1
|
Malikidogo KP, Charnay T, Ndiaye D, Choi JH, Bridou L, Chartier B, Erbek S, Micouin G, Banyasz A, Maury O, Martel-Frachet V, Grichine A, Sénèque O. Efficient cytosolic delivery of luminescent lanthanide bioprobes in live cells for two-photon microscopy. Chem Sci 2024; 15:9694-9702. [PMID: 38939128 PMCID: PMC11206396 DOI: 10.1039/d4sc00896k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
Lanthanide(iii) (Ln3+) complexes have desirable photophysical properties for optical bioimaging. However, despite their advantages over organic dyes, their use for microscopy imaging is limited by the high-energy UV excitation they require and their poor ability to cross the cell membrane and reach the cytosol. Here we describe a novel family of lanthanide-based luminescent probes, termed dTAT[Ln·L], based on (i) a DOTA-like chelator with a picolinate moiety, (ii) a two-photon absorbing antenna to shift the excitation to the near infrared and (ii) a dimeric TAT cell-penetrating peptide for cytosolic delivery. Several Tb3+ and Eu3+ probes were prepared and characterized. Two-photon microscopy of live cells was attempted using a commercial microscope with the three probes showing the highest quantum yields (>0.15). A diffuse Ln3+ emission was detected in most cells, which is characteristic of cytosolic delivery of the Ln3+ complex. The cytotoxicity of these three probes was evaluated and the IC50 ranged from 7 μM to >50 μM. The addition of a single positive or negative charge to the antenna of the most cytotoxic compound was sufficient to lower significantly or suppress its toxicity under the conditions used for two-photon microscopy. Therefore, the design reported here provides excellent lanthanide-based probes for two-photon microscopy of living cells.
Collapse
Affiliation(s)
- Kyangwi P Malikidogo
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250) F-38000 Grenoble France
| | - Thibault Charnay
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250) F-38000 Grenoble France
| | - Daouda Ndiaye
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
| | - Ji-Hyung Choi
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
| | - Lucile Bridou
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie Lyon F-69342 France
| | - Baptiste Chartier
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
| | - Sule Erbek
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences F-38000 Grenoble France
- EPHE, PSL Research University 4-14 rue Ferrus 75014 Paris France
| | - Guillaume Micouin
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie Lyon F-69342 France
| | - Akos Banyasz
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie Lyon F-69342 France
| | - Olivier Maury
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie Lyon F-69342 France
| | - Véronique Martel-Frachet
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences F-38000 Grenoble France
- EPHE, PSL Research University 4-14 rue Ferrus 75014 Paris France
| | - Alexei Grichine
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences F-38000 Grenoble France
| | - Olivier Sénèque
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
| |
Collapse
|
2
|
Serulla M, Anees P, Hallaj A, Trofimenko E, Kalia T, Krishnan Y, Widmann C. Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides. Eur J Pharm Biopharm 2023; 184:116-124. [PMID: 36709921 DOI: 10.1016/j.ejpb.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Cell-penetrating peptides (CPPs) are short (<30 amino acids), generally cationic, peptides that deliver diverse cargos into cells. CPPs access the cytosol either by direct translocation through the plasma membrane or via endocytosis followed by endosomal escape. Both direct translocation and endosomal escape can occur simultaneously, making it non-trivial to specifically study endosomal escape alone. Here we depolarize the plasma membrane and showed that it inhibits the direct translocation of several CPPs but does not affect their uptake into endosomes. Despite good endocytic uptake many CPPs previously considered to access the cytosol via endosomal escape, failed to access the cytosol once direct translocation was abrogated. Even CPPs designed for enhanced endosomal escape actually showed negligible endosomal escape into the cytosol. Our data reveal that cytosolic localization of CPPs occurs mainly by direct translocation across the plasma membrane. Cell depolarization represents a simple manipulation to stringently test the endosomal escape capacity of CPPs.
Collapse
Affiliation(s)
- Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Ali Hallaj
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Tara Kalia
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
3
|
Voltà-Durán E, Parladé E, Serna N, Villaverde A, Vazquez E, Unzueta U. Endosomal escape for cell-targeted proteins. Going out after going in. Biotechnol Adv 2023; 63:108103. [PMID: 36702197 DOI: 10.1016/j.biotechadv.2023.108103] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Protein-based nanocarriers are versatile and biocompatible drug delivery systems. They are of particular interest in nanomedicine as they can recruit multiple functions in a single modular polypeptide. Many cell-targeting peptides or protein domains can promote cell uptake when included in these nanoparticles through receptor-mediated endocytosis. In that way, targeting drugs to specific cell receptors allows a selective intracellular delivery process, avoiding potential side effects of the payload. However, once internalized, the endo-lysosomal route taken by the engulfed material usually results in full degradation, preventing their adequate subcellular localization, bioavailability and subsequent therapeutic effect. Thus, entrapment into endo-lysosomes is a main bottleneck in the efficacy of protein-drug nanomedicines. Promoting endosomal escape and preventing lysosomal degradation would make this therapeutic approach clinically plausible. In this review, we discuss the mechanisms intended to evade lysosomal degradation of proteins, with the most relevant examples and associated strategies, and the methods available to measure that effect. In addition, based on the increasing catalogue of peptide domains tailored to face this challenge as components of protein nanocarriers, we emphasize how their particular mechanisms of action can potentially alter the functionality of accompanying protein materials, especially in terms of targeting and specificity in the delivery process.
Collapse
Affiliation(s)
- Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.
| |
Collapse
|
4
|
Okano S, Kawaguchi Y, Kawano K, Hirose H, Imanishi M, Futaki S. Split luciferase-based estimation of cytosolic cargo concentration delivered intracellularly via attenuated cationic amphiphilic lytic peptides. Bioorg Med Chem Lett 2022; 72:128875. [DOI: 10.1016/j.bmcl.2022.128875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
|
5
|
Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022; 12:e822. [PMID: 35593206 PMCID: PMC9121317 DOI: 10.1002/ctm2.822] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.
Collapse
Affiliation(s)
- Meiling Zhou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xi Zou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Kexin Cheng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bin Yan
- Department of Pathology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
6
|
Tanaka H, Akita H. Molecular Design of In-cell Environment-responsive Lipid Like Materials for the Control of Intracellular Trafficking and Collapse. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hidetaka Akita
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
7
|
Tanaka H, Takata N, Sakurai Y, Yoshida T, Inoue T, Tamagawa S, Nakai Y, Tange K, Yoshioka H, Maeki M, Tokeshi M, Akita H. Delivery of Oligonucleotides Using a Self-Degradable Lipid-Like Material. Pharmaceutics 2021; 13:pharmaceutics13040544. [PMID: 33924589 PMCID: PMC8070490 DOI: 10.3390/pharmaceutics13040544] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
The world-first success of lipid nanoparticle (LNP)-based siRNA therapeutics (ONPATTRO®) promises to accelerate developments in siRNA therapeutics/gene therapy using LNP-type drug delivery systems (DDS). In this study, we explore the optimal composition of an LNP containing a self-degradable material (ssPalmO-Phe) for the delivery of oligonucleotides. siRNA or antisense oligonucleotides (ASO) were encapsulated in LNP with different lipid compositions. The hepatic knockdown efficiency of the target genes and liver toxicity were evaluated. The optimal compositions for the siRNA were different from those for ASO, and different from those for mRNA that were reported in a previous study. Extracellular stability, endosomal escape and cellular uptake appear to be the key processes for the successful delivery of mRNA, siRNA and ASO, respectively. Moreover, the compositions of the LNPs likely contribute to their toxicity. The lipid composition of the LNP needs to be optimized depending on the type of nucleic acids under consideration if the applications of LNPs are to be further expanded.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-0856, Japan; (H.T.); (N.T.); (Y.S.)
| | - Nae Takata
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-0856, Japan; (H.T.); (N.T.); (Y.S.)
| | - Yu Sakurai
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-0856, Japan; (H.T.); (N.T.); (Y.S.)
| | - Tokuyuki Yoshida
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan; (T.Y.); (T.I.)
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan; (T.Y.); (T.I.)
| | - Shinya Tamagawa
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City, Kanagawa 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Yuta Nakai
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City, Kanagawa 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Kota Tange
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City, Kanagawa 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Hiroki Yoshioka
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City, Kanagawa 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan; (M.M.); (M.T.)
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan; (M.M.); (M.T.)
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-0856, Japan; (H.T.); (N.T.); (Y.S.)
- Correspondence: ; Tel.: +81-43-226-2893
| |
Collapse
|
8
|
Sánchez-Navarro M. Advances in peptide-mediated cytosolic delivery of proteins. Adv Drug Deliv Rev 2021; 171:187-198. [PMID: 33561452 DOI: 10.1016/j.addr.2021.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
The number of protein-based drugs is exponentially increasing. However, development of protein therapeutics against intracellular targets is hampered by the lack of efficient cytosolic delivery strategies. In recent years, the use of cell-penetrating peptides has been proposed as a strategy to promote protein internalization. In this article, we provide the reader with a succinct update on the strategies exploited to enable peptide-mediated cytosolic delivery of proteins. First, we analyse the various methods available for delivery. We then describe the most popular and the in vitro assays designed to assess the intracellular distribution of protein cargo.
Collapse
|
9
|
Tanaka H, Sakurai Y, Anindita J, Akita H. Development of lipid-like materials for RNA delivery based on intracellular environment-responsive membrane destabilization and spontaneous collapse. Adv Drug Deliv Rev 2020; 154-155:210-226. [PMID: 32650040 DOI: 10.1016/j.addr.2020.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
Messenger RNA and small interfering RNA are attractive modalities for curing diseases by complementation or knock-down of proteins. For success of these RNAs, a drug delivery system (DDS) is required to control a pharmacokinetics, to enhance cellular uptake, to overcome biological membranes, and to release the cargo into the cytoplasm. Based on past research, developing nanoparticles that are neutrally charged have been the mainstream of their development. Also, the materials are further mounted with pH- and/or reducing environment-responsive units. In this review, we summarize progress made in the molecular design of these materials. We also focus on the importance of the hydrophobic scaffold for tissue/cell targeting, intracellular trafficking, and immune responses. As a practical example, the design concept of the SS-cleavable and pH-activated lipid-like material (ssPalm) and subsequent molecular modification tailored to the RNA-based medical application is discussed.
Collapse
|
10
|
Benjamin CE, Chen Z, Brohlin OR, Lee H, Shahrivarkevishahi A, Boyd S, Winkler DD, Gassensmith JJ. Using FRET to measure the time it takes for a cell to destroy a virus. NANOSCALE 2020; 12:9124-9132. [PMID: 32292962 DOI: 10.1039/c9nr09816j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emergence of viral nanotechnology over the preceding two decades has created a number of intellectually captivating possible translational applications; however, the in vitro fate of the viral nanoparticles in cells remains an open question. Herein, we investigate the stability and lifetime of virus-like particle (VLP) Qβ-a representative and popular VLP for several applications-following cellular uptake. By exploiting the available functional handles on the viral surface, we have orthogonally installed the known FRET pair, FITC and Rhodamine B, to gain insight of the particle's behavior in vitro. Based on these data, we believe VLPs undergo aggregation in addition to the anticipated proteolysis within a few hours of cellular uptake.
Collapse
Affiliation(s)
- Candace E Benjamin
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cell-Penetrating Peptides Enhance the Activity of Human Fibroblast Growth Factor 2 by Prolonging the Retention Time: A New Vision for Drug-Delivery Systems. Int J Mol Sci 2020; 21:ijms21020442. [PMID: 32284513 PMCID: PMC7013552 DOI: 10.3390/ijms21020442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 01/02/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are defined by their ability to deliver cargo into cells and have been studied and developed as a promising drug-delivery system (DDS). However, the issue of whether the CPPs that have already entered the cells can be re-released or reused has not been studied. The purpose of this research was to construct CPP-conjugated human fibroblast growth factor 2 (hFGF2) and investigate whether they can be re-released from the cell membrane for reuse. This study combined hFGF2 with Tat or Ara27, a newly developed CPP derived from the zinc knuckle (CCHC-type) family protein of Arabidopsis. Human dermal fibroblast (HDF) was treated with Tat-conjugated hFGF2 (tFGF2) and Ara27-conjugated hFGF2 (NR-FGF2) for both long and short durations, and the effects on cell growth were compared. Furthermore, tFGF2 and NR-FGF2 re-released from the cells were quantified and the effects were evaluated by culturing HDF in a conditioned medium. Interestingly, the proliferation of HDF increased only when NR-FGF2 was treated for 1 h in endocytosis-independent manner. After 1 h, NR-FGF2 was significantly re-released, reaching a maximum concentration at 5 h. Furthermore, increased proliferation of HDF cultured in the conditioned medium containing re-released NR-FGF2 was discovered. While previous studies have focused on the delivery of cargo and its associated applications, this study has revealed that combinations of superior CPPs and therapeutics can be expected to prolong both the retention time and the cell-penetrating capacity, even in the presence of external factors. Therefore, CPPs can be applied in the context of topical drugs and cosmetics as a new DDS approach.
Collapse
|
12
|
Allen J, Najjar K, Erazo-Oliveras A, Kondow-McConaghy HM, Brock DJ, Graham K, Hager EC, Marschall ALJ, Dübel S, Juliano RL, Pellois JP. Cytosolic Delivery of Macromolecules in Live Human Cells Using the Combined Endosomal Escape Activities of a Small Molecule and Cell Penetrating Peptides. ACS Chem Biol 2019; 14:2641-2651. [PMID: 31633910 DOI: 10.1021/acschembio.9b00585] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ineffective cellular delivery is a common problem in numerous biological applications. Developing delivery reagents that work robustly in a variety of experimental settings remains a challenge. Herein, we report how peptides derived from the prototypical cell penetrating peptide TAT can be used in combination with a small molecule, UNC7938, to deliver macromolecules into the cytosol of cells by a simple co-incubation protocol. We establish successful delivery of peptides, DNA plasmids, and a single-chain variable fragment antibody. We also demonstrate that delivery works in hard-to-transfect mammalian cells and under conditions typically inhibitory to cell-penetrating peptides. Mechanistically, UNC7938 destabilizes the membrane of endosomes. This, in turn, enhances the endosome-leakage activity of cell-penetrating peptides and facilitates the endosomal escape of macromolecules initially internalized by mammalian cells via endocytosis. This combined selective membrane-destabilization represents a new chemical space for delivery tools and provides a novel solution to the problem of endosomal entrapment that often limits the effectiveness of reagent-based delivery approaches.
Collapse
Affiliation(s)
- Jason Allen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Kristina Najjar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Alfredo Erazo-Oliveras
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Helena M. Kondow-McConaghy
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dakota J. Brock
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Kristin Graham
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Elizabeth C. Hager
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Andrea L. J. Marschall
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Rudolph L. Juliano
- UNC Eshelman School of Pharmacy and UNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Abstract
Recently greater emphasis has been given to combination therapy for generating synergistic effects of treating cancer. Recent studies on thiol-sensitive nanocarriers for the delivery of drug or gene have shown promising results. In this review, we will examine the rationale and advantage in using nanocarriers for the combined delivery of different anticancer drugs and biologics. Here, we also discuss the role of nanocarriers, particularly redox-sensitive polymers in evading or inhibiting the efflux pump in cancer and how they modulate the sensitivity of cancer cells. The review aims to provide a good understanding of the new pattern of cancer treatment and key concerns for designing nanomedicine of synergistic combinations for cancer therapy.
Collapse
|
15
|
Wang Y, Wang X, Deng F, Zheng N, Liang Y, Zhang H, He B, Dai W, Wang X, Zhang Q. The effect of linkers on the self-assembling and anti-tumor efficacy of disulfide-linked doxorubicin drug-drug conjugate nanoparticles. J Control Release 2018; 279:136-146. [PMID: 29655991 DOI: 10.1016/j.jconrel.2018.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Drug-drug conjugate nanoparticles (DDC NPs) is a potential method for overcoming poor solubility and nonspecific action in cancer therapy, which is based on its high drug loading efficiency and passive tumor-target properties. Our laboratory has prepared DOX-SS-DOX NPs based on disulfide-linked doxorubicin (DOX) drug-drug conjugate, which showed well physical stability and similar anti-tumor efficacy as liposomes. However, how structures of DDCs influence the self-assembling and anti-tumor efficacy is still seldom clarified and needs further investigation. Here, we discussed the role of linker types, length and linkage site in the NPs self-assembling and anti-tumor efficacy. A series of DOX prodrugs were prepared and all the prodrugs could self-assemble into NPs except DOX-SS-DOX (2), indicating the linker length played an important role during self-assembling process. The linkage sites and types of linker exhibited great influence on in vitro cytotoxicity and in vivo anti-tumor efficacy, particularly, modification on C-14 hydroxyl was more efficient for DOX release than on amino group. Besides, disulfide-bond was not cleaved and DOX-SH release did not occur in the metabolism process. The function of disulfide-bond was to enhance the release of DOX in the hydrolysis process. These findings is meaningful for effective prodrug NPs design for therapeutics.
Collapse
Affiliation(s)
- Yaoqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Feiyang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Nan Zheng
- National Drug Clinical Trial Center, Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yanqin Liang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
16
|
Liou YM, Chan CL, Huang R, Wang CLA. Effect of l-caldesmon on osteoclastogenesis in RANKL-induced RAW264.7 cells. J Cell Physiol 2018; 233:6888-6901. [PMID: 29377122 DOI: 10.1002/jcp.26452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023]
Abstract
Non-muscle caldesmon (l-CaD) is involved in the regulation of actin cytoskeletal remodeling in the podosome formation, but its function in osteoclastogenesis remains to be determined. In this study, RANKL-induced differentiation of RAW264.7 murine macrophages to osteoclast-like cells (OCs) was used as a model to determine the physiological role of l-CaD and its phosphorylation in osteoclastogenesis. Upon RANKL treatment, RAW264.7 cells undergo cell-cell fusion into multinucleate, and TRAP-positive large OCs with a concomitant increase of l-CaD expression. Using gain- and loss-of-function in OC precursor cells followed by RANKL induction, we showed that the expression of l-CaD in response to RANKL activation is an important event for osteoclastogenesis, and bone resorption. To determine the effect of l-CaD phosphorylation in osteoclastogenesis, three decoy peptides of l-CaD were used with, respectively, Ser-to-Ala mutations at the Erk- and Pak1-mediated phosphorylation sites, and Ser-to-Asp mutation at the Erk-mediated phosphorylation sites. Both the former two peptides competed with the C-terminal segment of l-CaD for F-actin binding and accelerated formation of podosome-like structures in RANKL-induced OCs, while the third peptide did not significantly affect the F-actin binding of l-CaD, and decreased the formation of podosome-like structures in OCs. With the experiments using dephosphorylated and phosphorylated l-CaD mutants, we further showed that dephosphorylated l-CaD mutant facilitated RANKL-induced TRAP activity with an increased cell fusion index, whereas phosphorylated l-CaD decreased the TRAP activity and cell fusion. Our findings suggested that both the level of l-CaD expression and the extent of l-CaD phosphorylation play a role in RANKL-induced osteoclast differentiation.
Collapse
Affiliation(s)
- Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chu-Lung Chan
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Renjian Huang
- Boston Biomedical Research Institute, Watertown, Massachusetts
| | | |
Collapse
|
17
|
Najjar K, Erazo-Oliveras A, Mosior JW, Whitlock MJ, Rostane I, Cinclair JM, Pellois JP. Unlocking Endosomal Entrapment with Supercharged Arginine-Rich Peptides. Bioconjug Chem 2017; 28:2932-2941. [PMID: 29065262 DOI: 10.1021/acs.bioconjchem.7b00560] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endosomal entrapment is a common bottleneck in various macromolecular delivery approaches. Recently, the polycationic peptide dfTAT was identified as a reagent that induces the efficient leakage of late endosomes and, thereby, enhances the penetration of macromolecules into the cytosol of live human cells. To gain further insights into the features that lead to this activity, the role of peptide sequence was investigated. We establish that the leakage activity of dfTAT can be recapitulated by polyarginine analogs but not by polylysine counterparts. Efficiencies of peptide endocytic uptake increase linearly with the number of arginine residues present. In contrast, peptide cytosolic penetration displays a threshold behavior, indicating that a minimum number of arginines is required to induce endosomal escape. Increasing arginine content above this threshold further augments delivery efficiencies. Yet, it also leads to increasing the toxicity of the delivery agents. Together, these data reveal a relatively narrow arginine-content window for the design of optimally active endosomolytic agents.
Collapse
Affiliation(s)
- Kristina Najjar
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Alfredo Erazo-Oliveras
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - John W Mosior
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Megan J Whitlock
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Ikram Rostane
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Joseph M Cinclair
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
18
|
Najjar K, Erazo-Oliveras A, Brock DJ, Wang TY, Pellois JP. An l- to d-Amino Acid Conversion in an Endosomolytic Analog of the Cell-penetrating Peptide TAT Influences Proteolytic Stability, Endocytic Uptake, and Endosomal Escape. J Biol Chem 2016; 292:847-861. [PMID: 27923812 DOI: 10.1074/jbc.m116.759837] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/05/2016] [Indexed: 12/12/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are well established as delivery agents for otherwise cell-impermeable cargos. CPPs can also theoretically be used to modulate intracellular processes. However, their susceptibility to proteolytic degradation often limits their utility in these applications. Previous studies have explored the consequences for cellular uptake of converting the residues in CPPs from l- to d-stereochemistry, but conflicting results have been reported and specific steps en route to intracellular activity have not been explored. Here we use dimeric fluorescence TAT as a model CPP to explore the broader consequences of l- to d-stereochemical conversion. We show that inversion of chirality provides protease resistance without altering the overall mode of cellular entry, a process involving endocytic uptake followed by endosomal escape and cytosolic access. However, whereas inversion of chirality reduces endocytic uptake, the d-peptide, once in the endosome, is significantly more prone to escape than its l-counterpart. Moreover, the d-peptide is retained in the cytosol of cells for several days, whereas the l-peptide is degraded within hours. Notably, while the l-peptide is relatively innocuous to cells, the d-peptide exerts a prolonged anti-proliferative activity. Together, our results establish connections between chirality, protease resistance, cellular penetration, and intracellular activity that may be useful for the development of future delivery agents with improved properties.
Collapse
Affiliation(s)
- Kristina Najjar
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Alfredo Erazo-Oliveras
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Dakota J Brock
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Ting-Yi Wang
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Jean-Philippe Pellois
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
19
|
Erazo-Oliveras A, Najjar K, Truong D, Wang TY, Brock DJ, Prater AR, Pellois JP. The Late Endosome and Its Lipid BMP Act as Gateways for Efficient Cytosolic Access of the Delivery Agent dfTAT and Its Macromolecular Cargos. Cell Chem Biol 2016; 23:598-607. [PMID: 27161484 DOI: 10.1016/j.chembiol.2016.03.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 01/02/2023]
Abstract
Endosomal entrapment is a severely limiting bottleneck in the delivery of biologics into cells. The compound dfTAT was recently found to circumvent this problem by mediating endosomal leakage efficiently and without toxicity. Herein, we report on the mechanism of endosomal escape of this cell-penetrating peptide. By modulating the trafficking of the peptide within the endocytic pathway, we identify late endosomes as the organelles rendered leaky by dfTAT. We establish that dfTAT binds bis(monoacylglycero)phosphate (BMP), a lipid found in late endosomes, and that the peptide causes the fusion and leakage of bilayers containing BMP. Together, these data identify late endosomes as desirable gateways for cell penetration and BMP as a cellular factor that can be exploited for the development of future delivery agents.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Kristina Najjar
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Dat Truong
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Ting-Yi Wang
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Dakota J Brock
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Austin R Prater
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA.
| |
Collapse
|
20
|
Optical and electron microscopy study of laser-based intracellular molecule delivery using peptide-conjugated photodispersible gold nanoparticle agglomerates. J Nanobiotechnology 2016; 14:2. [PMID: 26745990 PMCID: PMC4706709 DOI: 10.1186/s12951-015-0155-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/29/2015] [Indexed: 12/25/2022] Open
Abstract
Background Cell-penetrating peptides (CPPs) can act as carriers for therapeutic molecules such as drugs and genetic constructs for medical applications. The triggered release of the molecule into the cytoplasm can be crucial to its effective delivery. Hence, we implemented and characterized laser interaction with defined gold nanoparticle agglomerates conjugated to CPPs which enables efficient endosomal rupture and intracellular release of molecules transported. Results Gold nanoparticles generated by pulsed laser ablation in liquid were conjugated with CPPs forming agglomerates and the intracellular release of molecules was triggered via pulsed laser irradiation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda$$\end{document}λ = 532 nm, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau _{pulse}$$\end{document}τpulse = 1 ns). The CPPs enhance the uptake of the agglomerates along with the cargo which can be co-incubated with the agglomerates. The interaction of incident laser light with gold nanoparticle agglomerates leads to heat deposition and field enhancement in the vicinity of the particles. This highly precise effect deagglomerates the nanoparticles and disrupts the enclosing endosomal membrane. Transmission electron microscopy images confirmed this rupture for radiant exposures of 25 mJ/cm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{2}$$\end{document}2 and above. Successful intracellular release was shown using the fluorescent dye calcein. For a radiant exposure of 35 mJ/cm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{2}$$\end{document}2 we found calcein delivery in 81 % of the treated cells while maintaining a high percentage of cell viability. Furthermore, cell proliferation and metabolic activity were not reduced 72 h after the treatment. Conclusion CPPs trigger the uptake of the gold nanoparticle agglomerates via endocytosis and co-resident molecules in the endosomes are released by applying laser irradiation, preventing their intraendosomal degradation. Due to the highly localized effect, the cell membrane integrity is not affected. Therefore, this technique can be an efficient tool for spatially and temporally confined intracellular release. The utilization of specifically designed photodispersible gold nanoparticle agglomerates (65 nm) can open novel avenues in imaging and molecule delivery. Due to the induced deagglomeration the primary, small particles (~5 nm) are more likely to be removed from the body. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0155-8) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
GFP-complementation assay to detect functional CPP and protein delivery into living cells. Sci Rep 2015; 5:18329. [PMID: 26671759 PMCID: PMC4680871 DOI: 10.1038/srep18329] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/16/2015] [Indexed: 01/03/2023] Open
Abstract
Efficient cargo uptake is essential for cell-penetrating peptide (CPP) therapeutics, which deliver widely diverse cargoes by exploiting natural cell processes to penetrate the cell’s membranes. Yet most current CPP activity assays are hampered by limitations in assessing uptake, including confounding effects of conjugated fluorophores or ligands, indirect read-outs requiring secondary processing, and difficulty in discriminating internalization from endosomally trapped cargo. Split-complementation Endosomal Escape (SEE) provides the first direct assay visualizing true cytoplasmic-delivery of proteins at biologically relevant concentrations. The SEE assay has minimal background, is amenable to high-throughput processes, and adaptable to different transient and stable cell lines. This split-GFP-based platform can be useful to study transduction mechanisms, cellular imaging, and characterizing novel CPPs as pharmaceutical delivery agents in the treatment of disease.
Collapse
|
22
|
Kauffman WB, Fuselier T, He J, Wimley WC. Mechanism Matters: A Taxonomy of Cell Penetrating Peptides. Trends Biochem Sci 2015; 40:749-764. [PMID: 26545486 DOI: 10.1016/j.tibs.2015.10.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 11/30/2022]
Abstract
The permeability barrier imposed by cellular membranes limits the access of exogenous compounds to the interior of cells. Researchers and patients alike would benefit from efficient methods for intracellular delivery of a wide range of membrane-impermeant molecules, including biochemically active small molecules, imaging agents, peptides, peptide nucleic acids, proteins, RNA, DNA, and nanoparticles. There has been a sustained effort to exploit cell penetrating peptides (CPPs) for the delivery of such useful cargoes in vitro and in vivo because of their biocompatibility, ease of synthesis, and controllable physical chemistry. Here, we discuss the many mechanisms by which CPPs can function, and describe a taxonomy of mechanisms that could be help organize future efforts in the field.
Collapse
Affiliation(s)
- W Berkeley Kauffman
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Taylor Fuselier
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jing He
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
23
|
LaRochelle JR, Cobb GB, Steinauer A, Rhoades E, Schepartz A. Fluorescence correlation spectroscopy reveals highly efficient cytosolic delivery of certain penta-arg proteins and stapled peptides. J Am Chem Soc 2015; 137:2536-2541. [PMID: 25679876 PMCID: PMC4700819 DOI: 10.1021/ja510391n] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We used fluorescence correlation spectroscopy (FCS) to accurately and precisely determine the relative efficiencies with which three families of "cell-penetrating peptides" traffic to the cytosol of mammalian cells. We find that certain molecules containing a "penta-arg" motif reach the cytosol, intact, with efficiencies greater than 50%. This value is at least 10-fold higher than that observed for the widely studied cationic sequence derived from HIV Tat or polyarginine Arg8, and equals that of hydrocarbon-stapled peptides that are active in cells and animals. Moreover, we show that the efficiency with which stapled peptides reach the cytosol, as determined by FCS, correlates directly with their efficacy in cell-based assays. We expect that these findings and the associated technology will aid the design of peptides, proteins, and peptide mimetics that predictably and efficiently reach the interior of mammalian cells.
Collapse
Affiliation(s)
- Jonathan R. LaRochelle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Garrett B. Cobb
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Angela Steinauer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Elizabeth Rhoades
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
24
|
Winter J. Cell penetrating peptide mediated quantum dot delivery and release in live mammalian cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4260-3. [PMID: 25570933 DOI: 10.1109/embc.2014.6944565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals whose unique fluorescence properties make them desirable biological imaging probes. However, reliable and efficient cellular delivery of QDs remains technically challenging. To address this problem, we developed a cell penetrating peptide (CPP) based approach that delivers QDs into mammalian cells with high reproducibility and efficiency and minimal cytotoxicity. To understand the delivery mechanism, we analyzed related cell uptake pathways. We followed internalization and endosomal release of CPP conjugated QDs (CPP-QDs) and found that although endocytosis (micropinocytosis) was the predominant pathway, some CPP-QDs were internalized through direct permeation of the plasma membrane. Internalized QDs could be released from endosomes to the cytoplasm if conjugated with an endosomolytic peptide (HA2), but most of released particles either were re-captured by lysosomes or aggregated in the cytoplasm. Together, our results provide insights into mechanisms of CPP mediated cellular delivery of quantum dots for intracellular imaging as well as therapeutic applications.
Collapse
|
25
|
Wang H, Wang Y, Zhang X, Hu Y, Yi X, Ma L, Zhou H, Long J, Liu Q, Yang Z. Supramolecular nanofibers of self-assembling peptides and proteins for protein delivery. Chem Commun (Camb) 2015; 51:14239-42. [DOI: 10.1039/c5cc03835a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supramolecular nanofibers of proteins and peptides could be used for intracellular protein delivery.
Collapse
|
26
|
Brülisauer L, Gauthier MA, Leroux JC. Disulfide-containing parenteral delivery systems and their redox-biological fate. J Control Release 2014; 195:147-54. [DOI: 10.1016/j.jconrel.2014.06.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
|
27
|
Erazo-Oliveras A, Najjar K, Dayani L, Wang TY, Johnson GA, Pellois JP. Protein delivery into live cells by incubation with an endosomolytic agent. Nat Methods 2014; 11:861-7. [PMID: 24930129 PMCID: PMC4131206 DOI: 10.1038/nmeth.2998] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 05/09/2014] [Indexed: 12/19/2022]
Abstract
We report that a tetramethylrhodamine-labeled dimer of the cell-penetrating peptide TAT, dfTAT, penetrates live cells by escaping from endosomes with high efficiency. By mediating endosomal leakage, dfTAT also delivers proteins into cultured cells after a simple co-incubation procedure. We achieved cytosolic delivery in several cell lines and primary cells and observed that only a relatively small amount of material remained trapped inside endosomes. Delivery did not require a binding interaction between dfTAT and a protein, multiple molecules could be delivered simultaneously, and delivery could be repeated. dfTAT-mediated delivery did not noticeably affect cell viability, cell proliferation or gene expression. dfTAT-based intracellular delivery should be useful for cell-based assays, cellular imaging applications and the ex vivo manipulation of cells.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Kristina Najjar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Laila Dayani
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Ting-Yi Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Gregory A. Johnson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
28
|
Lau JTF, Jiang XJ, Ng DKP, Lo PC. A disulfide-linked conjugate of ferrocenyl chalcone and silicon(iv) phthalocyanine as an activatable photosensitiser. Chem Commun (Camb) 2013; 49:4274-6. [DOI: 10.1039/c2cc37251g] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Brülisauer L, Kathriner N, Prenrecaj M, Gauthier MA, Leroux JC. Tracking the Bioreduction of Disulfide-Containing Cationic Dendrimers. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Brülisauer L, Kathriner N, Prenrecaj M, Gauthier MA, Leroux JC. Tracking the Bioreduction of Disulfide-Containing Cationic Dendrimers. Angew Chem Int Ed Engl 2012; 51:12454-8. [DOI: 10.1002/anie.201207070] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Indexed: 11/11/2022]
|
31
|
Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang TY, Pellois JP. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals (Basel) 2012; 5:1177-1209. [PMID: 24223492 PMCID: PMC3816665 DOI: 10.3390/ph5111177] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/13/2022] Open
Abstract
Cell penetrating peptides (CPPs) can deliver cell-impermeable therapeutic cargos into cells. In particular, CPP-cargo conjugates tend to accumulate inside cells by endocytosis. However, they often remain trapped inside endocytic organelles and fail to reach the cytosolic space of cells efficiently. In this review, the evidence for CPP-mediated endosomal escape is discussed. In addition, several strategies that have been utilized to enhance the endosomal escape of CPP-cargos are described. The recent development of branched systems that display multiple copies of a CPP is presented. The use of viral or synthetic peptides that can disrupt the endosomal membrane upon activation by the low pH of endosomes is also discussed. Finally, we survey how CPPs labeled with chromophores can be used in combination with light to stimulate endosomal lysis. The mechanisms and challenges associated with these intracellular delivery methodologies are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Philippe Pellois
- Author to whom correspondence should be addressed; ; Tel.: +1-979-845-0101; Fax: +1-979-862-4718
| |
Collapse
|
32
|
Muthukrishnan N, Johnson GA, Lim J, Simanek EE, Pellois JP. TAT-mediated photochemical internalization results in cell killing by causing the release of calcium into the cytosol of cells. Biochim Biophys Acta Gen Subj 2012; 1820:1734-43. [PMID: 22771830 DOI: 10.1016/j.bbagen.2012.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/06/2012] [Accepted: 06/25/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lysis of endocytic organelles is a necessary step in many cellular delivery methodologies. This is achieved efficiently in the photochemical internalization approach but the cell death that accompanies this process remains a problem. METHODS We investigate the mechanisms of cell death that accompanies photochemical internalization of the fluorescent peptide TMR-TAT. RESULTS TMR-TAT kills cells after endocytosis and light irradiation. The lysis of endocytic organelles by TMR-TAT causes a rapid increase in the concentration of calcium in the cytosol. TMR-TAT co-localizes with endocytic organelles containing calcium prior to irradiation and photochemical internalization leads to the release of the lumenal content of these organelles. Ruthenium red and cyclosporin A, inhibitors of calcium import in mitochondria and of the mitochondria permeability transition pore, inhibit cell death. CONCLUSIONS TMR-TAT mediated photochemical internalization leads to a disruption of calcium homeostasis. The subsequent import of calcium in mitochondria is a causative factor of the cell death that accompanies photochemical internalization. General significance Understanding how the lysis of endocytic organelles affects cellular physiology and causes cell death is crucial to the development of optimal delivery methodologies.
Collapse
Affiliation(s)
- Nandhini Muthukrishnan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
33
|
Matsumoto S, Mori T, Akazome M. Synthesis and fluorescence properties of N-methyl-1,2-dihyroquinoline-3-carboxylate derivatives: light-emitting compounds in organic solvent, in neat form, and in water. RSC Adv 2012. [DOI: 10.1039/c2ra20061a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Zhan K, Xie H, Gall J, Ma M, Griesbeck O, Salehi A, Rao J. Real-time imaging of Rab5 activity using a prequenched biosensor. ACS Chem Biol 2011; 6:692-9. [PMID: 21506516 DOI: 10.1021/cb100377m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A key regulator of receptor-mediated endocytosis, Rab5, plays a pivotal role in cargo receptor internalization, endosomal maturation, and transduction and degradation of internalized signaling molecules and recycling cargo receptor. Stressful conditions within cells lead to increased Rab5 activation, and increasing evidence correlates Rab5 activity abnormalities with certain diseases. Current antibody-based imaging methods cannot distinguish active Rab5 from total Rab5 population and provide dynamic information on magnitude and duration of Rab5 activation in cellular events and pathogenesis. We report here novel molecular imaging probes that specifically target GTP-bound Rab5 associated with the early endosome membrane in live cells and fixed mouse brain tissues. Our Rab5 activity fluorescent biosensor (RAFB) contains the Rab5 binding domain of the Rab5 effector Rabaptin 5, a fluorophore (a quantum dot or fluorescent dye) and a cell-penetrating peptide for live-cell delivery. The quantum dot conjugated RAFB was able to image the elevated Rab5 activity in both the cortex and hippocampi tissues of a Ts65Dn mouse. A prequenched RAFB based on fluorescence resonance energy transfer (FRET) can image cytosolic active Rab5 in single live cells. This novel method should enable imaging of the biological process in which Rab5 activity is regulated in various cellular systems.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Griesbeck
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ahmad Salehi
- Palo Alto VA Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, United States
| | - Jianghong Rao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
35
|
Lee YJ, Johnson G, Peltier GC, Pellois JP. A HA2-Fusion tag limits the endosomal release of its protein cargo despite causing endosomal lysis. Biochim Biophys Acta Gen Subj 2011; 1810:752-8. [PMID: 21664431 DOI: 10.1016/j.bbagen.2011.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND Protein transduction domains (PTDs) can be fused to a protein to render it cell-permeable. The delivery efficiencies of PTDs are, however, often poor because PTD-protein conjugates cannot escape from endosomes. A potential solution to this problem consists in adding HA2 analogs to the PTD-protein construct as these peptides can cause endosomal lysis upon acidification of the endosomal lumen. To date, however, the utility of HA2-based PTDs has not been clearly established. METHODS We investigate the biophysical and cellular properties of the glutamate-rich HA2 analog E5 fused to the model protein TAT-mCherry. RESULTS E5-TAT-mCherry causes the release of fluorescent dextrans trapped with the protein inside endosomes. Yet, E5-TAT-mCherry itself is not released in the cytosol of cells, indicating that the protein remained trapped inside endosomes even after endosomal lysis takes place. Cytosolic delivery of the protein could be achieved, however, by insertion of a disulfide bond between E5 and its cargo. CONCLUSIONS These results show that E5 causes the retention of its fused protein inside endosomes even after lysis takes place. GENERAL SIGNIFICANCE These data establish that HA2 analogs might not be useful PTDs unless cleavable linkers are engineered between PTD and protein cargo.
Collapse
Affiliation(s)
- Ya-Jung Lee
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
36
|
Lee YJ, Johnson G, Pellois JP. Modeling of the endosomolytic activity of HA2-TAT peptides with red blood cells and ghosts. Biochemistry 2010; 49:7854-66. [PMID: 20704453 DOI: 10.1021/bi1008408] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HA2-TAT is a peptide-based delivery agent that combines the pH-sensitive HA2 fusion peptide from influenza and the cell-penetrating peptide TAT from HIV. This chimeric peptide is engineered to induce the cellular uptake of macromolecules into endosomes via the TAT moiety and to respond to the acidifying lumen of endosomes to cause membrane leakage and release of macromolecules into cells via the HA2 moiety. The question of how HA2 and TAT affect the properties of one another remains, however, unanswered, and the behavior of the peptide inside endosomes is mostly uncharacterized. To address these issues, the binding and membrane leakage activity of a glutamic acid-enriched analogue E5-TAT was assessed with red blood cells and giant unilamellar vesicles as membrane models for endosomes. Hemolysis and microscopy assays reveal that E5-TAT binds to membranes in a pH-dependent manner and causes membrane leakage by inducing the formation of pores through which macromolecules can escape. The TAT moiety contributes to this activity by causing a shift in the pH response of E5 and by binding to negatively charged phospholipids. On the other hand, TAT binding to glycosaminoglycans reduces the lytic activity of E5-TAT. Addition of TAT to the C-terminus of E5 can therefore either increase or inhibit the activity of E5 depending on the cellular components present at the membrane. Taken together, these results suggest a model for the endosomolytic activity of the peptide and provide the basis for the molecular design of future delivery agents.
Collapse
Affiliation(s)
- Ya-Jung Lee
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
37
|
Angeles-Boza AM, Erazo-Oliveras A, Lee YJ, Pellois JP. Generation of endosomolytic reagents by branching of cell-penetrating peptides: tools for the delivery of bioactive compounds to live cells in cis or trans. Bioconjug Chem 2010; 21:2164-7. [PMID: 21043514 DOI: 10.1021/bc100130r] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe the synthesis and cellular delivery properties of multivalent and branched delivery systems consisting of cell-penetrating peptides assembled onto a peptide scaffold using native chemical ligation. A trimeric delivery system presenting three copies of the prototypical cell-penetrating peptide TAT shows an endosomolytic activity much higher than its monomeric and dimeric counterparts. This novel reagent promotes the endosomal release of macromolecules internalized into cells by endocytosis, and as a result, it can be used to achieve cytosolic delivery of bioactive but cell-impermeable macromolecules in either cis (covalent conjugation) or trans (simple coincubation).
Collapse
Affiliation(s)
- Alfredo M Angeles-Boza
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | | | |
Collapse
|
38
|
Lee YJ, Erazo-Oliveras A, Pellois JP. Delivery of macromolecules into live cells by simple co-incubation with a peptide. Chembiochem 2010; 11:325-30. [PMID: 20029930 DOI: 10.1002/cbic.200900527] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ya-Jung Lee
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | | | | |
Collapse
|
39
|
Wang Z, Song Z. A valuable way for understanding the relationships between lysozyme and cephalosporin analogues by flow injection chemiluminescence. Analyst 2010; 135:2546-53. [DOI: 10.1039/c0an00197j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Cheung JC, Kim Chiaw P, Deber CM, Bear CE. A novel method for monitoring the cytosolic delivery of peptide cargo. J Control Release 2009; 137:2-7. [PMID: 19285529 DOI: 10.1016/j.jconrel.2009.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/12/2009] [Accepted: 02/28/2009] [Indexed: 11/19/2022]
Abstract
The intracellular delivery of a diverse array of cargos can be mediated by conjugation to cell-penetrating peptides (CPPs). To date, delivery of cargos into the cytosol via CPPs has been measured indirectly and normally, has been inferred from changes in biological activity. We describe a novel method to directly assay CPP-mediated delivery of peptide cargo into the cytosol, and use this method to define the kinetics of this process. The CPP and the cargo are differentially labeled with the fluorophores FAM (carboxyfluorescein), and TAMRA (carboxytetramethylrhodamine) respectively, and coupled via a disulfide bond to promote quenching of FAM fluorescence by the proximal TAMRA. Delivery of the peptide pair to cells produces an increase in FAM fluorescence within 10 min, consistent with its rapid transfer into the reducing environment of the cytosol, separation of the two components, and concomitant dequenching. The fluorescence-based assay described here can thus be used to select a CPP module that is optimized for efficient delivery of particular cargos designed to modify molecular targets in the cytosol.
Collapse
Affiliation(s)
- Joanne C Cheung
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada M5G 1X8
| | | | | | | |
Collapse
|
41
|
Flavell RR, Muir TW. Expressed protein ligation (EPL) in the study of signal transduction, ion conduction, and chromatin biology. Acc Chem Res 2009; 42:107-16. [PMID: 18939858 DOI: 10.1021/ar800129c] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expressed protein ligation (EPL) is a semisynthetic technique in which a recombinant protein thioester, generated by thiolysis of an intein fusion protein, is reacted with a synthetic or recombinant peptide with an N-terminal cysteine to produce a native peptide bond. This method has been used extensively for the incorporation of biophysical probes, unnatural amino acids, and post-translational modifications in proteins. In the 10 years since this technique was developed, the applications of EPL to studying protein structure and function have grown ever more sophisticated. In this Account, we review the use of EPL in selected systems in which substantial mechanistic insights have recently been gained through the use of the semisynthetic protein derivatives. EPL has been used in many studies to unravel the complexity of signaling networks and subcellular trafficking. Herein, we highlight this application to two different systems. First, we describe how phosphorylated or otherwise modified proteins in the TGF-beta signaling network were prepared and how they were applied to understanding the complexities of this pathway, from receptor activation to nuclear import. Second, Rab-GTPases are multiply modified with lipid derivatives, and EPL-based techniques were used to incorporate these modifications, allowing for the elucidation of the biophysical basis of membrane association and dissociation. We also review the use of EPL to understand the biology of two other systems, the potassium channel KcsA and histones. EPL was used to incorporate d-alanine and an amide-to-ester backbone modification in the selectivity filter of the KcsA potassium channel, providing insight into the mechanism of selectivity in ion conduction. In the case of histones, which are among the most heavily post-translationally modified proteins, the modifications play a key role in the regulation of gene transcription and chromatin structure. We describe how native chemical ligation and EPL were used to generate acetylated, phosphorylated, methylated, and ubiquitylated histones and how these modified histones were used to interrogate chromatin biology. Collectively, these studies demonstrate the utility of EPL in protein science. These techniques and concepts are applicable to many other systems, and ongoing advances promise to extend this semisynthetic technique to increasingly complex biological problems.
Collapse
Affiliation(s)
- Robert R. Flavell
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York 10065
| | - Tom W. Muir
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York 10065
| |
Collapse
|
42
|
Foillard S, Sancey L, Coll JL, Boturyn D, Dumy P. Targeted delivery of activatable fluorescent pro-apoptotic peptide into live cells. Org Biomol Chem 2009; 7:221-4. [DOI: 10.1039/b817251j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Matsumoto S, Samata D, Akazome M, Ogura K. Synthesis and physical properties of various organic dyes derived from a single core skeleton, 1,2-dihydroindol-3-one. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2008.10.098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Medintz IL, Pons T, Delehanty JB, Susumu K, Brunel FM, Dawson PE, Mattoussi H. Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjug Chem 2008; 19:1785-95. [PMID: 18681468 DOI: 10.1021/bc800089r] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We utilize cell penetrating peptide functionalized QDs as specific vectors for the intracellular delivery of model fluorescent protein cargos. Multiple copies of two structurally diverse fluorescent proteins, the 27 kDa monomeric yellow fluorescent protein and the 240 kDa multichromophore b-phycoerythrin complex, were attached to QDs using either metal-affinity driven self-assembly or biotin-Streptavidin binding, respectively. Cellular uptake of these complexes was found to depend on the additional presence of cell-penetrating peptides within the QD-protein conjugates. Once inside the cells, the QD conjugates were mostly distributed within endolysosomal compartments, indicating that intracellular delivery of both QD assemblies was primarily driven by endocytotic uptake. Cellular microinjection of QD-fluorescent protein assemblies was also utilized as an alternate delivery strategy that could bypass the endocytic pathway. Simultaneous signals from both the QDs and the fluorescent proteins allowed verification of their colocalization and conjugate integrity upon delivery inside live cells. Due to their intrinsic fluorescence properties, this class of proteins provides a unique tool to test the ability of QDs functionalized with cell penetrating peptides to mediate the intracellular delivery of both small and large size protein cargos. Use of QD-peptide/fluorescent protein vectors may make powerful tools for understanding the mechanisms of nanoparticle-mediated drug delivery.
Collapse
Affiliation(s)
- Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | | | | | | | | | | | | |
Collapse
|