1
|
Harrison EE, Waters ML. Detection and differentiation of per- and polyfluoroalkyl substances (PFAS) in water using a fluorescent imprint-and-report sensor array. Chem Sci 2023; 14:928-936. [PMID: 36755732 PMCID: PMC9891069 DOI: 10.1039/d2sc05685b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Widespread industrial use of per- and polyfluoroalkyl substances (PFAS) as surfactants has led to global contamination of water sources with these persistent, highly stable chemicals. As a result, humans and wildlife are regularly exposed to PFAS, which have been shown to bioaccumulate and cause adverse health effects. Methods for detecting PFAS in water are currently limited and primarily utilize mass spectrometry (MS), which is time-consuming and requires expensive instrumentation. Thus, new methods are needed to rapidly and reliably assess the pollution level of water sources. While some fluorescent PFAS sensors exist, they typically function in high nanomolar or micromolar concentration ranges and focus on sensing only 1-2 individual PFAS. Our work aims to address this problem by developing a fluorescent sensor for both individual PFAS, as well as complex PFAS mixtures, and demonstrate its functionality in tap water samples. Here we show that dynamic combinatorial libraries (DCLs) with simple building blocks can be templated with a fluorophore and subsequently used as sensors to form an array that differentially detects each PFAS species and various mixtures thereof. Our method is a high-throughput analysis technique that allows many samples to be analyzed simultaneously with a plate reader. This is one of the first examples of a fluorescent PFAS sensor array that functions at low nanomolar concentrations, and herein we report its use for the rapid detection of PFAS contamination in water.
Collapse
Affiliation(s)
- Emily E. Harrison
- Department of Chemistry, University of North Carolina at Chapel HillChapel HillNorth Carolina 27599USA
| | - Marcey L. Waters
- Department of Chemistry, University of North Carolina at Chapel HillChapel HillNorth Carolina 27599USA
| |
Collapse
|
2
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201168. [PMID: 35447003 DOI: 10.1002/anie.202201168] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Sulfur has been important in dynamic covalent chemistry (DCC) since the beginning of the field. Mainly as part of disulfides and thioesters, dynamic sulfur-based bonds (DSBs) have a leading role in several remarkable reactions. Part of this success is due to the almost ideal properties of DSBs for the preparation of dynamic covalent systems, including high reactivity and good reversibility under mild aqueous conditions, the possibility of exploiting supramolecular interactions, access to isolable structures, and easy experimental control to turn the reaction on/off. DCC is currently witnessing an increase in the importance of DSBs. The chemical flexibility offered by DSBs opens the door to multiple applications. This Review presents an overview of all the DSBs used in DCC, their applications, and remarks on the interesting properties that they confer on dynamic chemical systems, especially those containing several DSBs.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
3
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfredo Gastón Orrillo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| | - Ricardo L. E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| |
Collapse
|
4
|
Au-Yeung HY, Deng Y. Distinctive features and challenges in catenane chemistry. Chem Sci 2022; 13:3315-3334. [PMID: 35432874 PMCID: PMC8943846 DOI: 10.1039/d1sc05391d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
From being an aesthetic molecular object to a building block for the construction of molecular machines, catenanes and related mechanically interlocked molecules (MIMs) continue to attract immense interest in many research areas. Catenane chemistry is closely tied to that of rotaxanes and knots, and involves concepts like mechanical bonds, chemical topology and co-conformation that are unique to these molecules. Yet, because of their different topological structures and mechanical bond properties, there are some fundamental differences between the chemistry of catenanes and that of rotaxanes and knots although the boundary is sometimes blurred. Clearly distinguishing these differences, in aspects of bonding, structure, synthesis and properties, between catenanes and other MIMs is therefore of fundamental importance to understand their chemistry and explore the new opportunities from mechanical bonds.
Collapse
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
5
|
Chen Y, Wu G, Chen B, Qu H, Jiao T, Li Y, Ge C, Zhang C, Liang L, Zeng X, Cao X, Wang Q, Li H. Self‐Assembly of a Purely Covalent Cage with Homochirality by Imine Formation in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yixin Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Binbin Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yintao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Chenqi Ge
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Chi Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Lixin Liang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xiuqiong Zeng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qi Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
6
|
Chen Y, Wu G, Chen B, Qu H, Jiao T, Li Y, Ge C, Zhang C, Liang L, Zeng X, Cao X, Wang Q, Li H. Self-Assembly of a Purely Covalent Cage with Homochirality by Imine Formation in Water. Angew Chem Int Ed Engl 2021; 60:18815-18820. [PMID: 34129262 DOI: 10.1002/anie.202106428] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Indexed: 11/11/2022]
Abstract
Self-assembly of host molecules in aqueous media via metal-ligand coordination is well developed. However, the preparation of purely covalent counterparts in water has remained a formidable task. An anionic tetrahedron cage was successfully self-assembled in a [4+4] manner by condensing a trisamine and a trisformyl in water. Even although each individual imine bond is rather labile and apt to hydrolyze in water, the tetrahedron is remarkably stable or inert due to multivalence. The tetrahedral cages, as well as its neutral counterparts dissolved in organic solvent, have homochirality, namely that their four propeller-shaped trisformyl residues adopt the same rotational conformation. The cage is able to take advantage of hydrophobic effect to accommodate a variety of guest molecules in water. When a chiral guest was recognized, the formation of one enantiomer of the cage became more favored relative to the other. As a consequence, the cage could be produced in an enantioselective manner. The tetrahedron is able to maintain its chirality after removal of the chiral guest-probably on account of the cooperative occurrence of intramolecular forces that restrict the intramolecular flipping of phenyl units in the cage framework.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Binbin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yintao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Chi Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Lixin Liang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xiuqiong Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qi Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
7
|
Gianga TM, Audibert E, Trandafir A, Kociok-Köhn G, Pantoş GD. Discovery of an all-donor aromatic [2]catenane. Chem Sci 2020; 11:9685-9690. [PMID: 34094233 PMCID: PMC8162110 DOI: 10.1039/d0sc04317f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report herein the first all-donor aromatic [2]catenane formed through dynamic combinatorial chemistry, using single component libraries. The building block is a benzo[1,2-b:4,5-b′]dithiophene derivative, a π-donor molecule, with cysteine appendages that allow for disulfide exchange. The hydrophobic effect plays an essential role in the formation of the all-donor [2]catenane. The design of the building block allows the formation of a quasi-fused pentacyclic core, which enhances the stacking interactions between the cores. The [2]catenane has chiro-optical and fluorescent properties, being also the first known DCC-disulphide-based interlocked molecule to be fluorescent. An all-donor [2]catenane has been synthesised via dynamic combinatorial chemistry. It features stacked benzodithiophenes which are quasi-pentacyclic through hydrogen bonding.![]()
Collapse
Affiliation(s)
| | | | | | - Gabriele Kociok-Köhn
- Materials and Chemical Characterisation Facility (MC2), University of Bath BA2 7AY Bath UK
| | - G Dan Pantoş
- Department of Chemistry, University of Bath BA2 7AY Bath UK
| |
Collapse
|
8
|
Hossain MM, Atkinson JL, Hartley CS. Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angew Chem Int Ed Engl 2020; 59:13807-13813. [PMID: 32384209 DOI: 10.1002/anie.202001523] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Dissipative assembly has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single short-lived covalent bond. Herein, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycles are assembled efficiently as a consequence of both fuel-dependent and fuel-independent mechanisms; they undergo slower decomposition, building up as the fuel recycles the components, and are a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.
Collapse
Affiliation(s)
| | - Joshua L Atkinson
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
9
|
Hossain MM, Atkinson JL, Hartley CS. Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Joshua L. Atkinson
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
10
|
Singh J, Kim DH, Kim EH, Kim H, Hadiputra R, Jung J, Chi KW. The First Quantitative Synthesis of a Closed Three-Link Chain (613) Using Coordination and Noncovalent Interactions-Driven Self-Assembly. J Am Chem Soc 2020; 142:9327-9336. [DOI: 10.1021/jacs.0c01406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Eun-Hee Kim
- Center for Research Equipments, Korea Basic Science Institute, Ochang, Chungbuk 28119, Republic of Korea
| | - Hyunuk Kim
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Rizky Hadiputra
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Jaehoon Jung
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| |
Collapse
|
11
|
Solà J, Jimeno C, Alfonso I. Exploiting complexity to implement function in chemical systems. Chem Commun (Camb) 2020; 56:13273-13286. [DOI: 10.1039/d0cc04170j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This feature article reflects a personal overview of the importance of complexity as an additional parameter to be considered in chemical research, being illustrated with selected examples in molecular recognition and catalysis.
Collapse
Affiliation(s)
- Jordi Solà
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia
- IQAC-CSIC
- 08034 Barcelona
- Spain
| | - Ciril Jimeno
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia
- IQAC-CSIC
- 08034 Barcelona
- Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia
- IQAC-CSIC
- 08034 Barcelona
- Spain
| |
Collapse
|
12
|
Mullins AG, St. Louis LE, Waters ML. Using changes in speciation in a dynamic combinatorial library as a fingerprint to differentiate the methylation states of arginine. Chem Commun (Camb) 2020; 56:3947-3950. [DOI: 10.1039/d0cc00415d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A dynamic combinatorial library was shown to provide a direct method of sensing methylated arginine and lysine due to differences in speciation. This provides the first sensor array for all the methylation states of arginine.
Collapse
Affiliation(s)
- Alexandria G. Mullins
- Department of Chemistry
- CB 3290
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Lauren E. St. Louis
- Department of Chemistry
- CB 3290
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Marcey L. Waters
- Department of Chemistry
- CB 3290
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| |
Collapse
|
13
|
Dehkordi ME, Luxami V, Pantoş GD. High-Yielding Synthesis of Chiral Donor–Acceptor Catenanes. J Org Chem 2018; 83:11654-11660. [DOI: 10.1021/acs.joc.8b01629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Vijay Luxami
- Department of Chemistry, University of Bath, Calverton Down, Bath BA27AY, U.K
| | - G. Dan Pantoş
- Department of Chemistry, University of Bath, Calverton Down, Bath BA27AY, U.K
| |
Collapse
|
14
|
Burke MJ, Nichol GS, Lusby PJ. Orthogonal Selection and Fixing of Coordination Self-Assembly Pathways for Robust Metallo-organic Ensemble Construction. J Am Chem Soc 2016; 138:9308-15. [DOI: 10.1021/jacs.6b05364] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Michael J. Burke
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Gary S. Nichol
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K
| |
Collapse
|
15
|
Abstract
A review covering the previous 25 years study into self-replicating systems.
Collapse
Affiliation(s)
- Gregory Clixby
- University of Sheffield
- Department of Chemistry
- Sheffield
- UK
| | - Lance Twyman
- University of Sheffield
- Department of Chemistry
- Sheffield
- UK
| |
Collapse
|
16
|
Beaver JE, Peacor BC, Bain JV, James LI, Waters ML. Contributions of pocket depth and electrostatic interactions to affinity and selectivity of receptors for methylated lysine in water. Org Biomol Chem 2015; 13:3220-6. [PMID: 25437861 DOI: 10.1039/c4ob02231a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dynamic combinatorial chemistry was used to generate a set of receptors for peptides containing methylated lysine (KMen, n = 0-3) and study the contribution of electrostatic effects and pocket depth to binding affinity and selectivity. We found that changing the location of a carboxylate resulted in an increase in preference for KMe2, presumably based on ability to form a salt bridge with KMe2. The number of charged groups on either the receptor or peptide guest systematically varied the binding affinities to all guests by approximately 1-1.5 kcal mol(-1), with little influence on selectivity. Lastly, formation of a deeper pocket led to both increased affinity and selectivity for KMe3 over the lower methylation states. From these studies, we identified that the tightest binder was a receptor with greater net charge, with a Kd of 0.2 μM, and the receptor with the highest selectivity was the one with the deepest pocket, providing 14-fold selectivity between KMe3 and KMe2 and a Kd for KMe3 of 0.3 μM. This work provides key insights into approaches to improve binding affinity and selectivity in water, while also demonstrating the versatility of dynamic combinatorial chemistry for rapidly exploring the impact of subtle changes in receptor functionality on molecular recognition in water.
Collapse
Affiliation(s)
- Joshua E Beaver
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
17
|
Prusty S, Krishnaswamy S, Bandi S, Chandrika B, Luo J, McIndoe JS, Hanan GS, Chand DK. Reversible Mechanical Interlocking of D-Shaped Molecular Karabiners bearing Coordination-Bond Loaded Gates: Route to Self-Assembled [2]Catenanes. Chemistry 2015; 21:15174-87. [DOI: 10.1002/chem.201502394] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 12/17/2022]
|
18
|
Nowak P, Colomb-Delsuc M, Otto S, Li J. Template-Triggered Emergence of a Self-Replicator from a Dynamic Combinatorial Library. J Am Chem Soc 2015; 137:10965-9. [PMID: 26192814 DOI: 10.1021/jacs.5b04380] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Self-assembly of a specific member of a dynamic combinatorial library (DCL) may lead to self-replication of this molecule. However, if the concentration of the potential replicator in the DCL fails to exceed its critical aggregation concentration (CAC), then self-replication will not occur. We now show how addition of a template can raise the concentration of a library member-template complex beyond its CAC, leading to the onset of self-replication. Once in existence, the replicator aggregates promote further replication also in the absence of the template that induced the initial emergence of the replicator.
Collapse
Affiliation(s)
- Piotr Nowak
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mathieu Colomb-Delsuc
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jianwei Li
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
19
|
He Z, Ye G, Jiang W. Imine Macrocycle with a Deep Cavity: Guest-Selected Formation ofsyn/antiConfiguration and Guest-Controlled Reconfiguration. Chemistry 2014; 21:3005-12. [DOI: 10.1002/chem.201405912] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Indexed: 12/15/2022]
|
20
|
Li J, Nowak P, Otto S. An Allosteric Receptor by Simultaneous “Casting” and “Molding” in a Dynamic Combinatorial Library. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Li J, Nowak P, Otto S. An allosteric receptor by simultaneous "casting" and "molding" in a dynamic combinatorial library. Angew Chem Int Ed Engl 2014; 54:833-7. [PMID: 25430978 DOI: 10.1002/anie.201408907] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/31/2014] [Indexed: 01/13/2023]
Abstract
Allosteric synthetic receptors are difficult to access by design. Herein we report a dynamic combinatorial strategy towards such systems based on the simultaneous use of two different templates. Through a process of simultaneous casting (the assembly of a library member around a template) and molding (the assembly of a library member inside the binding pocket of a template), a Russian-doll-like termolecular complex was obtained with remarkable selectivity. Analysis of the stepwise formation of the complex indicates that binding of the two partners by the central macrocycle exhibits significant positive cooperativity. Such allosteric systems represent hubs that may have considerable potential in systems chemistry.
Collapse
Affiliation(s)
- Jianwei Li
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
| | | | | |
Collapse
|
22
|
Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev 2014; 43:1899-933. [PMID: 24296754 DOI: 10.1039/c3cs60336a] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.
Collapse
Affiliation(s)
- Andreas Herrmann
- Firmenich SA, Division Recherche et Développement, Route des Jeunes 1, B. P. 239, CH-1211 Genève 8, Switzerland.
| |
Collapse
|
23
|
Fanlo-Virgós H, Alba ANR, Hamieh S, Colomb-Delsuc M, Otto S. Transient substrate-induced catalyst formation in a dynamic molecular network. Angew Chem Int Ed Engl 2014; 53:11346-50. [PMID: 25169198 DOI: 10.1002/anie.201403480] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/02/2014] [Indexed: 11/06/2022]
Abstract
In biology enzyme concentrations are continuously regulated, yet for synthetic catalytic systems such regulatory mechanisms are underdeveloped. We now report how a substrate of a chemical reaction induces the formation of its own catalyst from a dynamic molecular network. After complete conversion of the substrate, the network disassembles the catalyst. These results open up new opportunities for controlling catalysis in synthetic chemical systems.
Collapse
Affiliation(s)
- Hugo Fanlo-Virgós
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
| | | | | | | | | |
Collapse
|
24
|
Fanlo-Virgós H, Alba ANR, Hamieh S, Colomb-Delsuc M, Otto S. Transient Substrate-Induced Catalyst Formation in a Dynamic Molecular Network. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Matache M, Bogdan E, Hădade ND. Selective Host Molecules Obtained by Dynamic Adaptive Chemistry. Chemistry 2014; 20:2106-31. [DOI: 10.1002/chem.201303504] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Li J, Nowak P, Fanlo-Virgós H, Otto S. Catenanes from catenanes: quantitative assessment of cooperativity in dynamic combinatorial catenation. Chem Sci 2014. [DOI: 10.1039/c4sc01998a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A series of dynamic combinatorial [2] and [3]catenanes have been prepared. Formation of the [3]catenanes occurs with positive or negative cooperativity, depending on the cyclodextrin homologue. Systems level analysis allows cooperativity to be quantified and MD simulations reveal that cooperativity derives from the extents to which hydrophobic surface area is exposed to the aqueous surroundings.
Collapse
Affiliation(s)
- Jianwei Li
- Centre for Systems Chemistry
- Stratingh Institute
- University of Groningen
- 9747 AG Groningen, The Netherlands
| | - Piotr Nowak
- Centre for Systems Chemistry
- Stratingh Institute
- University of Groningen
- 9747 AG Groningen, The Netherlands
| | - Hugo Fanlo-Virgós
- Centre for Systems Chemistry
- Stratingh Institute
- University of Groningen
- 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry
- Stratingh Institute
- University of Groningen
- 9747 AG Groningen, The Netherlands
| |
Collapse
|
27
|
Mishra A, Dubey A, Min JW, Kim H, Stang PJ, Chi KW. Molecular self-assembly of arene-Ru based interlocked catenane metalla-cages. Chem Commun (Camb) 2014; 50:7542-4. [DOI: 10.1039/c4cc01991a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two interlocked and two simple trigonal prisms are formed through the coordination self-assembly of arene-Ru acceptors with a new tridentate donor.
Collapse
Affiliation(s)
- Anurag Mishra
- Department of Chemistry
- University of Ulsan
- Ulsan 680-749, Republic of Korea
| | - Abhishek Dubey
- Department of Chemistry
- University of Ulsan
- Ulsan 680-749, Republic of Korea
| | - Jin Wook Min
- Department of Chemistry
- University of Ulsan
- Ulsan 680-749, Republic of Korea
| | - Hyunuk Kim
- Energy Materials and Convergence Research Department
- Korea Institute of Energy Research
- Daejeon 305-343, Republic of Korea
| | - Peter J. Stang
- Department of Chemistry
- University of Utah
- Salt Lake City, USA
| | - Ki-Whan Chi
- Department of Chemistry
- University of Ulsan
- Ulsan 680-749, Republic of Korea
| |
Collapse
|
28
|
Ohishi T, Iki Y, Imato K, Higaki Y, Takahara A, Otsuka H. Insertion Metathesis Depolymerization of Aromatic Disulfide-containing Dynamic Covalent Polymers under Weak Intensity Photoirradiation. CHEM LETT 2013. [DOI: 10.1246/cl.130639] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tomoyuki Ohishi
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Yoko Iki
- Graduate School of Engineering, Kyushu University
| | - Keiichi Imato
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
- Graduate School of Engineering, Kyushu University
| | - Yuji Higaki
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Atsushi Takahara
- Graduate School of Engineering, Kyushu University
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Hideyuki Otsuka
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
- Graduate School of Engineering, Kyushu University
| |
Collapse
|
29
|
Hamieh S, Saggiomo V, Nowak P, Mattia E, Ludlow RF, Otto S. A “Dial-A-Receptor” Dynamic Combinatorial Library. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Hamieh S, Saggiomo V, Nowak P, Mattia E, Ludlow RF, Otto S. A “Dial-A-Receptor” Dynamic Combinatorial Library. Angew Chem Int Ed Engl 2013; 52:12368-72. [DOI: 10.1002/anie.201305744] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Indexed: 01/28/2023]
|
31
|
Li J, Nowak P, Otto S. Dynamic Combinatorial Libraries: From Exploring Molecular Recognition to Systems Chemistry. J Am Chem Soc 2013; 135:9222-39. [DOI: 10.1021/ja402586c] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianwei Li
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Piotr Nowak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
32
|
James LI, Beaver JE, Rice NW, Waters ML. A Synthetic Receptor for Asymmetric Dimethyl Arginine. J Am Chem Soc 2013; 135:6450-5. [DOI: 10.1021/ja307907p] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lindsey I. James
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27599, United States
| | - Joshua E. Beaver
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27599, United States
| | - Natalie W. Rice
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27599, United States
| | - Marcey L. Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27599, United States
| |
Collapse
|
33
|
Affiliation(s)
- Paweł Dydio
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (The Netherlands) fax: +31 20 525 5604 http://www.science.uva.nl/research/imc/HomKat/
| | - Pierre‐Alain R. Breuil
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (The Netherlands) fax: +31 20 525 5604 http://www.science.uva.nl/research/imc/HomKat/
- Current address: IFP Energies nouvelles Rond point de l'échangeur de Solaize, 69360 Solaize (France)
| | - Joost N. H. Reek
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (The Netherlands) fax: +31 20 525 5604 http://www.science.uva.nl/research/imc/HomKat/
| |
Collapse
|
34
|
Abstract
Since its inception in the mid-1990s, dynamic combinatorial chemistry (DCC), the chemistry of complex systems under thermodynamic control, has proved valuable in identifying unexpected molecules with remarkable binding properties and in providing effective synthetic routes to complex species. Essentially, in this approach, one designs the experiment rather than the molecule. DCC has also provided us with insights into how some chemical systems respond to external stimuli. Using examples from the work of our laboratory and others, this Account shows how the concept of DCC, inspired by the evolution of living systems, has found an increasing range of applications in diverse areas and has evolved conceptually and experimentally. A dynamic combinatorial library (DCL) is a thermodynamically controlled mixture of interconverting species that can respond to various stimuli. The Cambridge version of dynamic combinatorial chemistry was initially inspired by the mammalian immune system and was conceived as a way to create and identify new unpredictable receptors. For example, an added template can select and stabilize a strongly binding member of the library which is then amplified at the expense of the unsuccessful library members, minimizing the free energy of the system. But researchers have exploited DCC in a variety of other ways: over the past two decades, this technique has contributed to the evolution of chemistry and to applications in the diverse fields of catalysis, fragrance release, and responsive materials. Among these applications, researchers have built intricate and well-defined architectures such as catenanes or hydrogen-bonded nanotubes, using the ability of complex chemical systems to reach a high level of organization. In addition, DCC has proved a powerful tool for the study of complex molecular networks and systems. The use of DCC is improving our understanding of chemical and biological systems. The study of folding or self-replicating macrocycles in DCLs has served as a model for appreciating how complex organisations such as life can emerge from a pool of simple chemicals. Today, DCC is no longer restricted to thermodynamic control, and new systems have recently appeared in which kinetic and thermodynamic control coexist. Expanding the realm of DCC to unexplored and promising new territories, these hybrid systems show that the concept of dynamic combinatorial chemistry continues to evolve.
Collapse
Affiliation(s)
- Fabien B. L. Cougnon
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Jeremy K. M. Sanders
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| |
Collapse
|
35
|
Otto S. Dynamic molecular networks: from synthetic receptors to self-replicators. Acc Chem Res 2012; 45:2200-10. [PMID: 22264201 DOI: 10.1021/ar200246j] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dynamic combinatorial libraries (DCLs) are molecular networks in which the network members exchange building blocks. The resulting product distribution is initially under thermodynamic control. Addition of a guest or template molecule tends to shift the equilibrium towards compounds that are receptors for the guest. This Account gives an overview of our work in this area. We have demonstrated the template-induced amplification of synthetic receptors, which has given rise to several high-affinity binders for cationic and anionic guests in highly competitive aqueous solution. The dynamic combinatorial approach allows for the identification of new receptors unlikely to be obtained through rational design. Receptor discovery is possible and more efficient in larger libraries. The dynamic combinatorial approach has the attractive characteristic of revealing interesting structures, such as catenanes, even when they are not specifically targeted. Using a transition-state analogue as a guest we can identify receptors with catalytic activity. Although DCLs were initially used with the reductionistic view of identifying new synthetic receptors or catalysts, it is becoming increasingly apparent that DCLs are also of interest in their own right. We performed detailed computational studies of the effect of templates on the product distributions of DCLs using DCLSim software. Template effects can be rationalized by considering the entire network: the system tends to maximize global host-guest binding energy. A data-fitting analysis of the response of the global position of the DCLs to the addition of the template using DCLFit software allowed us to disentangle individual host-guest binding constants. This powerful procedure eliminates the need for isolation and purification of the various individual receptors. Furthermore, local network binding events tend to propagate through the entire network and may be harnessed for transmitting and processing of information. We demonstrated this possibility in silico through a simple dynamic molecular network that can perform AND logic with input and output in the form of molecules. Not only are dynamic molecular networks responsive to externally added templates, but they also adjust to internal template effects, giving rise to self-replication. Recently we have started to explore scenarios where library members recognize copies of themselves, resulting in a self-assembly process that drives the synthesis of the very molecules that self-assemble. We have developed a system that shows unprecedented mechanosensitive self-replication behavior: depending on whether the solution is shaken, stirred or not agitated, we have obtained a hexameric replicator, a heptameric replicator or no replication, respectively. We rationalize this behavior through a mechanism in which replication is promoted by mechanically-induced fragmentation of self-assembled replicator fibers. These results represent a new mode of self-replication in which mechanical energy liberates replicators from a self-inhibited state. These systems may also be viewed as self-synthesizing, self-assembling materials. These materials can be captured photochemically, converting a free-flowing fiber solution into a hydrogel through photo-induced homolytic disulfide exchange.
Collapse
Affiliation(s)
- Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
36
|
Hamieh S, Ludlow RF, Perraud O, West KR, Mattia E, Otto S. A Synthetic Receptor for Nicotine from a Dynamic Combinatorial Library. Org Lett 2012; 14:5404-7. [DOI: 10.1021/ol302260n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Saleh Hamieh
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - R. Frederick Ludlow
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Olivier Perraud
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Kevin R. West
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Elio Mattia
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
37
|
Giurg M, Muchalski H, Kowal E. OxofunctionalizedTrans-2-carboxycinnamic Acids by Catalytic Domino Oxidation of Naphthols and Hydronaphthoquinones. SYNTHETIC COMMUN 2012. [DOI: 10.1080/00397911.2011.561945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Ariga K, Ito H, Hill JP, Tsukube H. Molecular recognition: from solution science to nano/materials technology. Chem Soc Rev 2012; 41:5800-35. [PMID: 22773130 DOI: 10.1039/c2cs35162e] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the 25 years since its Nobel Prize in chemistry, supramolecular chemistry based on molecular recognition has been paid much attention in scientific and technological fields. Nanotechnology and the related areas seek breakthrough methods of nanofabrication based on rational organization through assembly of constituent molecules. Advanced biochemistry, medical applications, and environmental and energy technologies also depend on the importance of specific interactions between molecules. In those current fields, molecular recognition is now being re-evaluated. In this review, we re-examine current trends in molecular recognition from the viewpoint of the surrounding media, that is (i) the solution phase for development of basic science and molecular design advances; (ii) at nano/materials interfaces for emerging technologies and applications. The first section of this review includes molecular recognition frontiers, receptor design based on combinatorial approaches, organic capsule receptors, metallo-capsule receptors, helical receptors, dendrimer receptors, and the future design of receptor architectures. The following section summarizes topics related to molecular recognition at interfaces including fundamentals of molecular recognition, sensing and detection, structure formation, molecular machines, molecular recognition involving polymers and related materials, and molecular recognition processes in nanostructured materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Go-bancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | | | | | | |
Collapse
|
39
|
Martínez-Castañeda Á, Rodríguez-Solla H, Concellón C, del Amo V. TBD/Al2O3: a novel catalytic system for dynamic intermolecular aldol reactions that exhibit complex system behaviour. Org Biomol Chem 2012; 10:1976-81. [DOI: 10.1039/c2ob06648c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Vajpayee V, Song YH, Cook TR, Kim H, Lee Y, Stang PJ, Chi KW. A unique non-catenane interlocked self-assembled supramolecular architecture and its photophysical properties. J Am Chem Soc 2011; 133:19646-9. [PMID: 22085308 PMCID: PMC3235908 DOI: 10.1021/ja208495u] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A novel, interlocked, self-assembled (M(2)L(2))(2) molecular architecture was constructed from an arene-Ru acceptor and a 1,4-di(pyridin-4-yl)buta-1,3-diyne donor. Two M(2)L(2) units, with cavities of ~7.21 Å, spontaneously interlock, with one unit encapsulating a twin in a non-catenane fashion. The dimeric host-guest complex thus formed is unique among two-dimensional self-assemblies and is stabilized by π-π interactions between the M(2)L(2) units.
Collapse
Affiliation(s)
- Vaishali Vajpayee
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea, Fax: (+) 82-52-259-2348
| | - Young Ho Song
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea, Fax: (+) 82-52-259-2348
| | - Timothy R. Cook
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, U.S.A
| | - Hyunuk Kim
- Department of Chemistry, POSTECH, Pohang, 690-784, Republic of Korea
| | - Youngil Lee
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea, Fax: (+) 82-52-259-2348
| | - Peter J. Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, U.S.A
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea, Fax: (+) 82-52-259-2348
| |
Collapse
|
41
|
Constable EC, Zhang G, Housecroft CE, Zampese JA. Disulfide struts: Assembly motifs supporting a cuprocapsule. INORG CHEM COMMUN 2011. [DOI: 10.1016/j.inoche.2011.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Beeren SR, Pittelkow M, Sanders JKM. From static to dynamic: escaping kinetic traps in hydrazone-based dynamic combinatorial libraries. Chem Commun (Camb) 2011; 47:7359-61. [PMID: 21643569 DOI: 10.1039/c1cc12268a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermodynamic control over kinetically-trapped mixtures of hydrazone-based macrocycles is achieved by addition of an aromatic monohydrazide to generate dynamic combinatorial libraries (DCLs) of linear and macrocyclic oligomers.
Collapse
Affiliation(s)
- Sophie R Beeren
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | |
Collapse
|
43
|
Lippert AR, Naganawa A, Keleshian VL, Bode JW. Synthesis of phototrappable shape-shifting molecules for adaptive guest binding. J Am Chem Soc 2011; 132:15790-9. [PMID: 20945902 DOI: 10.1021/ja107314p] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have designed and synthesized oligosubstituted bullvalenes 1 and 2 as adaptive molecules that can change their shapes in order to bind tightly to a suitable guest. By incorporation of a photolabile o-nitroveratryloxycarbonate (NVOC) group into bullvalenes 1 and 2, tightly binding species can be selectively isolated from a population of hundreds of interconverting structural isomers. Spontaneous strain-assisted Cope rearrangements allow these shape-shifting molecules to exist in a dynamic equilibrium of configurationally distinct valence isomers, as revealed by dynamic NMR and HPLC studies. When NVOC bullvalenes 1 and 2 were exposed to UV light, the cleavage of the NVOC group resulted in a mixture of static isomers of the corresponding bullvalone. Binding studies of NVOC bisporphyrin bullvalene 1 demonstrated that the dynamic isomeric equilibrium shifted in the presence of C(60), favoring configurations with more favorable binding affinities. Irradiation of a mixture of 1 and C(60) with UV light and isolation of the major static isomer yielded an isomer of bisporphyrin bullvalone with a binding affinity for C(60) that was ∼2 times larger than that of the nonadapted isomer bisporphyrin bullvalone 41.
Collapse
Affiliation(s)
- Alexander R Lippert
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
44
|
Beeren SR, Sanders JKM. Discovery of linear receptors for multiple dihydrogen phosphate ions using dynamic combinatorial chemistry. J Am Chem Soc 2011; 133:3804-7. [PMID: 21361379 DOI: 10.1021/ja200130h] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe the use of dynamic combinatorial chemistry to discover a new series of linear hydrazone-based receptors that bind multiple dihydrogen phosphate ions. Through the use of a template-driven, selection-based approach to receptor synthesis, dynamic combinatorial chemistry allows for the identification of unexpected host structures and binding motifs. Notably, we observed the unprecedented selection of these linear receptors in preference to competing macrocyclic hosts. Furthermore, linear receptors containing up to nine building blocks and three different building blocks were amplified in the dynamic combinatorial library. The receptors were formed using a dihydrazide building block based on an amino acid-disubstituted ferrocene scaffold. A detailed study of the linear pentamer revealed that it forms a helical ditopic receptor that employs four acylhydrazone hydrogen-bond donor motifs to cooperatively bind two dihydrogen phosphate ions.
Collapse
Affiliation(s)
- Sophie R Beeren
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | |
Collapse
|
45
|
Capela MDF, Mosey NJ, Xing L, Wang R, Petitjean A. Amine Exchange in Formamidines: An Experimental and Theoretical Study. Chemistry 2011; 17:4598-612. [DOI: 10.1002/chem.201002389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Indexed: 11/05/2022]
Affiliation(s)
- Marinha dF. Capela
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7 L 3N6 (Canada), Fax: (+1) 613‐533‐6669
| | - Nicholas J. Mosey
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7 L 3N6 (Canada), Fax: (+1) 613‐533‐6669
| | - Liyan Xing
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7 L 3N6 (Canada), Fax: (+1) 613‐533‐6669
| | - Ruiyao Wang
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7 L 3N6 (Canada), Fax: (+1) 613‐533‐6669
| | - Anne Petitjean
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7 L 3N6 (Canada), Fax: (+1) 613‐533‐6669
| |
Collapse
|
46
|
Hunt RAR, Otto S. Dynamic combinatorial libraries: new opportunities in systems chemistry. Chem Commun (Camb) 2011; 47:847-58. [PMID: 21116521 DOI: 10.1039/c0cc03759a] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rosemary A R Hunt
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | | |
Collapse
|
47
|
Reversible covalent chemistries compatible with the principles of constitutional dynamic chemistry: new reactions to create more diversity. Top Curr Chem (Cham) 2011; 322:291-314. [PMID: 22025070 DOI: 10.1007/128_2011_277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An approach to make chemical diversity space more manageable is to search for smaller molecules, or fragments, and then combine or elaborate these fragments. Dynamic Combinatorial Chemistry (DCC) is a powerful approach whereby a number of molecular elements each with binding potential can be reversibly combined via covalent or noncovalent linkages to generate a dynamic library of products under thermodynamic equilibrium. Once a target molecule has been added, the distribution of products can be shifted to favor products that bind to the target. Thus the approach can be employed to identify products that selectively recognize the target. Although the size of the repertoire of reversible covalent reactions suitable for DCC has increased significantly over the past 5-10 years, the discovery of new reactions that satisfy all the criteria of reversibility and biocompatibility remains an exciting challenge for chemists. Increasing the number of chemical reactions will enable the engineering of larger and more diverse DCLs, which remains a key step toward a broader use of DCC. In this review, we aim to provide a nonexhaustive list of reversible covalent reactions that are compatible with the concept of DCC, focusing mainly on the most recent examples that were reported in the literature in the past 5 years.
Collapse
|
48
|
Chung MK, Severin K, Lee SJ, Waters ML, Gagné MR. Constitutionally selective amplification of multicomponent 84-membered macrocyclic hosts for (−)-cytidine•H+. Chem Sci 2011. [DOI: 10.1039/c0sc00548g] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
49
|
Rodriguez-Docampo Z, Eugenieva-Ilieva E, Reyheller C, Belenguer AM, Kubik S, Otto S. Dynamic combinatorial development of a neutral synthetic receptor that binds sulfate with nanomolar affinity in aqueous solution. Chem Commun (Camb) 2011; 47:9798-800. [DOI: 10.1039/c1cc13451e] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Takahagi H, Iwasawa N. Crystallization-Controlled Dynamic Self-Assembly and an On/Off Switch for Equilibration Using Boronic Ester Formation. Chemistry 2010; 16:13680-8. [DOI: 10.1002/chem.201001013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|