1
|
Zhang R, Zheng Y, Xiang F, Zhou J. Inducing or enhancing protein-protein interaction to develop drugs: Molecular glues with various biological activity. Eur J Med Chem 2024; 277:116756. [PMID: 39191033 DOI: 10.1016/j.ejmech.2024.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Over the past two decades, molecular glues (MGs) have gradually attracted the attention of the pharmaceutical community with the advent of MG degraders such as IMiDs and indisulam. Such molecules degrade the target protein by promoting the interaction between the target protein and E3 ligase. In addition, as a chemical inducer, MGs promote the dimerization of homologous proteins and heterologous proteins to form ternary complexes, which have great prospects in regulating biological activities. This review focuses on the application of MGs in the field of drug development including protein-protein interaction (PPI) stability and protein degradation. We thoroughly analyze the structure of various MGs and the interactions between MGs and various biologically active molecules, thus providing new perspectives for the development of PPI stabilizers and new degraders.
Collapse
Affiliation(s)
- Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Yirong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Fengjiao Xiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
2
|
Das A, Ghosh S, Mishra A, Som A, Banakar VB, Agasti SS, George SJ. Enzymatic Reaction-Coupled, Cooperative Supramolecular Polymerization. J Am Chem Soc 2024; 146:14844-14855. [PMID: 38747446 DOI: 10.1021/jacs.4c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Nature employs sophisticated mechanisms to precisely regulate self-assembly and functions within biological systems, exemplified by the formation of cytoskeletal filaments. Various enzymatic reactions and auxiliary proteins couple with the self-assembly process, meticulously regulating the length and functions of resulting macromolecular structures. In this context, we present a bioinspired, reaction-coupled approach for the controlled supramolecular polymerization in synthetic systems. To achieve this, we employ an enzymatic reaction that interfaces with the adenosine triphosphate (ATP)-templated supramolecular polymerization of naphthalene diimide monomers (NSG). Notably, the enzymatic production of ATP (template) plays a pivotal role in facilitating reaction-controlled, cooperative growth of the NSG monomers. This growth process, in turn, provides positive feedback to the enzymatic production of ATP, creating an ideal reaction-coupled assembly process. The success of this approach is further evident in the living-growth characteristic observed during seeding experiments, marking this method as the pioneering instance where reaction-coupled self-assembly precisely controls the growth kinetics and structural aspects of supramolecular polymers in a predictive manner, akin to biological systems.
Collapse
Affiliation(s)
- Angshuman Das
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Saikat Ghosh
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Ananya Mishra
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Arka Som
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Vijay Basavaraj Banakar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sarit S Agasti
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
3
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
4
|
Kohata A, Ueki R, Okuro K, Hashim PK, Sando S, Aida T. Photoreactive Molecular Glue for Enhancing the Efficacy of DNA Aptamers by Temporary-to-Permanent Conjugation with Target Proteins. J Am Chem Soc 2021; 143:13937-13943. [PMID: 34424707 DOI: 10.1021/jacs.1c06816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a photoreactive molecular glue, BPGlue-N3, which can provide a universal strategy to enhance the efficacy of DNA aptamers by temporary-to-permanent stepwise stabilization of their conjugates with target proteins. As a proof-of-concept study, we applied BPGlue-N3 to the SL1 (DNA aptamer)/c-Met (target protein) conjugate system. BPGlue-N3 can adhere to and temporarily stabilize this aptamer/protein conjugate multivalently using its guanidinium ion (Gu+) pendants that form a salt bridge with oxyanionic moieties (e.g., carboxylate and phosphate) and benzophenone (BP) group that is highly affinitive to DNA duplexes. BPGlue-N3 is designed to carry a dual-mode photoreactivity; upon exposure to UV light, the temporarily stabilized aptamer/protein conjugate reacts with the photoexcited BP unit of adhering BPGlue-N3 and also a nitrene species, possibly generated by the BP-to-N3 energy transfer in BPGlue-N3. We confirmed that SL1, covalently conjugated with c-Met, hampered the binding of hepatocyte growth factor (HGF) onto c-Met, even when the SL1/c-Met conjugate was rinsed prior to the treatment with HGF, and suppressed cell migration caused by HGF-induced c-Met phosphorylation.
Collapse
Affiliation(s)
- Ai Kohata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - P K Hashim
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Inaba H, Matsuura K. Modulation of Microtubule Properties and Functions by Encapsulation of Nanomaterials Using a Tau-Derived Peptide. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210202] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| |
Collapse
|
6
|
Fang Y, He Q, Cao J. Targeted protein degradation and regulation with molecular glue: past and recent discoveries. Curr Med Chem 2021; 29:2490-2503. [PMID: 34365941 DOI: 10.2174/0929867328666210806113949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
The evolution in research and clinical settings of targeted therapies has been inspired by the progress of cancer chemotherapy to use small molecules and monoclonal antibodies for targeting specific disease-associated genes and proteins for noninfectious chronic diseases. In addition to conventional protein inhibition and activation strategies as drug discovery modalities, new methods of targeted protein degradation and regulation using molecular glues have become an attractive approach for drug discovery. Mechanistically, molecular glues trigger interactions between the proteins that originally did not interact by forming ternary complexes as protein-protein interaction (PPI) modulators. New molecular glues and their mechanisms of action have been actively investigated in the past decades. An immunomodulatory imide drug, thalidomide, and its derivatives have been used in the clinic and are a class of molecular glue that induces degradation of several neo-substrates. In this review, we summarize the development of molecular glues and share our opinions on the identification of novel molecular glues in an attempt to promote the concept and inspire further investigations.
Collapse
Affiliation(s)
- Yizheng Fang
- College of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing. China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou. China
| | - Ji Cao
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou. China
| |
Collapse
|
7
|
Yasuno G, Koide H, Oku N, Asai T. Influence of Purification Process on the Function of Synthetic Polymer Nanoparticles. Chem Pharm Bull (Tokyo) 2021; 69:773-780. [PMID: 34334521 DOI: 10.1248/cpb.c21-00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multifunctional synthetic polymers can bind to target molecules and are therefore widely investigated in diagnostics, drug delivery carriers, and separation carriers. Because these polymers are synthesized from nonbiological components, purification processes (e.g., chromatography, dialysis, extraction, and centrifugation) must be conducted after the synthesis. Although several purification methods are used for polymer purification, few reports have revealed the influence of purification process on the functions of polymer. In this study, we demonstrated that the characteristics, function, and stability of synthetic polymer depend on the purification process. N-Isopropylacrylamide-based polymer nanoparticles (NPs) and melittin (i.e., honey bee venom) were used as a model of synthetic polymer and target toxic peptide, respectively. Synthesized NPs were purified by dialysis in methanol, acetone precipitation, or centrifugation. NPs purified by dialysis in ultrapure water were used as control NPs. Then, NP size, surface charge, toxin neutralization effect, and stability were determined. NP size did not considerably change by purification with centrifugation; however, it decreased by purification using dialysis in methanol and acetone precipitation compared with that of control NPs. The ζ-potential of NPs changed after each purification process compared with that of control NPs. The melittin neutralization efficiency of NPs depended on the purification process; i.e., it decreased by acetone precipitation and increased by dialysis in methanol and centrifugation compared with that of control NPs. Of note, the addition of methanol and acetone decreased NP stability. These studies implied the importance of considering the effect of the purification method on synthetic polymer function.
Collapse
Affiliation(s)
- Go Yasuno
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences
| | - Hiroyuki Koide
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences
| | - Naoto Oku
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences.,Faculty of Pharma-Science, Teikyo University
| | - Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences
| |
Collapse
|
8
|
Guo J, Wan T, Li B, Pan Q, Xin H, Qiu Y, Ping Y. Rational Design of Poly(disulfide)s as a Universal Platform for Delivery of CRISPR-Cas9 Machineries toward Therapeutic Genome Editing. ACS CENTRAL SCIENCE 2021; 7:990-1000. [PMID: 34235260 PMCID: PMC8227594 DOI: 10.1021/acscentsci.0c01648] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 05/19/2023]
Abstract
We synthesized a series of poly(disulfide)s by ring-opening polymerization and demonstrated that the copolymerization of monomer 1 containing diethylenetriamine moieties and monomer 2 containing guanidyl ligands could generate an efficient delivery platform for different forms of CRISPR-Cas9-based genome editors, including plasmid, mRNA, and protein. The excellent delivery performance of designed poly(disulfide)s stems from their delicate molecular structures to interact with genome-editing biomacromolecules, unique delivery pathways to mediate the cellular uptake of CRISPR-Cas9 cargoes, and strong ability to escape the endosome. The degradation of poly(disulfide)s by intracellular glutathione not only promotes the timely release of CRISPR-Cas9 machineries into the cytosol but also minimizes the cytotoxicity that nondegradable polymeric carriers often encounter. These merits collectively account for the excellent ability of poly(disulfide)s to mediate different forms of CRISPR-Cas9 for their efficient genome-editing activities in vitro and in vivo.
Collapse
Affiliation(s)
- Jiajing Guo
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Wan
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu
Laboratory, Zhejiang University Medical
Center, Hangzhou 311121, China
| | - Bowen Li
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Pan
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huhu Xin
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yayu Qiu
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yuan Ping
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu
Laboratory, Zhejiang University Medical
Center, Hangzhou 311121, China
- E-mail:
| |
Collapse
|
9
|
Jo H, Kitao T, Kimura A, Itoh Y, Aida T, Okuro K. Bio-adhesive Nanoporous Module: Toward Autonomous Gating. Angew Chem Int Ed Engl 2021; 60:8932-8937. [PMID: 33528083 DOI: 10.1002/anie.202017117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 12/15/2022]
Abstract
Here we report a bio-adhesive porous organic module (Glue COF) composed of hexagonally packed 1D nanopores based on a covalent organic framework. The nanopores are densely decorated with guanidinium ion (Gu+ ) pendants capable of forming salt bridges with oxyanionic species. Glue COF strongly adheres to biopolymers through multivalent salt-bridging interactions with their ubiquitous oxyanionic species. By taking advantage of its strong bio-adhesive nature, we succeeded in creating a gate that possibly opens the nanopores through a selective interaction with a reporter chemical and releases guest molecules. We chose calmodulin (CaM) as a gating component that can stably entrap a loaded guest, sulforhodamine B (SRB), within the nanopores (CaM COF⊃SRB). CaM is known to change its conformation on binding with Ca2+ ions. We confirmed that mixing CaM COF⊃SRB with Ca2+ resulted in the release of SRB from the nanopores, whereas the use of weakly binding Mg2+ ions resulted in a much slower release of SRB.
Collapse
Affiliation(s)
- Hyuna Jo
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences and Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Chiba, 227-8561, Japan
| | - Ayumi Kimura
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshimitsu Itoh
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
10
|
Jo H, Kitao T, Kimura A, Itoh Y, Aida T, Okuro K. Bio‐adhesive Nanoporous Module: Toward Autonomous Gating. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hyuna Jo
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Kitao
- Department of Advanced Materials Science Graduate School of Frontier Sciences and Department of Applied Chemistry Graduate School of Engineering The University of Tokyo Chiba 227-8561 Japan
| | - Ayumi Kimura
- Institute of Engineering Innovation The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshimitsu Itoh
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| |
Collapse
|
11
|
Le Saux S, Aubert‐Pouëssel A, Ouchait L, Mohamed KE, Martineau P, Guglielmi L, Devoisselle J, Legrand P, Chopineau J, Morille M. Nanotechnologies for Intracellular Protein Delivery: Recent Progress in Inorganic and Organic Nanocarriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sarah Le Saux
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | | | - Lyria Ouchait
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | | | | | | | | | | | - Joël Chopineau
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | - Marie Morille
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| |
Collapse
|
12
|
Hentzen NB, Mogaki R, Otake S, Okuro K, Aida T. Intracellular Photoactivation of Caspase-3 by Molecular Glues for Spatiotemporal Apoptosis Induction. J Am Chem Soc 2020; 142:8080-8084. [DOI: 10.1021/jacs.0c01823] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nina B. Hentzen
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Rina Mogaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Saya Otake
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Matsuno R, Kokubo Y, Kumagai S, Takamatsu S, Hashimoto K, Takahara A. Molecular Design and Characterization of Ionic Monomers with Varying Ion Pair Interaction Energies. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02731] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryosuke Matsuno
- KOINE project Division Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yota Kokubo
- Sumitomo Riko Company, 1 Higashi 3-chome, Komaki, Aichi 485-8550, Japan
| | - Shinji Kumagai
- Sumitomo Riko Company, 1 Higashi 3-chome, Komaki, Aichi 485-8550, Japan
| | | | - Kazunobu Hashimoto
- KOINE project Division Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
- Sumitomo Riko Company, 1 Higashi 3-chome, Komaki, Aichi 485-8550, Japan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
15
|
Hoshino Y, Shimohara S, Wada Y, Nakamoto M, Miura Y. Affinity purification of multifunctional oligomeric ligands synthesizedviacontrolled radical polymerization. J Mater Chem B 2020; 8:5597-5601. [DOI: 10.1039/d0tb00849d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abiotic oligomeric ligands with a strong affinity for a target peptide sequence were isolated by affinity purification from a pool of 30-mer acrylic random ter-oligomers that were synthesizedviaa controlled radical polymerization process.
Collapse
Affiliation(s)
- Yu Hoshino
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Shinnosuke Shimohara
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yusuke Wada
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Masahiko Nakamoto
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yoshiko Miura
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
16
|
Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials 2019; 218:119358. [DOI: 10.1016/j.biomaterials.2019.119358] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
|
17
|
Lv S, Duan T, Li H. Engineering Protein-Clay Nanosheets Composite Hydrogels with Designed Arginine-Rich Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7255-7260. [PMID: 31083892 DOI: 10.1021/acs.langmuir.9b00701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Clay nanosheets (CNSs) have been widely used in the design of nanocomposite biomaterials. CNSs display a disk-like morphology with strong negatively charged surfaces. It has been shown that guanidinium-containing molecules can bind CNSs through noncovalent salt-bridge interactions and thus serve as "molecular glues" for CNSs. Making use of the guanidinium side chain in arginine, here, we designed novel arginine-rich elastomeric proteins to engineer protein-CNS nanocomposite hydrogels. Our results showed that these arginine-rich proteins can interact with CNSs effectively and can cross-link CNSs into hydrogels. Rheological measurements showed that mechanical properties of the resultant hydrogels depended on the arginine content in the arginine-rich proteins as well as CNS/protein concentration. Compared with hydrogels constructed from CNSs or proteins alone, the novel protein-CNS nanocomposite hydrogels show much improved mechanical properties. Our work opens up a new avenue to engineer functional protein hydrogels for various applications.
Collapse
Affiliation(s)
- Shanshan Lv
- Department of Chemistry , The University of British Columbia , Vancouver , BC V6T 1Z1 , Canada
- State Key Laboratory of Organic-Inorganic Composite Materials , Beijing University of Chemical Technology , Beijing , 100029 , P. R. China
| | - Tianyu Duan
- Department of Chemistry , The University of British Columbia , Vancouver , BC V6T 1Z1 , Canada
| | - Hongbin Li
- Department of Chemistry , The University of British Columbia , Vancouver , BC V6T 1Z1 , Canada
| |
Collapse
|
18
|
Mogaki R, Okuro K, Ueki R, Sando S, Aida T. Molecular Glue that Spatiotemporally Turns on Protein–Protein Interactions. J Am Chem Soc 2019; 141:8035-8040. [DOI: 10.1021/jacs.9b02427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rina Mogaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
19
|
Sun D, Sun Z, Jiang H, Vaidya AM, Xin R, Ayat NR, Schilb AL, Qiao PL, Han Z, Naderi A, Lu ZR. Synthesis and Evaluation of pH-Sensitive Multifunctional Lipids for Efficient Delivery of CRISPR/Cas9 in Gene Editing. Bioconjug Chem 2019; 30:667-678. [PMID: 30582790 PMCID: PMC6429435 DOI: 10.1021/acs.bioconjchem.8b00856] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/20/2018] [Indexed: 01/06/2023]
Abstract
CRISPR/Cas9 system is a promising approach for gene editing in gene therapy. Effective gene editing requires safe and efficient delivery of CRISPR/Cas9 system in target cells. Several new multifunctional pH-sensitive amino lipids were designed and synthesized with modification of the amino head groups for intracellular delivery of CRISPR/Cas9 system. These multifunctional pH-sensitive amino lipids exhibited structurally dependent formulation of stable nanoparticles with the DNA plasmids of CRISPR/Cas9 system with the sizes ranging from 100 to 200 nm. The amino lipid plasmid DNA nanoparticles showed pH-sensitive hemolysis with minimal hemolytic activity at pH 7.4 and increased hemolysis at acidic pH (pH = 5.5, 6.5). The nanoparticles exhibited low cytotoxicity at an N/P ratio of 10. Expression of both Cas9 and sgRNA of the CRISPR/Cas9 system was in the range from 4.4% to 33%, dependent on the lipid structure in NIH3T3-GFP cells. The amino lipids that formed stable nanoparticles with high expression of both Cas9 and sgRNA mediated high gene editing efficiency. ECO and iECO mediated more efficient gene editing than other tested lipids. ECO mediated up to 50% GFP suppression based on observations with confocal microscopy and nearly 80% reduction of GFP mRNA based on RT-PCR measurement in NIH3T3-GFP cells. The multifunctional pH-sensitive amino lipids have the potential for efficient intracellular delivery of CRISPR/Cas9 for effective gene editing.
Collapse
Affiliation(s)
| | | | - Hongfa Jiang
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Amita M. Vaidya
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Rui Xin
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nadia R. Ayat
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew L. Schilb
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Peter L. Qiao
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zheng Han
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Amirreza Naderi
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zheng-Rong Lu
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
20
|
Kohata A, Hashim PK, Okuro K, Aida T. Transferrin-Appended Nanocaplet for Transcellular siRNA Delivery into Deep Tissues. J Am Chem Soc 2019; 141:2862-2866. [DOI: 10.1021/jacs.8b12501] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ai Kohata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - P. K. Hashim
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
21
|
|
22
|
Li S, Chen C, Zhang Z, Wang D, Lv S. Illustration and application of enhancing effect of arginine on interactions between nano-clays: self-healing hydrogels. SOFT MATTER 2019; 15:303-311. [PMID: 30556077 DOI: 10.1039/c8sm02188k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nano-clays (NCs) as a representative type of nano-materials are a source of inspiration for design of new biomedical materials with excellent performances. Research has shown that guanidinium ions (Gu+) can form non-covalent salt-bridge interactions with NCs, serving as "molecular glue" in the fabrication of NC-based composites. However, synthesis of the Gu+-containing molecules is always not easy. Since the natural amino acid arginine (Arg) possesses Gu+, Arg could potentially be a replacement for the synthetic molecules. To prove this possibility, nano-composites were constructed by combining model anisotropic NCs with Arg-modified nano-hydroxyapatite (nHAP-Arg) and polyarginine (poly-Arg), respectively. Formation of molecular interactions between NCs and nHAP-Arg/poly-Arg was demonstrated by enhanced gelation behaviour of NCs. Through taking the unique advantage of Arg, this study can be readily implemented in constructing a variety of NC-based composites with diverse functionalities that are necessary for potential applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shouchuan Li
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | | | | | | | | |
Collapse
|
23
|
Inaba H, Yamamoto T, Iwasaki T, Kabir AMR, Kakugo A, Sada K, Matsuura K. Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide. Chem Commun (Camb) 2019; 55:9072-9075. [DOI: 10.1039/c9cc04345d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Encapsulation of the GFP inside microtubules by using a Tau-derived peptide increased the stability, rigidity, and velocity of microtubules.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology
- Graduate School of Engineering, Tottori University
- Tottori 680-8552
- Japan
- Centre for Research on Green Sustainable Chemistry
| | - Takahisa Yamamoto
- Department of Chemistry and Biotechnology
- Graduate School of Engineering, Tottori University
- Tottori 680-8552
- Japan
| | - Takashi Iwasaki
- Department of Bioresources Science, Graduate School of Agricultural Sciences
- Tottori University
- Tottori 680-8553
- Japan
| | | | - Akira Kakugo
- Faculty of Science, Hokkaido University
- Sapporo 060-0810
- Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University
- Sapporo 060-0810
| | - Kazuki Sada
- Faculty of Science, Hokkaido University
- Sapporo 060-0810
- Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University
- Sapporo 060-0810
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology
- Graduate School of Engineering, Tottori University
- Tottori 680-8552
- Japan
- Centre for Research on Green Sustainable Chemistry
| |
Collapse
|
24
|
Okuro K, Nemoto H, Mogaki R, Aida T. Dendritic Molecular Glues with Reductively Cleavable Guanidinium Ion Pendants: Highly Efficient Intracellular siRNA Delivery via Direct Translocation. CHEM LETT 2018. [DOI: 10.1246/cl.180551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Harei Nemoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rina Mogaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
25
|
Lian X, Shi D, Ma J, Cai X, Gu Z. Peptide dendrimer-crosslinked inorganic-organic hybrid supramolecular hydrogel for efficient anti-biofouling. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Arisaka A, Mogaki R, Okuro K, Aida T. Caged Molecular Glues as Photoactivatable Tags for Nuclear Translocation of Guests in Living Cells. J Am Chem Soc 2018; 140:2687-2692. [DOI: 10.1021/jacs.7b13614] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Akio Arisaka
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rina Mogaki
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Lu D, Li Y, Wang X, Li T, Zhang Y, Guo H, Sun S, Wang X, Zhang Y, Lei Z. All-in-one hyperbranched polypeptides for surgical adhesives and interventional embolization of tumors. J Mater Chem B 2018; 6:7511-7520. [DOI: 10.1039/c8tb01015c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of hyperbranched, thermo-responsive and mussel-inspired polypeptides were synthesized and used for surgical adhesion, hemostasis and interventional embolization.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Yunfei Li
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Xiangya Wang
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Ting’e Li
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Yongyong Zhang
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Hongyun Guo
- Institute of Gansu Medical Science Research
- Gansu Provincial Cancer Hospital
- Lanzhou
- P. R. China
| | - Shaobo Sun
- Gansu University of Chinese Medicine
- Lanzhou
- P. R. China
| | - Xiaoqi Wang
- Institute of Gansu Medical Science Research
- Gansu Provincial Cancer Hospital
- Lanzhou
- P. R. China
| | - Yongdong Zhang
- Institute of Gansu Medical Science Research
- Gansu Provincial Cancer Hospital
- Lanzhou
- P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-environment-related Polymer Materials Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| |
Collapse
|
28
|
Koide H, Tsuchida H, Nakamoto M, Okishima A, Ariizumi S, Kiyokawa C, Asai T, Hoshino Y, Oku N. Rational designing of an antidote nanoparticle decorated with abiotic polymer ligands for capturing and neutralizing target toxins. J Control Release 2017; 268:335-342. [PMID: 29061513 DOI: 10.1016/j.jconrel.2017.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/10/2017] [Accepted: 10/15/2017] [Indexed: 11/19/2022]
Abstract
Many of macromolecular toxins induce cell death by directly interacting with cells or induction of inflammatory cytokines. Abiotic polymer ligands (PLs) composed of functional monomers are able to bind and neutralize toxins in vivo and are of great interest for efficient antidotes. However, little has been reported about recognition and neutralization of target molecules in the bloodstream because of readily elimination from the bloodstream. Here, we report a rational design of PLs-decorated lipid nanoparticles (PL-NPs) for neutralizing a target toxin in vivo. PL that decorated on the NPs would cooperatively interacts with target biomacromolecules since the lipid molecules in NPs have a high degree of freedom. In the present study, N-isopropylacrylamide based PLs interacting with histones, major mediators of sepsis, were synthesized. Affinity between PL-NPs and histones depends on monomer composition and polymer length. The optimized PL-NP showed little affinity for plasma proteins. The PL-NPs inhibited the toxicity of histones both in vitro and in vivo, suggesting that PLs on the NPs cooperatively bound to histones and neutralized their toxicity. In addition, circulation time of optimized PL was significantly prolonged by the modification onto NPs. These results provide a platform for designing antidote nanoparticles neutralizing toxic biomacromolecules.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroki Tsuchida
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Masahiko Nakamoto
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Anna Okishima
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Saki Ariizumi
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Chiaki Kiyokawa
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
29
|
Zhang P, Wang Y, Lian J, Shen Q, Wang C, Ma B, Zhang Y, Xu T, Li J, Shao Y, Xu F, Zhu JJ. Engineering the Surface of Smart Nanocarriers Using a pH-/Thermal-/GSH-Responsive Polymer Zipper for Precise Tumor Targeting Therapy In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702311. [PMID: 28719022 DOI: 10.1002/adma.201702311] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Nanocarrier surface chemistry plays a vital role in mediating cell internalization and enhancing delivery efficiency during in vivo chemotherapy. Inspired by the ability of proteins to alter their conformation to mediate functions, a pH-/thermal-/glutathione-responsive polymer zipper consisting of cell-penetrating poly(disulfide)s and thermosensitive polymers bearing guanidinium/phosphate (Gu+ /pY- ) motifs to spatiotemporally tune the surface composition of nanocarriers for precise tumor targeting and efficient drug delivery is developed. Surface engineering allows the nanocarriers to remain undetected during blood circulation and favors passive accumulation at tumor sites, where the acidic microenvironment and photothermal heating break the pY- /Gu+ binding and rupture the zipper, thereby exposing the penetrating shell and causing enhanced cellular uptake via counterion-/thiol-/receptor-mediated endocytosis. The in vivo study demonstrates that by manipulating the surface states on command, the nanocarriers show longer blood circulation time, minimized uptake and drug leakage in normal organs, and enhanced accumulation and efficient drug release at tumor sites, greatly inhibiting tumor growth with only slight damage to normal tissues. If integrated with a photothermal dye approved by the U.S. Food and Drug Administration (FDA), polymer zipper would provide a versatile protocol for engineering nanomedicines with high selectivity and efficiency for clinical cancer treatment.
Collapse
Affiliation(s)
- Penghui Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jing Lian
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Chen Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Bohan Ma
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuchao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Tingting Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jianxin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yongping Shao
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
30
|
Mogaki R, Okuro K, Aida T. Adhesive Photoswitch: Selective Photochemical Modulation of Enzymes under Physiological Conditions. J Am Chem Soc 2017; 139:10072-10078. [DOI: 10.1021/jacs.7b05151] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rina Mogaki
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
| | - Kou Okuro
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
31
|
Lu D, Wang H, Li T, Li Y, Dou F, Sun S, Guo H, Liao S, Yang Z, Wei Q, Lei Z. Mussel-Inspired Thermoresponsive Polypeptide-Pluronic Copolymers for Versatile Surgical Adhesives and Hemostasis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16756-16766. [PMID: 28472883 DOI: 10.1021/acsami.6b16575] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inspired by marine mussel adhesive proteins, polymers with catechol side groups have been extensively explored in industrial and academic research. Here, Pluronic L-31 alcoholate ions were used as the initiator to prepare a series of polypeptide-Pluronic-polypeptide triblock copolymers via ring-opening polymerization of l-DOPA-N-carboxyanhydride (DOPA-NCA), l-arginine-NCA (Arg-NCA), l-cysteine-NCA (Cys-NCA), and ε-N-acryloyl lysine-NCA (Ac-Lys-NCA). These copolymers demonstrated good biodegradability, biocompatibility, and thermoresponsive properties. Adhesion tests using porcine skin and bone as adherends demonstrated lap-shear adhesion strengths up to 106 kPa and tensile adhesion strengths up to 675 kPa. The antibleeding activity and tissue adhesive ability were evaluated using a rat model. These polypeptide-Pluronic copolymer glues showed superior hemostatic properties and superior effects in wound healing and osteotomy gaps. Complete healing of skin incisions and remodeling of osteotomy gaps were observed in all rats after 14 and 60 days, respectively. These copolymers have potential uses as tissue adhesives, antibleeding, and tissue engineering materials.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Hongsen Wang
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Ting'e Li
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Yunfei Li
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Fajuan Dou
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Shaobo Sun
- School of Basic Medical Sciences, Gansu University of Chinese Medicine , Lanzhou 730000, China
| | - Hongyun Guo
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital , Lanzhou 730050, China
| | - Shiqi Liao
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital , Lanzhou 730050, China
| | - Zhiwang Yang
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Qiangbing Wei
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou 730070, China
| |
Collapse
|
32
|
Chang H, Lv J, Gao X, Wang X, Wang H, Chen H, He X, Li L, Cheng Y. Rational Design of a Polymer with Robust Efficacy for Intracellular Protein and Peptide Delivery. NANO LETTERS 2017; 17:1678-1684. [PMID: 28206763 DOI: 10.1021/acs.nanolett.6b04955] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The efficient delivery of biopharmaceutical drugs such as proteins and peptides into the cytosol of target cells poses substantial challenges owing to their large size and susceptibility to degradation. Current protein delivery vehicles have limitations such as the need for protein modification, insufficient delivery of large-size proteins or small peptides, and loss of protein function after the delivery. Here, we adopted a rational approach to design a polymer with robust efficacy for intracellular protein and peptide delivery. The polymer is composed of a dendrimer scaffold, a hydrophobic membrane-disruptive region, and a multivalent protein binding surface. It allows efficient protein/peptide binding, endocytosis, and endosomal disruption and is capable of efficiently delivering various biomacromolecules including bovine serum albumin, R-phycoerythrin, p53, saporin, β-galactosidase, and peptides into the cytosol of living cells. Transduction of apoptotic proteins and peptides successfully induces apoptosis in cancer cells, suggesting that the activities of proteins and peptides are maintained during the delivery. This technology represents an efficient and useful tool for intracellular protein and peptide delivery and has broad applicability for basic research and clinical applications.
Collapse
Affiliation(s)
- Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Jia Lv
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Xin Gao
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University , Shanghai, 200003, P. R. China
| | - Xing Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Hui Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Hui Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Xu He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| |
Collapse
|
33
|
Li Z, Zhang YM, Wang HY, Li H, Liu Y. Mechanical Behaviors of Highly Swollen Supramolecular Hydrogels Mediated by Pseudorotaxanes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02459] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhiqiang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | | | - Huan-Yu Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Huanrong Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | | |
Collapse
|
34
|
D’Urso A, Marino N, Gaeta M, Rizzo MS, Cristaldi DA, Fragalà ME, Pappalardo S, Gattuso G, Notti A, Parisi MF, Pisagatti I, Purrello R. Porphyrin stacks as an efficient molecular glue to induce chirality in hetero-component calixarene–porphyrin assemblies. NEW J CHEM 2017. [DOI: 10.1039/c7nj00890b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porphyrins act as a sort of “molecular glue” in directional self-assembly of water-soluble multi-component porphyrin–calixarene architectures, allowing transfer of chirality to the supramolecular level.
Collapse
|
35
|
Mogaki R, Hashim PK, Okuro K, Aida T. Guanidinium-based “molecular glues” for modulation of biomolecular functions. Chem Soc Rev 2017; 46:6480-6491. [DOI: 10.1039/c7cs00647k] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This tutorial review highlights “molecular glues” designed for manipulation of biomolecular assemblies, drug delivery systems, and modulation of biomolecular functions.
Collapse
Affiliation(s)
- Rina Mogaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo
- Tokyo 113-8656
- Japan
| | - P. K. Hashim
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo
- Tokyo 113-8656
- Japan
- Riken Center for Emergent Matter Science
- Saitama 351-0198
| |
Collapse
|
36
|
Wang X, Shi C, Zhang L, Bodman A, Guo D, Wang L, Hall WA, Wilkens S, Luo J. Affinity-controlled protein encapsulation into sub-30 nm telodendrimer nanocarriers by multivalent and synergistic interactions. Biomaterials 2016; 101:258-71. [PMID: 27294543 PMCID: PMC4921341 DOI: 10.1016/j.biomaterials.2016.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 02/03/2023]
Abstract
Novel nanocarriers are highly demanded for the delivery of heterogeneous protein therapeutics for disease treatments. Conventional nanoparticles for protein delivery are mostly based on the diffusion-limiting mechanisms, e.g., physical trapping and entanglement. We develop herein a novel linear-dendritic copolymer (named telodendrimer) nanocarrier for efficient protein delivery by affinitive coating. This affinity-controlled encapsulation strategy provides nanoformulations with a small particle size (<30 nm), superior loading capacity (>50% w/w) and maintained protein bioactivity. We integrate multivalent electrostatic and hydrophobic functionalities synergistically into the well-defined telodendrimer scaffold to fine-tune protein binding affinity and delivery properties. The ion strength and density of the charged groups as well as the structure of the hydrophobic segments are important and their combinations in telodendrimers are crucial for efficient protein encapsulation. We have conducted a series of studies to understand the mechanism and kinetic process of the protein loading and release, utilizing electrophoresis, isothermal titration calorimetry, Förster resonance energy transfer spectroscopy, bio-layer interferometry and computational methods. The optimized nanocarriers are able to deliver cell-impermeable therapeutic protein intracellularly to kill cancer cells efficiently. In vivo imaging studies revealed cargo proteins preferentially accumulate in subcutaneous tumors and retention of peptide therapeutics is improved in an orthotopic brain tumor, these properties are evidence of the improved pharmacokinetics and biodistributions of protein therapeutics delivered by telodendrimer nanoparticles. This study presents a bottom-up strategy to rationally design and fabricate versatile nanocarriers for encapsulation and delivery of proteins for numerous applications.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Li Zhang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Alexa Bodman
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Lili Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Walter A Hall
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
37
|
Okuro K, Sasaki M, Aida T. Boronic Acid-Appended Molecular Glues for ATP-Responsive Activity Modulation of Enzymes. J Am Chem Soc 2016; 138:5527-30. [PMID: 27087468 DOI: 10.1021/jacs.6b02664] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water-soluble linear polymers GumBAn (m/n = 18/6, 12/12, and 6/18) with multiple guanidinium ion (Gu(+)) and boronic acid (BA) pendants in their side chains were synthesized as ATP-responsive modulators for enzyme activity. GumBAn polymers strongly bind to the phosphate ion (PO4(-)) and 1,2-diol units of ATP via the Gu(+) and BA pendants, respectively. As only the Gu(+) pendants can be used for proteins, GumBAn is able to modulate the activity of enzymes in response to ATP. As a proof-of-concept study, we demonstrated that trypsin (Trp) can be deactivated by hybridization with GumBAn. However, upon addition of ATP, Trp was liberated to retrieve its hydrolytic activity due to a higher preference of GumBAn toward ATP than Trp. This event occurred in a much lower range of [ATP] than reported examples. Under cellular conditions, the hydrolytic activity of Trp was likewise modulated.
Collapse
Affiliation(s)
- Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mizuki Sasaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,RIKEN Center for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
38
|
Hatano J, Okuro K, Aida T. Photoinduced Bioorthogonal 1,3-Dipolar Poly-cycloaddition Promoted by Oxyanionic Substrates for Spatiotemporal Operation of Molecular Glues. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201507987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Hashim PK, Okuro K, Sasaki S, Hoashi Y, Aida T. Reductively Cleavable Nanocaplets for siRNA Delivery by Template-Assisted Oxidative Polymerization. J Am Chem Soc 2015; 137:15608-11. [DOI: 10.1021/jacs.5b08948] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- P. K. Hashim
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shigekazu Sasaki
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasutaka Hoashi
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takuzo Aida
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for
Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
40
|
Hatano J, Okuro K, Aida T. Photoinduced Bioorthogonal 1,3-Dipolar Poly-cycloaddition Promoted by Oxyanionic Substrates for Spatiotemporal Operation of Molecular Glues. Angew Chem Int Ed Engl 2015; 55:193-8. [DOI: 10.1002/anie.201507987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/06/2015] [Indexed: 01/02/2023]
|
41
|
Bazzicalupi C, Bianchi A, Giorgi C, Savastano M, Morales-Lara F. ATP dephosphorylation can be either enhanced or inhibited by pH-controlled interaction with a dendrimer molecule. Chem Commun (Camb) 2015; 51:3907-10. [PMID: 25656836 DOI: 10.1039/c5cc00350d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Synthetic polyammonium/polyamine receptors are known to enhance ATP dephosphorylation in solution. ATP interaction with a G-3 poly(ethylene imine) dendrimer shows an unprecedented behaviour, the dendrimer catalyst being able to enhance or inhibit dephosphorylation of the nucleotide depending on the solution pH.
Collapse
Affiliation(s)
- Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | |
Collapse
|
42
|
Kojima C, Kameyama R, Yamada M, Ichikawa M, Waku T, Handa A, Tanaka N. Ovalbumin Delivery by Guanidine-Terminated Dendrimers Bearing an Amyloid-Promoting Peptide via Nanoparticle Formulation. Bioconjug Chem 2015; 26:1804-10. [DOI: 10.1021/acs.bioconjchem.5b00325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chie Kojima
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Rina Kameyama
- Faculty
of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Manami Yamada
- Faculty
of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masahiro Ichikawa
- Faculty
of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tomonori Waku
- Faculty
of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Akihiro Handa
- R&D Division, Kewpie Corporation, 2-5-7 Sengawa-cho, Chofu-shi, Tokyo, 182-002, Japan
| | - Naoki Tanaka
- Faculty
of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
43
|
Self-Assembly of Amphiphilic Janus Dendrimers into Mechanically Robust Supramolecular Hydrogels for Sustained Drug Release. Chemistry 2015; 21:14433-9. [DOI: 10.1002/chem.201501812] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 12/30/2022]
|
44
|
Chen S, Itoh Y, Masuda T, Shimizu S, Zhao J, Ma J, Nakamura S, Okuro K, Noguchi H, Uosaki K, Aida T. Ionic interactions. Subnanoscale hydrophobic modulation of salt bridges in aqueous media. Science 2015; 348:555-9. [PMID: 25931555 DOI: 10.1126/science.aaa7532] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polar interactions such as electrostatic forces and hydrogen bonds play an essential role in biological molecular recognition. On a protein surface, polar interactions occur mostly in a hydrophobic environment because nonpolar amino acid residues cover ~75% of the protein surface. We report that ionic interactions on a hydrophobic surface are modulated by their subnanoscale distance to the surface. We developed a series of ionic head groups-appended self-assembled monolayers with C2, C6, C8, and C12 space-filling alkyl chains, which capture a dendritic guest via the formation of multiple salt bridges. The guest release upon protonolysis is progressively suppressed when its distance from the background hydrophobe changes from 1.2 (C2) to 0.2 (C12) nanometers, with an increase in salt bridge strength of ~3.9 kilocalories per mole.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshimitsu Itoh
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takuya Masuda
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Jun Zhao
- Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Jing Ma
- Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Shugo Nakamura
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hidenori Noguchi
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan. International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan. Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kohei Uosaki
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan. International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan. Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
45
|
Mogaki R, Okuro K, Aida T. Molecular glues for manipulating enzymes: trypsin inhibition by benzamidine-conjugated molecular glues. Chem Sci 2015; 6:2802-2805. [PMID: 28706668 PMCID: PMC5489047 DOI: 10.1039/c5sc00524h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/16/2015] [Indexed: 11/21/2022] Open
Abstract
Water-soluble bioadhesive polymers bearing multiple guanidinium ion (Gu+) pendants at their side-chain termini (Glue n -BA, n = 10 and 29) that were conjugated with benzamidine (BA) as a trypsin inhibitor were developed. The Glue n -BA molecules are supposed to adhere to oxyanionic regions of the trypsin surface, even in buffer, via a multivalent Gu+/oxyanion salt-bridge interaction, such that their BA group properly blocks the substrate-binding site. In fact, Glue10-BA and Glue29-BA exhibited 35- and 200-fold higher affinities for trypsin, respectively, than a BA derivative without the glue moiety (TEG-BA). Most importantly, Glue10-BA inhibited the protease activity of trypsin 13-fold more than TEG-BA. In sharp contrast, m Glue27-BA, which bears 27 Gu+ units along the main chain and has a 5-fold higher affinity than TEG-BA for trypsin, was inferior even to TEG-BA for trypsin inhibition.
Collapse
Affiliation(s)
- Rina Mogaki
- Department of Chemistry and Biotechnology , School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . ; ; Tel: +81-3-5841-7251
| | - Kou Okuro
- Department of Chemistry and Biotechnology , School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . ; ; Tel: +81-3-5841-7251
| | - Takuzo Aida
- Department of Chemistry and Biotechnology , School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . ; ; Tel: +81-3-5841-7251
- RIKEN Center for Emergent Matter Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| |
Collapse
|
46
|
Lee JH, Kim C, Jung JH. Control of the rheological properties of clay nanosheet hydrogels with a guanidinium-attached calix[4]arene binder. Chem Commun (Camb) 2015; 51:15184-7. [DOI: 10.1039/c5cc06024a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The CNS hydrogels prepared by combining calix[4]arene1with dispersed CNS surrounded with ASSP showed an enhancement of mechanical properties such as viscosity and elasticity.
Collapse
Affiliation(s)
- Ji Ha Lee
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju 660-701
- Korea
| | - Chaelin Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju 660-701
- Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju 660-701
- Korea
| |
Collapse
|
47
|
Qi X, Guan Y, Chen G, Zhang B, Ren J, Peng F, Sun R. A non-covalent strategy for montmorillonite/xylose self-healing hydrogels. RSC Adv 2015. [DOI: 10.1039/c5ra04115e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-healing capability of hydrogels has become a hot topic in the area of hydrogel research.
Collapse
Affiliation(s)
- Xianming Qi
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Ying Guan
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Bing Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
- State Key Laboratory of Pulp and Paper Engineering
| |
Collapse
|
48
|
Garzoni M, Okuro K, Ishii N, Aida T, Pavan GM. Structure and shape effects of molecular glue on supramolecular tubulin assemblies. ACS NANO 2014; 8:904-914. [PMID: 24351029 DOI: 10.1021/nn405653k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The possibility to arrange biological molecules into ordered nanostructures is an important issue in nano- and biotechnology. Nature offers a wide range of molecular "bricks" (e.g., proteins, oligonucleotides, etc.) that spontaneously assemble into more complex hierarchical systems with unique functionalities. Such molecular building blocks can be also used for the construction of nanomaterials with peculiar properties (e.g., DNA origami). In some cases, molecular glues able to bind biomolecules and to induce their assembly can be used to control the final structure and properties in a convenient way. Here we provide molecular-level description of how molecular glues designed to stick to the surface of microtubules (MTs) can control and transform the α/β-tubulin assembly upon temperature decreasing. By means of all-atom molecular dynamics (MD) simulations, we compared the adhesion to the MT surface of three molecular glues bearing the same guanidinium ion surface adhesive groups, but having different architecture, i.e., linear or dendritic backbone. Our evidence demonstrates that the adhesive properties of the different molecular glues are dependent on the shape they assume in solution. In particular, adhesion data from our MD simulations explain how globular- or linear-like molecular glues respectively stabilize MTs or transform them into a well-defined array of α/β-tubulin rings at 15 °C, where MTs naturally depolymerize. The comprehension of the MT transformation mechanism provides a useful rationale for designing ad hoc molecular glues to obtain ordered protein nanostructures from different biological materials.
Collapse
Affiliation(s)
- Matteo Garzoni
- Department of Innovative Technologies, University of Applied Science of Southern Switzerland , Galleria 2, Manno 6928, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Lu H, Wang J, Song Z, Yin L, Zhang Y, Tang H, Tu C, Lin Y, Cheng J. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chem Commun (Camb) 2014; 50:139-55. [DOI: 10.1039/c3cc46317f] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Tamesue S, Ohtani M, Yamada K, Ishida Y, Spruell JM, Lynd NA, Hawker CJ, Aida T. Linear versus Dendritic Molecular Binders for Hydrogel Network Formation with Clay Nanosheets: Studies with ABA Triblock Copolyethers Carrying Guanidinium Ion Pendants. J Am Chem Soc 2013; 135:15650-5. [DOI: 10.1021/ja408547g] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shingo Tamesue
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masataka Ohtani
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kuniyo Yamada
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jason M. Spruell
- Materials
and Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Nathaniel A. Lynd
- Materials
and Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Materials
and Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|