collapse
Affiliation(s)
- Sanha Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kunwoo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sudakar Padmanaban
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Miyazaki Y, Michigami K, Ohashi M. Isolation of Cationic η 3-Allenylnickel(II) Key Intermediate Complexes: Origins of Enantioselectivity and Regioselectivity in Nickel(0)-Catalyzed Asymmetric Propargylic Substitutions. J Am Chem Soc 2024; 146:8757-8767. [PMID: 38498989 DOI: 10.1021/jacs.4c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Herein, we report the synthesis and isolation of cationic η3-allenylnickel(II) complexes that bear rac-BINAP as a bidentate ligand for the first time via Me3SiOTf-promoted C-O bond cleavage of propargylic tert-butyl carbonate. In contrast, in the presence of the monodentate phosphine ligand PEt3, treatment of propargylic tert-butyl carbonate with Ni(cod)2 resulted in a gradual C-O bond cleavage leading to η1-allenylnickel(II) complexes, i.e., trans-(PEt3)2Ni(η1-CPh═C═CHR)(OBoc). X-ray diffraction and NMR spectroscopy studies of [(η3-RCH-CCPh)Ni(rac-BINAP)](OTf) revealed that the complex adopts an η3-allenyl coordination mode both in the crystal lattice and in solution. A thorough structural comparison between [(η3-RCH-CCPh)Ni(rac-BINAP)](OTf) and palladium and platinum analogues revealed that the η3-allenyl moiety in the nickel complex is similar to that observed in palladium and platinum complexes, albeit that each Ni-C bond is shorter than the corresponding Pd-C and Pt-C bonds due to the smaller ionic radius of nickel to that of Pd or Pt. The reactions of either N-methylaniline or sodium N-methylanilide with [(η3-RCH-CCPh)Ni((R)-BINAP)](OTf) furnished (R)-PhC≡CCH(NMePh)Me as an asymmetric propargylic substitution (APS) product with excellent enantioselectivity. Furthermore, when the nickel-catalyzed APS reaction of propargylic tert-butyl carbonate with N-methylaniline was conducted in DMSO at 60 °C in the presence of 5 mol % of [(η3-RCH-CCPh)Ni((R)-BINAP)](OTf) and 7.5 mol % of sodium N-methylanilide as a catalytic precursor and an additive, respectively, (R)-PhC≡CCH(NMePh)Me was obtained in 79% yield with 90% ee. The experimental results and computational calculations strongly suggest that the nickel-catalyzed APS reaction might proceed via a cationic η3-allenylnickel(II) species as the key reaction intermediate.
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Kenichi Michigami
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
| | - Masato Ohashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
| |
Collapse
|
3
|
Álvarez-Rodríguez L, Ríos P, Laglera-Gándara CJ, Jurado A, Fernández-de-Córdova FJ, Gunnoe TB, Rodríguez A. Cleavage of Carbon Dioxide C=O Bond Promoted by Nickel-Boron Cooperativity in a PBP-Ni Complex. Angew Chem Int Ed Engl 2023; 62:e202306315. [PMID: 37399341 DOI: 10.1002/anie.202306315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
The synthesis and characterization of (tBu PBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni-C bond of (tBu PBP)NiMe (1) is presented. An unexpected CO2 cleavage process involving the formation of new B-O and Ni-CO bonds leads to the generation of a butterfly-structured tetra-nickel cluster (tBu PBOP)2 Ni4 (μ-CO)2 (6). Mechanistic investigation of this reaction indicates a reductive scission of CO2 by O-atom transfer to the boron atom via a cooperative nickel-boron mechanism. The CO2 activation reaction produces a three-coordinate (tBu P2 BO)Ni-acyl intermediate (A) that leads to a (tBu P2 BO)-NiI complex (B) via a likely radical pathway. The NiI species is trapped by treatment with the radical trap (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) to give (tBu P2 BO)NiII (η2 -TEMPO) (7). Additionally, 13 C and 1 H NMR spectroscopy analysis using 13 C-enriched CO2 provides information about the species involved in the CO2 activation process.
Collapse
Affiliation(s)
- Lucía Álvarez-Rodríguez
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Pablo Ríos
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Carlos J Laglera-Gándara
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Andrea Jurado
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Francisco José Fernández-de-Córdova
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Amor Rodríguez
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
4
|
Lee K, Kim N, Cho KB, Lee Y. Electronic Effect on Phenoxide Migration at a Nickel(II) Center Supported by a Tridentate Bis(phosphinophenyl)phosphido Ligand. Inorg Chem 2023; 62:3007-3017. [PMID: 36753609 DOI: 10.1021/acs.inorgchem.2c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A phosphide nickel(II) phenoxide pincer complex (2) reacts with CO(g) to give a pseudo-tetrahedral nickel(0) monocarbonyl complex (3) possessing a phosphinite moiety. This metal-ligand cooperative (MLC) transformation occurs with a (PPP)Ni scaffold (PPP- = P[2-PiPr2-C6H4]2-), which can accommodate both square planar and tetrahedral geometries. The 2-electron reduction of a nickel(II) species induced by CO coordination involves group transfer to generate a P-O bond. For better mechanistic understanding, a series of nickel(II) phenolate complexes (2a-2e, XC6H4O- (X = OMe, Me, H, and CF3) and pentafluorophenolate) were prepared. Kinetic experimental data reveal that a phenolate species with an electron-withdrawing group reacts faster than those with electron-donating groups. The reaction kinetic experiments were conducted in pseudo-first order conditions at room temperature monitored by UV-vis spectroscopy. A pentafluorophenolate nickel(II) complex (2e) reveals instantaneous reactions even at -40 °C to give a nickel(0) monocarbonyl species (3e) and the reverse reaction is also possible. According to kinetic experiments, the rate determining step (RDS) would be the formation of a 5-coordinate intermediate 4 with a negative entropy value (ΔS‡ < 0), and a positive ρ value based on the Hammett plot indicates that the electron-deficient phenolate leads to a faster CO association. Furthermore, scramble experiments suggest that phenolate de-coordinates from the intermediate 4, which gives a (PPP)Ni-CO species 6. The cationic nickel monocarbonyl intermediate can possess a P--Ni(II), P•-Ni(I), or even a P+-Ni(0) character. Such an inner-sphere electron transfer is suggested when a π-acidic ligand such as CO coordinates to a metal ion. Another possible reaction is homolysis of a Ni-O bond to give P--Ni(I) or P•-Ni(0), when a phenoxyl radical is liberated. Considering the P-O bond formation, closed-shell nucleophilic and open-shell radical pathways are suggested. A phenolate pathway reveals a lower energy state for 2e relative to other complexes (2c and 2d), while its radical pathway undergoes via a higher energy state. Therefore, the formation of a P-O bond may occur with the binding of a closed-shell phenolate to the electron-deficient P center.
Collapse
Affiliation(s)
- Kunwoo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Nara Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Bruch QJ, McMillion ND, Chen CH, Miller AJM. Oxidative Addition of a Phosphinite P-O Bond at Nickel. Inorg Chem 2023; 62:2389-2393. [PMID: 36693197 DOI: 10.1021/acs.inorgchem.2c04188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Oxidative addition is an essential elementary reaction in organometallic chemistry and catalysis. While a diverse array of oxidative addition reactions has been reported to date, examples of P-O bond activation are surprisingly rare. Herein, we report the ligand-templated oxidative addition of a phosphinite P-O bond in the diphosphinito aniline compound HN(2-OPiPr2-3,5-tBu-C6H2)2 [H(P2ONO)] at Ni0 to form (PONO)Ni(HPiPr2) after proton rearrangement. Notably, the P-O cleavage occurs selectively over an amine N-H bond activation. Additionally, the ligand cannibalization is reversible, as addition of XPR2 (X = Cl, Br; R = iPr, Cy) to (PONO)Ni(HPiPr2) readily produces either symmetric or unsymmetric (P2ONO)NiX species and free HPiPr2. Finally, the mechanisms of both the initial P-O bond cleavage and its subsequent reconstruction are investigated to provide further insight into how to target P-O bond activation.
Collapse
Affiliation(s)
- Quinton J Bruch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Noah D McMillion
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
6
|
Hu C, Ding Y, Bai Y, Guo L, Cui C. Synthesis and reactivity of a μ-1,2-dinitrogen dinickel(II) complex with a C-H activated silaamidinate pincer ligand. Chem Commun (Camb) 2022; 58:13795-13798. [PMID: 36441626 DOI: 10.1039/d2cc05472h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reaction of the silaamidinate nickel bromide LSi(NAr)2NiBr2Li(thf)(OEt2) (L = PhC(NtBu)2, Ar = 2,6-iPr2C6H3, 1) with NaHBEt3 led to intramolecular C-H activation with the formation of the μ-1,2-dinitrogen dinickel pincer complex [LSi(NAr)(NAr)Ni]2(μ-1,2-N2) (Ar = 2-C(CH3)2-6-iPrC6H3, 2). Single-crystal X-ray diffraction analysis of 2 disclosed a square planar Ni(II) atom bridged by N2. Reaction of 2 with carbon monoxide and 2,6-dimethylphenyl isocyanide yielded square planar carbonyl and isocyanide complexes 3 and 4 with release of N2. These results provide new approaches for the coordination of N2 with nickel(II) species.
Collapse
Affiliation(s)
- Chaopeng Hu
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yazhou Ding
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yunping Bai
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Lulu Guo
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chunming Cui
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Drance MJ, Tanushi A, Radosevich AT. Two-Site O-H Addition to an Iridium Complex Featuring a Nonspectator Tricoordinate Phosphorus Ligand. J Am Chem Soc 2022; 144:20243-20248. [PMID: 36301929 PMCID: PMC9662588 DOI: 10.1021/jacs.2c10087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and reactivity of an ambiphilic iridium complex IrCl(PPh3)(L1) (1; L1 = P(N(o-N(2-pyridyl)C6H4)2)) featuring a chelating nontrigonal phosphorus triamide ligand is reported. The tandem Lewis basic Ir and Lewis acidic P of 1 achieve a two-site oxidative addition of phenol giving the iridaphenoxyphosphorane species IrHCl(PPh3)(L1OPh) (3'). In contrast, reactions of 1 with benzenethiol and benzeneselenol do not engage L1 and instead proceed via metal-centered oxidative addition of the chalcogen-hydrogen bond. These findings establish metal-ligand cooperation involving nonspectator reactivity of tricoordinate phosphorus ligands.
Collapse
Affiliation(s)
| | | | - Alexander T. Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Hollingsworth WM, Hill EA. Exploring the potential role of heavy pnictogen elements in ligand design for new metal-ligand cooperative chemistry. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2124863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- W. M. Hollingsworth
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - E. A. Hill
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| |
Collapse
|
9
|
Kim J. Metal complexes containing
silicon‐based
pincer ligands: Reactivity and application in small molecule activation. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jin Kim
- Department of Chemistry Sunchon National University Suncheon Jeollanam‐do Republic of Korea
| |
Collapse
|
10
|
Deziel AP, Espinosa MR, Pavlovic L, Charboneau DJ, Hazari N, Hopmann KH, Mercado BQ. Ligand and solvent effects on CO2 insertion into group 10 metal alkyl bonds. Chem Sci 2022; 13:2391-2404. [PMID: 35342547 PMCID: PMC8867079 DOI: 10.1039/d1sc06346d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The insertion of carbon dioxide into metal element σ-bonds is an important elementary step in many catalytic reactions for carbon dioxide valorization. Here, the insertion of carbon dioxide into a family of group 10 alkyl complexes of the type (RPBP)M(CH3) (RPBP = B(NCH2PR2)2C6H4−; R = Cy or tBu; M = Ni or Pd) to generate κ1-acetate complexes of the form (RPBP)M{OC(O)CH3} is investigated. This involved the preparation and characterization of a number of new complexes supported by the unusual RPBP ligand, which features a central boryl donor that exerts a strong trans-influence, and the identification of a new decomposition pathway that results in C–B bond formation. In contrast to other group 10 methyl complexes supported by pincer ligands, carbon dioxide insertion into (RPBP)M(CH3) is facile and occurs at room temperature because of the high trans-influence of the boryl donor. Given the mild conditions for carbon dioxide insertion, we perform a rare kinetic study on carbon dioxide insertion into a late-transition metal alkyl species using (tBuPBP)Pd(CH3). These studies demonstrate that the Dimroth–Reichardt parameter for a solvent correlates with the rate of carbon dioxide insertion and that Lewis acids do not promote insertion. DFT calculations indicate that insertion into (tBuPBP)M(CH3) (M = Ni or Pd) proceeds via an SE2 mechanism and we compare the reaction pathway for carbon dioxide insertion into group 10 methyl complexes with insertion into group 10 hydrides. Overall, this work provides fundamental insight that will be valuable for the development of improved and new catalysts for carbon dioxide utilization. The kinetics of carbon dioxide insertion into a pincer-supported palladium methyl complex are studied. The complex inserts carbon dioxide at room temperature, and we explore both solvent and Lewis acid effects on carbon dioxide insertion.![]()
Collapse
Affiliation(s)
- Anthony P. Deziel
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Matthew R. Espinosa
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Ljiljana Pavlovic
- Department of Chemistry, UiT The Arctic University of Norway, N-9307 Tromsø, Norway
| | - David J. Charboneau
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Kathrin H. Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, N-9307 Tromsø, Norway
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| |
Collapse
|
11
|
Lee K, Choi J, Graham PM, Lee Y. Binding of carbon monoxide at a single nickel center and its oxidative reactivity toward
CO
2
and
O
2. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kunwoo Lee
- Department of Chemistry Seoul National University Seoul South Korea
| | - Jonghoon Choi
- Department of Chemistry Seoul National University Seoul South Korea
| | - Peter M. Graham
- Department of Chemistry Saint Joseph's University Philadelphia Pennsylvania USA
| | - Yunho Lee
- Department of Chemistry Seoul National University Seoul South Korea
| |
Collapse
|
12
|
Min S, Choi J, Yoo C, Graham PM, Lee Y. Ni(0)-promoted activation of C sp2 -H and C sp2 -O bonds. Chem Sci 2021; 12:9983-9990. [PMID: 34377392 PMCID: PMC8317657 DOI: 10.1039/d1sc02210e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
A dinickel(0)-N2 complex, stabilized with a rigid acridane-based PNP pincer ligand, was studied for its ability to activate C(sp2)-H and C(sp2)-O bonds. Stabilized by a Ni-μ-N2-Na+ interaction, it activates C-H bonds of unfunctionalized arenes, affording nickel-aryl and nickel-hydride products. Concomitantly, two sodium cations get reduced to Na(0), which was identified and quantified by several methods. Our experimental results, including product analysis and kinetic measurements, strongly suggest that this C(sp2)-H activation does not follow the typical oxidative addition mechanism occurring at a low-valent single metal centre. Instead, via a bimolecular pathway, two powerfully reducing nickel ions cooperatively activate an arene C-H bond and concomitantly reduce two Lewis acidic alkali metals under ambient conditions. As a novel synthetic protocol, nickel(ii)-aryl species were directly synthesized from nickel(ii) precursors in benzene or toluene with excess Na under ambient conditions. Furthermore, when the dinickel(0)-N2 complex is accessed via reduction of the nickel(ii)-phenyl species, the resulting phenyl anion deprotonates a C-H bond of glyme or 15-crown-5 leading to C-O bond cleavage, which produces vinyl ether. The dinickel(0)-N2 species then cleaves the C(sp2)-O bond of vinyl ether to produce a nickel(ii)-vinyl complex. These results may provide a new strategy for the activation of C-H and C-O bonds mediated by a low valent nickel ion supported by a structurally rigidified ligand scaffold.
Collapse
Affiliation(s)
- Sehye Min
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jonghoon Choi
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea +82 2 880 6653
| | - Changho Yoo
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Republic of Korea
| | - Peter M Graham
- Department of Chemistry, Saint Joseph's University 5600 City Avenue Philadelphia PA 19131 USA
| | - Yunho Lee
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea +82 2 880 6653
| |
Collapse
|
13
|
Cabelof AC, Carta V, Chen C, Pink M, Caulton KG. Pincers with diverse donors and their interconversion: application to Ni(II). Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alyssa C. Cabelof
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| | - Veronica Carta
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| | - Chun‐Hsing Chen
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| | - Maren Pink
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| | - Kenneth G. Caulton
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| |
Collapse
|
14
|
Iqbal N, Lee DS, Jung H, Cho EJ. Synergistic Effects of Boron and Oxygen Interaction Enabling Nickel-Catalyzed Exogenous Base-Free Stereoselective Arylvinylation of Alkynes through Vinyl Transposition. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Naeem Iqbal
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Da Seul Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hoimin Jung
- Department of Chemistry, Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
15
|
Anafcheh M, Zahedi M. Computational Design of New Hydroborane Fullerene-Based Pincer Ligands. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Hwang SJ, Tanushi A, Radosevich AT. Enthalpy-Controlled Insertion of a "Nonspectator" Tricoordinate Phosphorus Ligand into Group 10 Transition Metal-Carbon Bonds. J Am Chem Soc 2020; 142:21285-21291. [PMID: 33306370 PMCID: PMC7806272 DOI: 10.1021/jacs.0c11161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insertion of a tricoordinate phosphorus ligand into late metal-carbon bonds is reported. Metalation of a P^P-chelating ligand (L1), composed of a nontrigonal phosphorous (i.e., P(III)) triamide moiety, P(N(o-N(Ar)C6H4)2, tethered by a phenylene linker to a -PiPr2 anchor, with group 10 complexes L2M(Me)Cl (M = Ni, Pd) results in insertion of the nontrigonal phosphorus site into the metal-methyl bond. The stable methylmetallophosphorane compounds thus formed are characterized spectroscopically and crystallographically. Metalation of L1 with (cod)PtII(Me)(Cl) does not lead to a metallophosphorane but rather to the standard bisphosphine chelate (κ2-L1)Pt(Me)(Cl). These divergent reactivities within group 10 are rationalized by reference to periodic variation in M-C bond enthalpies.
Collapse
Affiliation(s)
- Seung Jun Hwang
- Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea
| | - Akira Tanushi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Abstract
Activation of dinitrogen plays an important role in daily anthropogenic life, and the processes by which this fixation occurs have been a longstanding and significant research focus within the community. One of the major fields of dinitrogen activation research is the use of multimetallic compounds to reduce and/or activate N2 into a more useful nitrogen-atom source, such as ammonia. Here we report a comprehensive review of multimetallic-dinitrogen complexes and their utility toward N2 activation, beginning with the d-block metals from Group 4 to Group 11, then extending to Group 13 (which is exclusively populated by B complexes), and finally the rare-earth and actinide species. The review considers all polynuclear metal aggregates containing two or more metal centers in which dinitrogen is coordinated or activated (i.e., partial or complete cleavage of the N2 triple bond in the observed product). Our survey includes complexes in which mononuclear N2 complexes are used as building blocks to generate homo- or heteromultimetallic dinitrogen species, which allow one to evaluate the potential of heterometallic species for dinitrogen activation. We highlight some of the common trends throughout the periodic table, such as the differences between coordination modes as it relates to N2 activation and potential functionalization and the effect of polarizing the bridging N2 ligand by employing different metal ions of differing Lewis acidities. By providing this comprehensive treatment of polynuclear metal dinitrogen species, this Review aims to outline the past and provide potential future directions for continued research in this area.
Collapse
Affiliation(s)
- Devender Singh
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - William R. Buratto
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Juan F. Torres
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Leslie J. Murray
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
18
|
Lee K, Moore CE, Thomas CM. Synthesis of Ni(II) Complexes Supported by Tetradentate Mixed-Donor Bis(amido)/Phosphine/Phosphido Ligands by Phosphine Substituent Elimination. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyounghoon Lee
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Martínez‐Prieto LM, Cámpora J. Nickel and Palladium Complexes with Reactive σ‐Metal‐Oxygen Covalent Bonds. Isr J Chem 2020. [DOI: 10.1002/ijch.202000001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luis M. Martínez‐Prieto
- Instituto de Tecnología Química. CSIC –Universidad Politécnica de Valencia Avda. Los Naranjos, S/N 46022 Valencia Spain
| | - Juan Cámpora
- Instituto de Investigaciones Químicas, CSIC –Universidad de Sevilla. C/ Américo Vespucio, 49. 41092 Seville Spain
| |
Collapse
|
20
|
Metal-Ligand Cooperativity of Phosphorus-Containing Pincer Systems. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Abstract
Metal–ligand cooperative redox reactions and intramolecular group transfer of a P–P containing dicobalt(i) species are shown.
Collapse
Affiliation(s)
- Seji Kim
- Department of Chemistry
- KAIST
- Daejeon, 34141
- Republic of Korea
| | - Yunho Lee
- Department of Chemistry
- KAIST
- Daejeon, 34141
- Republic of Korea
| |
Collapse
|
22
|
Cleveland GT, Radosevich AT. A Nontrigonal Tricoordinate Phosphorus Ligand Exhibiting Reversible "Nonspectator" L/X-Switching. Angew Chem Int Ed Engl 2019; 58:15005-15009. [PMID: 31469492 DOI: 10.1002/anie.201909686] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 11/11/2022]
Abstract
We report here a "nonspectator" behavior for an unsupported L-function σ3 -P ligand (i.e. P{N[o-NMe-C6 H4 ]2 }, 1a) in complex with the cyclopentadienyliron dicarbonyl cation (Fp+ ). Treatment of 1a⋅Fp+ with [(Me2 N)3 S][Me3 SiF2 ] results in fluoride addition to the P-center, giving the isolable crystalline fluorometallophosphorane 1aF ⋅Fp that allows a crystallographic assessment of the variance in the Fe-P bond as a function of P-coordination number. The nonspectator reactivity of 1a⋅Fp+ is rationalized on the basis of electronic structure arguments and by comparison to trigonal analogue (Me2 N)3 P⋅Fp+ (i.e. 1b⋅Fp+ ), which is inert to fluoride addition. These observations establish a nonspectator L/X-switching in (σ3 -P)-M complexes by reversible access to higher-coordinate phosphorus ligand fragments.
Collapse
Affiliation(s)
- Gregory T Cleveland
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
23
|
Cleveland GT, Radosevich AT. A Nontrigonal Tricoordinate Phosphorus Ligand Exhibiting Reversible “Nonspectator” L/X‐Switching. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gregory T. Cleveland
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Alexander T. Radosevich
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
24
|
Kim J, Kim YE, Park K, Lee Y. A Silyl-Nickel Moiety as a Metal–Ligand Cooperative Site. Inorg Chem 2019; 58:11534-11545. [DOI: 10.1021/acs.inorgchem.9b01388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeong-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Koeun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
25
|
Synthesis and characterization of iridium hydride complexes with meso-Ph2PCH2P(Ph)CH2P(Ph)CH2PPh2 (meso-dpmppm) as an unsymmetric pincer ligand. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Martínez-Prieto LM, Palma P, Cámpora J. Monomeric alkoxide and alkylcarbonate complexes of nickel and palladium stabilized with the iPrPCP pincer ligand: a model for the catalytic carboxylation of alcohols to alkyl carbonates. Dalton Trans 2019; 48:1351-1366. [PMID: 30608093 DOI: 10.1039/c8dt04919j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monomeric alkoxo complexes of the type [(iPrPCP)M-OR] (M = Ni or Pd; R = Me, Et, CH2CH2OH; iPrPCP = 2,6-bis(diisopropylphosphino)phenyl) react rapidly with CO2 to afford the corresponding alkylcarbonates [(iPrPCP)M-OCOOR]. We have investigated the reactions of these compounds as models for key steps of catalytic synthesis of organic carbonates from alcohols and CO2. The MOCO-OR linkage is kinetically labile, and readily exchanges the OR group with water or other alcohols (R'OH), to afford equilibrium mixtures containing ROH and [(iPrPCP)M-OCOOH] (bicarbonate) or [(iPrPCP)M-OCOOR'], respectively. However, [(iPrPCP)M-OCOOR] complexes are thermally stable and remain indefinitely stable in solution when these are kept in sealed vessels. The constants for the exchange equilibria have been interpreted, showing that CO2 insertion into M-O bonds is thermodynamically more favorable for M-OR than for M-OH. Alkylcarbonate complexes [(iPrPCP)M-OCOOR] fail to undergo nucleophilic attack by ROH to yield organic carbonates ROCOOR, either intermolecularly (using neat ROH solvent) or in intramolecular fashion (e.g., [(iPrPCP)M-OCOOCH2CH2OH]). In contrast, [(iPrPCP)M-OCOOMe] complexes react with a variety of electrophilic methylating reagents (MeX) to afford dimethylcarbonate and [(iPrPCP)M-X]. The reaction rates increase in the order X = OTs < IMe ≪ OTf and Ni < Pd. These findings suggest that a suitable catalyst design should combine basic and electrophilic alcohol activation sites in order to perform alkyl carbonate syntheses via direct alcohol carboxylation.
Collapse
Affiliation(s)
- Luis M Martínez-Prieto
- Instituto de Investigaciones Químicas. CSIC-Universidad de Sevilla, C/Américo Vespucio, 49, 41092, Sevilla, Spain.
| | | | | |
Collapse
|
27
|
Poitras AM, Bezpalko MW, Foxman BM, Thomas CM. Cooperative activation of O–H and S–H bonds across the Co–P bond of an N-heterocyclic phosphido complex. Dalton Trans 2019; 48:3074-3079. [DOI: 10.1039/c8dt05052j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A cobalt N-heterocyclic phosphido complex is shown to cleave element–hydrogen bonds via a metal–phosphorus ligand cooperative pathway.
Collapse
Affiliation(s)
- Andrew M. Poitras
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | | | | | - Christine M. Thomas
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
28
|
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
29
|
Kim YE, Lee Y. A P−P Bond as a Redox Reservoir and an Active Reaction Site. Angew Chem Int Ed Engl 2018; 57:14159-14163. [PMID: 30194705 DOI: 10.1002/anie.201809122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yeong-Eun Kim
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Yunho Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
30
|
Affiliation(s)
- Yeong-Eun Kim
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Yunho Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
31
|
Bennett MA, Bhargava SK, Mirzadeh N, Privér SH. The use of [2-C 6 R 4 PPh 2 ] − (R = H, F) and related carbanions as building blocks in coordination chemistry. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
LaPierre EA, Piers WE, Gendy C. Divergent Reactivity of CO2, CO, and Related Substrates at the Nickel Carbon Double Bond of (PCcarbeneP)Ni(II) Pincer Complexes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00440] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Etienne A. LaPierre
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Warren E. Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Chris Gendy
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
33
|
Tanushi A, Radosevich AT. Insertion of a Nontrigonal Phosphorus Ligand into a Transition Metal-Hydride: Direct Access to a Metallohydrophosphorane. J Am Chem Soc 2018; 140:8114-8118. [PMID: 29923715 DOI: 10.1021/jacs.8b05156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and reactivity of an NPN-chelating ligand containing a nontrigonal phosphorous triamide center (L1 = P(N( o-N(2-pyridyl)C6H4)2) is reported. Metalation of L1 with RuCl2(PPh3)3 gives RuCl2(PPh3)(L1) (2). By contrast, metalation of L1 with RuHCl(CO)(PPh3)3 yields RuCl(CO)(PPh3)(L1H) (3), a chelated 10-P-5 ruthenahydridophosphorane, via net insertion into the Ru-H bond. Hydride abstraction from 3 with Ph3CPF6 gives [RuCl(CO)(PPh3)(L1)]PF6 (4); reaction of 4 with NaBH4 returns 3.
Collapse
Affiliation(s)
- Akira Tanushi
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Alexander T Radosevich
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
34
|
Abstract
Carbon dioxide conversion mediated by transition metal complexes continues to attract much attention because of its future potential utilization as a nontoxic and inexpensive C1 source for the chemical industry. Given the presence of nickel in natural systems that allow for extremely efficient catalysis, albeit in an Fe cluster arrangement, studies that focus on selective CO2 conversion with synthetic nickel species are currently of considerable interest in our group. In this Account, the selective conversion of CO2 to carbon monoxide occurring at a single nickel center is discussed. The chemistry is based on a series of related nickel pincer complexes with attention to the uniqueness of the coordination geometry, which is crucial in allowing for particular reactivity toward CO2. Our research is inspired by the efficient enzymatic CO2 catalysis occurring at the active site of carbon monoxide dehydrogenase. Since the binding and reactivity toward CO2 are controlled in part by the geometry of a L3Ni scaffold, we have explored the chemistry of low-valent nickel supported by PPMeP and PNP ligands, in which a pseudotetrahedral or square-planar geometry is accommodated. Two isolated nickel-CO2 adducts, (PPMeP)Ni(η2-CO2-κ C) (2) and {Na(12-C-4)2}{(PNP)Ni(η1-CO2-κ C)} (7), clearly demonstrate that the geometry of the nickel ion is crucial in the binding of CO2 and its level of activation. In the case of a square-planar nickel center supported by a PNP ligand, a series of bimetallic metallacarboxylate Ni-μ-CO2-κ C, O-M species (M = H, Na, Ni, Fe) were synthesized, and their structural features and reactivity were studied. Protonation cleaves the C-O bond, resulting in the formation of a nickel(II) monocarbonyl complex. By sequential reduction, the corresponding mono- and zero-valent Ni-CO species were produced. The reactivities of three nickel carbonyl species toward various iodoalkanes and CO2 were explored to address whether their corresponding reactivities could be controlled by the number of valence d electrons. In particular, a (PNP)Ni(0)-CO species (13) shows immediate reactivity toward CO2 but displays multiple product formation. By incorporation of a -CMe2- bridging unit, a structurally rigidified acriPNP ligand was newly designed and produced. This ligand modification was successful in preparing the T-shaped nickel(I) metalloradical species 9 exhibiting open-shell reactivity due to the sterically exposed nickel center possessing a half-filled d x2- y2 orbital. More importantly, the selective addition of CO2 to a nickel(0)-CO species was enabled to afford a nickel(II)-carboxylate species (22) with the expulsion of CO(g). Finally, the (acriPNP)Ni system provides a synthetic cycle in the study of the selective conversion of CO2 to CO that involves two-electron reduction of Ni-CO followed by the direct addition of CO2 to release the coordinated CO ligand.
Collapse
Affiliation(s)
- Changho Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeong-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
35
|
Wilkin OM, Harris N, Rooms JF, Dixon EL, Bridgeman AJ, Young NA. How Inert, Perturbing, or Interacting Are Cryogenic Matrices? A Combined Spectroscopic (Infrared, Electronic, and X-ray Absorption) and DFT Investigation of Matrix-Isolated Iron, Cobalt, Nickel, and Zinc Dibromides. J Phys Chem A 2018; 122:1994-2029. [DOI: 10.1021/acs.jpca.7b09734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Owen M. Wilkin
- Department
of Chemistry, The University of Hull, Kingston upon Hull HU6
7RX, U.K
| | - Neil Harris
- Department
of Chemistry, The University of Hull, Kingston upon Hull HU6
7RX, U.K
| | - John F. Rooms
- Department
of Chemistry, The University of Hull, Kingston upon Hull HU6
7RX, U.K
| | - Emma L. Dixon
- Department
of Chemistry, The University of Hull, Kingston upon Hull HU6
7RX, U.K
| | - Adam J. Bridgeman
- School
of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nigel A. Young
- Department
of Chemistry, The University of Hull, Kingston upon Hull HU6
7RX, U.K
| |
Collapse
|
36
|
Poitras AM, Knight SE, Bezpalko MW, Foxman BM, Thomas CM. Addition of H
2
Across a Cobalt–Phosphorus Bond. Angew Chem Int Ed Engl 2018; 57:1497-1500. [DOI: 10.1002/anie.201710100] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/30/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Andrew M. Poitras
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Sadie E. Knight
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Mark W. Bezpalko
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bruce M. Foxman
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Christine M. Thomas
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
37
|
Poitras AM, Knight SE, Bezpalko MW, Foxman BM, Thomas CM. Addition of H
2
Across a Cobalt–Phosphorus Bond. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew M. Poitras
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Sadie E. Knight
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Mark W. Bezpalko
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bruce M. Foxman
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Christine M. Thomas
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
38
|
Kosanovich AJ, Jordan AM, Bhuvanesh N, Ozerov OV. Synthesis and characterization of rhodium, iridium, and palladium complexes of a diarylamido-based PNSb pincer ligand. Dalton Trans 2018; 47:11619-11624. [DOI: 10.1039/c8dt02207k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new diarylmido-based pincer proto ligand (iPrPNHSbPh) with one –PPri2 and one –SbPh2 side donor has been synthesized.
Collapse
Affiliation(s)
| | - Aldo M. Jordan
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Oleg. V. Ozerov
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| |
Collapse
|
39
|
Zhang A, Raje S, Liu J, Li X, Angamuthu R, Tung CH, Wang W. Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ailing Zhang
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Sakthi Raje
- Laboratory
of Inorganic Synthesis and Bioinspired Catalysis (LISBIC), Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jianguo Liu
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Xiaoyan Li
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Raja Angamuthu
- Laboratory
of Inorganic Synthesis and Bioinspired Catalysis (LISBIC), Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chen-Ho Tung
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Wenguang Wang
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan 250100, China
| |
Collapse
|
40
|
Kim J, Park K, Lee Y. Synthesis and characterization of a four-coordinate nickel carbamato species (MeSiP i Pr 2 )Ni(OC(O)NHMes) generated from the reaction of (MeSiP i Pr 2 )Ni(NHMes) with CO 2. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.08.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Oh S, Kim S, Lee D, Gwak J, Lee Y. Alkoxide Migration at a Nickel(II) Center Induced by a π-Acidic Ligand: Migratory Insertion versus Metal–Ligand Cooperation. Inorg Chem 2016; 55:12863-12871. [DOI: 10.1021/acs.inorgchem.6b02226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Seohee Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seji Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Dayoung Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jinseong Gwak
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
42
|
Charboneau DJ, Balcells D, Hazari N, Lant HMC, Mayer JM, Melvin PR, Mercado BQ, Morris WD, Repisky M, Suh HW. Dinitrogen-Facilitated Reversible Formation of a Si–H Bond in a Pincer-Supported Ni Complex. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00514] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David J. Charboneau
- The
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - David Balcells
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315 Oslo, Norway
| | - Nilay Hazari
- The
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Hannah M. C. Lant
- The
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - James M. Mayer
- The
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Patrick R. Melvin
- The
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- The
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley D. Morris
- The
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Michal Repisky
- Centre
for Theoretical and Computational Chemistry (CTCC), University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hee-Won Suh
- The
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
43
|
Chiou TW, Tseng YM, Lu TT, Weng TC, Sokaras D, Ho WC, Kuo TS, Jang LY, Lee JF, Liaw WF. [Ni III(OMe)]-mediated reductive activation of CO 2 affording a Ni(κ 1-OCO) complex. Chem Sci 2016; 7:3640-3644. [PMID: 30008996 PMCID: PMC6008733 DOI: 10.1039/c5sc04652a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/16/2016] [Indexed: 11/21/2022] Open
Abstract
We report a novel pathway for the reductive activation of CO2 by the [NiIII(OMe)(P(C6H3-3-SiMe3-2-S)3)]– complex, yielding the [NiIII(κ1-OCO˙–)(P(C6H3-3-SiMe3-2-S)3)]– complex.
Carbon dioxide is expected to be employed as an inexpensive and potential feedstock of C1 sources for the mass production of valuable chemicals and fuel. Versatile chemical transformations of CO2, i.e. insertion of CO2 producing bicarbonate/acetate/formate, cleavage of CO2 yielding μ-CO/μ-oxo transition-metal complexes, and electrocatalytic reduction of CO2 affording CO/HCOOH/CH3OH/CH4/C2H4/oxalate were well documented. Herein, we report a novel pathway for the reductive activation of CO2 by the [NiIII(OMe)(P(C6H3-3-SiMe3-2-S)3)]– complex, yielding the [NiIII(κ1-OCO˙–)(P(C6H3-3-SiMe3-2-S)3)]– complex. The formation of this unusual NiIII(κ1-OCO˙–) complex was characterized by single-crystal X-ray diffraction, EPR, IR, SQUID, Ni/S K-edge X-ray absorption spectroscopy, and Ni valence-to-core X-ray emission spectroscopy. The inertness of the analogous complexes [NiIII(SPh)], [NiII(CO)], and [NiII(N2H4)] toward CO2, in contrast, demonstrates that the ionic [NiIII(OMe)] core attracts the binding of weak σ-donor CO2 and triggers the subsequent reduction of CO2 by the nucleophilic [OMe]– in the immediate vicinity. This metal–ligand cooperative activation of CO2 may open a novel pathway promoting the subsequent incorporation of CO2 in the buildup of functionalized products.
Collapse
Affiliation(s)
- Tzung-Wen Chiou
- Department of Chemistry , National Tsing Hua University , Hsinchu , 30013 , Taiwan . ;
| | - Yen-Ming Tseng
- Department of Chemistry , National Tsing Hua University , Hsinchu , 30013 , Taiwan . ;
| | - Tsai-Te Lu
- Department of Chemistry , Chung Yuan Christian University , Taoyuan , 32023 , Taiwan
| | - Tsu-Chien Weng
- SLAC National Accelerator Laboratory , Menlo Park , CA 94025 , USA
| | | | - Wei-Chieh Ho
- Department of Chemistry , National Tsing Hua University , Hsinchu , 30013 , Taiwan . ;
| | - Ting-Shen Kuo
- Department of Chemistry , National Taiwan Normal University , Taipei , 10610 , Taiwan
| | - Ling-Yun Jang
- National Synchrotron Radiation Research Center , Hsinchu , 30013 , Taiwan
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center , Hsinchu , 30013 , Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry , National Tsing Hua University , Hsinchu , 30013 , Taiwan . ;
| |
Collapse
|
44
|
Oh S, Lee Y. Reversible Intramolecular P–S Bond Formation Coupled with a Ni(0)/Ni(II) Redox Process. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seohee Oh
- Department
of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunho Lee
- Department
of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
45
|
Shih WC, Gu W, MacInnis MC, Timpa SD, Bhuvanesh N, Zhou J, Ozerov OV. Facile Insertion of Rh and Ir into a Boron-Phenyl Bond, Leading to Boryl/Bis(phosphine) PBP Pincer Complexes. J Am Chem Soc 2016; 138:2086-9. [PMID: 26824249 DOI: 10.1021/jacs.5b11706] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unexpectedly facile insertion of Rh or Ir into a B-Ph bond (reversible for Rh) converts a borane/bis(phosphine) precursor into a boryl/bis(phosphine) PBP pincer ligand. Interconversions between the boryl/borane/borate central functionality are demonstrated in reactions with dihydrogen.
Collapse
Affiliation(s)
- Wei-Chun Shih
- Department of Chemistry, Texas A&M University , College Station, Texas 77842, United States
| | - Weixing Gu
- Department of Chemistry, Texas A&M University , College Station, Texas 77842, United States
| | - Morgan C MacInnis
- Department of Chemistry, Texas A&M University , College Station, Texas 77842, United States
| | - Samuel D Timpa
- Department of Chemistry, Texas A&M University , College Station, Texas 77842, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University , College Station, Texas 77842, United States
| | - Jia Zhou
- Department of Chemistry, Harbin Institute of Technology , Harbin 150001, China
| | - Oleg V Ozerov
- Department of Chemistry, Texas A&M University , College Station, Texas 77842, United States
| |
Collapse
|
46
|
Cowie BE, Emslie DJH. Nickel and Palladium Complexes of Ferrocene-Backbone Bisphosphine-Borane and Trisphosphine Ligands. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bradley E. Cowie
- Department of Chemistry and
Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - David J. H. Emslie
- Department of Chemistry and
Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|