1
|
Harland JB, Samanta S, Lehnert N. Bacterial nitric oxide reductase (NorBC) models employing click chemistry. J Inorg Biochem 2023; 246:112280. [PMID: 37352656 DOI: 10.1016/j.jinorgbio.2023.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023]
Abstract
Bacterial NO Reductase (NorBC or cNOR) is a membrane-bound enzyme found in denitrifying bacteria that catalyzes the two-electron reduction of NO to N2O and water. The mechanism by which NorBC operates is highly debated, due to the fact that this enzyme is difficult to work with, and no intermediates of the NO reduction reaction could have been identified so far. The unique active site of NorBC consists of a heme b3/non-heme FeB diiron center. Synthetic model complexes provide the opportunity to obtain insight into possible mechanistic alternatives for this enzyme. In this paper, we present three new synthetic model systems for NorBC, consisting of a tetraphenylporphyrin-derivative clicked to modified BMPA-based ligands (BMPA = bis(methylpyridyl)amine) that model the non-heme site in the enzyme. These complexes have been characterized by EPR, IR and UV-Vis spectroscopy. The reactivity with NO was then investigated, and it was found that the complex with the BMPA-carboxylate ligand as the non-heme component has a very low affinity for NO at the non-heme iron site. If the carboxylate functional group is replaced with a phenolate or pyridine group, reactivity is restored and formation of a diiron dinitrosyl complex was observed. Upon one-electron reduction of the nitrosylated complexes, following the semireduced pathway for NO reduction, formation of dinitrosyl iron complexes (DNICs) was observed in all three cases, but no N2O could be detected.
Collapse
Affiliation(s)
- Jill B Harland
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Subhra Samanta
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Nicolai Lehnert
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States.
| |
Collapse
|
2
|
Bhadra M, Albert T, Franke A, Josef V, Ivanović-Burmazović I, Swart M, Moënne-Loccoz P, Karlin KD. Reductive Coupling of Nitric Oxide by Cu(I): Stepwise Formation of Mono- and Dinitrosyl Species En Route to a Cupric Hyponitrite Intermediate. J Am Chem Soc 2023; 145:2230-2242. [PMID: 36652374 PMCID: PMC10122266 DOI: 10.1021/jacs.2c09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition-metal-mediated reductive coupling of nitric oxide (NO(g)) to nitrous oxide (N2O(g)) has significance across the fields of industrial chemistry, biochemistry, medicine, and environmental health. Herein, we elucidate a density functional theory (DFT)-supplemented mechanism of NO(g) reductive coupling at a copper-ion center, [(tmpa)CuI(MeCN)]+ (1) {tmpa = tris(2-pyridylmethyl)amine}. At -110 °C in EtOH (<-90 °C in MeOH), exposing 1 to NO(g) leads to a new binuclear hyponitrite intermediate [{(tmpa)CuII}2(μ-N2O22-)]2+ (2), exhibiting temperature-dependent irreversible isomerization to the previously characterized κ2-O,O'-trans-[(tmpa)2Cu2II(μ-N2O22-)]2+ (OOXray) complex. Complementary stopped-flow kinetic analysis of the reaction in MeOH reveals an initial mononitrosyl species [(tmpa)Cu(NO)]+ (1-(NO)) that binds a second NO molecule, forming a dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2). The decay of 1-(NO)2 requires an available starting complex 1 to form a dicopper-dinitrosyl species hypothesized to be [{(tmpa)Cu}2(μ-NO)2]2+ (D) bearing a diamond-core motif, en route to the formation of hyponitrite intermediate 2. In contrast, exposing 1 to NO(g) in 2-MeTHF/THF (v/v 4:1) at <-80 °C leads to the newly observed transient metastable dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2) prior to its disproportionation-mediated transformation to the nitrite product [(tmpa)CuII(NO2)]+. Our study furnishes a near-complete profile of NO(g) activation at a reduced Cu site with tripodal tetradentate ligation in two distinctly different solvents, aided by detailed spectroscopic characterization of metastable intermediates, including resonance Raman characterization of the new dinitrosyl and hyponitrite species detected.
Collapse
Affiliation(s)
- Mayukh Bhadra
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alicja Franke
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilians University, Munich, 81377 Munich, Germany
| | - Verena Josef
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilians University, Munich, 81377 Munich, Germany
| | - Marcel Swart
- IQCC & Departament de Química, Universitat de Girona, Campus Montilivi (Ciencies), 17003 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Tao W, Carter S, Trevino R, Zhang W, Shafaat HS, Zhang S. Reductive NO Coupling at Dicopper Center via a [Cu 2(NO) 2] 2+ Diamond-Core Intermediate. J Am Chem Soc 2022; 144:22633-22640. [PMID: 36469729 DOI: 10.1021/jacs.2c09523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatment of a dicopper(I,I) complex with excess amounts of NO leads to the formation of a dicopper dinitrosyl [Cu2(NO)2]2+ complex capable of (i) releasing two equivalents of NO reversibly in 90% yield and (ii) reacting with another equivalent of NO to afford N2O and dicopper nitrosyl oxo species [Cu2(NO)(O)]2+. Resonance Raman characterization of the [Cu2(NO)2]2+ complex shows a 15N-sensitive N═O stretch at 1527.6 cm-1 and two Cu-N stretches at 390.6 and 414.1 cm-1, supporting a symmetric diamond-core structure with bis-μ-NO ligands. The conversion of [Cu2(NO)2]2+ to [Cu2(NO)O]2+ occurs via a rate-limiting reaction with NO and bypasses the dicopper oxo intermediate, a mechanism distinct from that of diFe-mediated NO reduction to N2O.
Collapse
Affiliation(s)
- Wenjie Tao
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Samantha Carter
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Regina Trevino
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Weiyao Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Kametani Y, Abe T, Yoshizawa K, Shiota Y. Mechanistic study on reduction of nitric oxide to nitrous oxide using a dicopper complex. Dalton Trans 2022; 51:5399-5403. [PMID: 35316312 DOI: 10.1039/d2dt00275b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A density functional theory study was carried out to investigate the reduction mechanisms of NO to N2O using a dicopper complex reported by Zhang and coworkers (J. Am. Chem. Soc., 2019, 141, 10159-10164). The reaction mechanism consists of three steps: N-N bond formation, isomerization of the resultant N2O2 moiety, and cleavage of the N-O bond.
Collapse
Affiliation(s)
- Yohei Kametani
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan.
| | - Tsukasa Abe
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan.
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan.
| |
Collapse
|
5
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
6
|
Mondal P, Tolbert GB, Wijeratne GB. Bio-inspired nitrogen oxide (NO x) interconversion reactivities of synthetic heme Compound-I and Compound-II intermediates. J Inorg Biochem 2021; 226:111633. [PMID: 34749065 DOI: 10.1016/j.jinorgbio.2021.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Dioxygen activating heme enzymes have long predicted to be powerhouses for nitrogen oxide interconversion, especially for nitric oxide (NO) oxidation which has far-reaching biological and/or environmental impacts. Lending credence, reactivity of NO with high-valent heme‑oxygen intermediates of globin proteins has recently been implicated in the regulation of a variety of pivotal physiological events such as modulating catalytic activities of various heme enzymes, enhancing antioxidant activity to inhibit oxidative damage, controlling inflammatory and infectious properties within the local heme environments, and NO scavenging. To reveal insights into such crucial biological processes, we have investigated low temperature NO reactivities of two classes of synthetic high-valent heme intermediates, Compound-II and Compound-I. In that, Compound-II rapidly reacts with NO yielding the six-coordinate (NO bound) heme ferric nitrite complex, which upon warming to room temperature converts into the five-coordinate heme ferric nitrite species. These ferric nitrite complexes mediate efficient substrate oxidation reactions liberating NO; i.e., shuttling NO2- back to NO. In contrast, Compound-I and NO proceed through an oxygen-atom transfer process generating the strong nitrating agent NO2, along with the corresponding ferric nitrosyl species that converts to the naked heme ferric parent complex upon warmup. All reaction components have been fully characterized by UV-vis, 2H NMR and EPR spectroscopic methods, mass spectrometry, elemental analyses, and semi-quantitative determination of NO2- anions. The clean, efficient, potentially catalytic NOx interconversions driven by high-valent heme species presented herein illustrate the strong prospects of a heme enzyme/O2/NOx dependent unexplored territory that is central to human physiology, pathology, and therapeutics.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Garrett B Tolbert
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States.
| |
Collapse
|
7
|
He H, Li R, Yang Z, Chai L, Jin L, Alhassan SI, Ren L, Wang H, Huang L. Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: A review. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.02.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021; 50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Collapse
Affiliation(s)
- Christopher J Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.
| | - Quan N Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA
| | - Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA. and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Silvernail NJ, Oliver AG, Scheidt WR. Temperature effects on structure: Five-coordinate (nitrosyl)(tetratolylporphinato)iron(II). J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have prepared crystals of [Fe(TTP)(NO)] (TTP = tetratolylporphyrin), a five-coordinate nitrosyl complex and determined its crystal and molecular structure at two temperatures. The crystal structure at 100 K reveals two independent molecules in the asymmetric unit of the structure. One molecule is completely ordered and the second molecule has a moderately disordered nitrosyl ligand. Both molecules show similar structural features: a substantial off-axis tilt of the Fe–N(NO) bond and an asymmetry of the equatorial Fe–N[Formula: see text] bonds that is correlated with the tilt. The axial Fe–N(NO) bond distances are 1.7230 (9) and 1.7210 (10) Å; the Fe–N–O bond angles are 141.62 (8) and 140.04 (10)[Formula: see text]. Determination of the structure at ambient temperature (293 K) showed an unexpected phase change, a crystal structure with one molecule per asymmetric unit containing the superposition of the two molecules at lower temperature. However, there was an increase in the NO disorder.
Collapse
Affiliation(s)
- Nathan J. Silvernail
- The Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Allen G. Oliver
- The Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - W. Robert Scheidt
- The Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
11
|
Amanullah S, Singha A, Dey A. Tailor made iron porphyrins for investigating axial ligand and distal environment contributions to electronic structure and reactivity. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
One-step synthesis of confined ion Agx-Cu-BTC for selective catalytic reduction of NO with CO. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
14
|
Liu CG, Sun C, Jiang MX, Zhang YT. Computational study on the catalytic cycle for reduction of NO to N2 catalyzed by a ruthenium–substituted Keggin-type polyoxometalate. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Timmons AJ, Symes MD. Converting between the oxides of nitrogen using metal-ligand coordination complexes. Chem Soc Rev 2016; 44:6708-22. [PMID: 26158348 DOI: 10.1039/c5cs00269a] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The oxides of nitrogen (chiefly NO, NO3(-), NO2(-) and N2O) are key components of the natural nitrogen cycle and are intermediates in a range of processes of enormous biological, environmental and industrial importance. Nature has evolved numerous enzymes which handle the conversion of these oxides to/from other small nitrogen-containing species and there also exist a number of heterogeneous catalysts that can mediate similar reactions. In the chemical space between these two extremes exist metal-ligand coordination complexes that are easier to interrogate than heterogeneous systems and simpler in structure than enzymes. In this Tutorial Review, we will examine catalysts for the inter-conversions of the various nitrogen oxides that are based on such complexes, looking in particular at more recent examples that take inspiration from the natural systems.
Collapse
Affiliation(s)
- Andrew J Timmons
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
16
|
Speelman AL, Zhang B, Silakov A, Skodje KM, Alp EE, Zhao J, Hu MY, Kim E, Krebs C, Lehnert N. Unusual Synthetic Pathway for an {Fe(NO)2}9 Dinitrosyl Iron Complex (DNIC) and Insight into DNIC Electronic Structure via Nuclear Resonance Vibrational Spectroscopy. Inorg Chem 2016; 55:5485-501. [DOI: 10.1021/acs.inorgchem.6b00510] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amy L. Speelman
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Zhang
- Department of Chemistry and Department of Biochemistry and Molecular
Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department of Chemistry and Department of Biochemistry and Molecular
Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kelsey M. Skodje
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - E. Ercan Alp
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jiyong Zhao
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael Y. Hu
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular
Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicolai Lehnert
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Lionetti D, de Ruiter G, Agapie T. A trans-Hyponitrite Intermediate in the Reductive Coupling and Deoxygenation of Nitric Oxide by a Tricopper-Lewis Acid Complex. J Am Chem Soc 2016; 138:5008-11. [PMID: 27028157 DOI: 10.1021/jacs.6b01083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reduction of nitric oxide (NO) to nitrous oxide (N2O) is a process relevant to biological chemistry as well as to the abatement of certain environmental pollutants. One of the proposed key intermediates in NO reduction is hyponitrite (N2O2(2-)), the product of reductive coupling of two NO molecules. We report the reductive coupling of NO by an yttrium-tricopper complex generating a trans-hyponitrite moiety supported by two μ-O-bimetallic (Y,Cu) cores, a previously unreported coordination mode. Reaction of the hyponitrite species with Brønsted acids leads to the generation of N2O, demonstrating the viability of the hyponitrite complex as an intermediate in NO reduction to N2O. The additional reducing equivalents stored in each tricopper unit are employed in a subsequent step for N2O reduction to N2, for an overall (partial) conversion of NO to N2. The combination of Lewis acid and multiple redox active metals facilitates this four electron conversion via an isolable hyponitrite intermediate.
Collapse
Affiliation(s)
- Davide Lionetti
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Graham de Ruiter
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Chuang CH, Liaw WF, Hung CH. Conversion of Nitric Oxide into Nitrous Oxide as Triggered by the Polarization of Coordinated NO by Hydrogen Bonding. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201512063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuan-Hung Chuang
- Institute of Chemistry; Academia Sinica; Nankang 11529 Taipei Taiwan
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Chen-Hsiung Hung
- Institute of Chemistry; Academia Sinica; Nankang 11529 Taipei Taiwan
| |
Collapse
|
19
|
Chuang CH, Liaw WF, Hung CH. Conversion of Nitric Oxide into Nitrous Oxide as Triggered by the Polarization of Coordinated NO by Hydrogen Bonding. Angew Chem Int Ed Engl 2016; 55:5190-4. [DOI: 10.1002/anie.201512063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/08/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Chuan-Hung Chuang
- Institute of Chemistry; Academia Sinica; Nankang 11529 Taipei Taiwan
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Chen-Hsiung Hung
- Institute of Chemistry; Academia Sinica; Nankang 11529 Taipei Taiwan
| |
Collapse
|
20
|
|
21
|
Chakraborty S, Reed J, Sage JT, Branagan NC, Petrik ID, Miner KD, Hu MY, Zhao J, Alp EE, Lu Y. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies. Inorg Chem 2015; 54:9317-29. [PMID: 26274098 PMCID: PMC4677664 DOI: 10.1021/acs.inorgchem.5b01105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
This Forum Article focuses on recent
advances in structural and spectroscopic studies of biosynthetic models
of nitric oxide reductases (NORs). NORs are complex metalloenzymes
found in the denitrification pathway of Earth’s nitrogen cycle
where they catalyze the proton-dependent two-electron reduction of
nitric oxide (NO) to nitrous oxide (N2O). While much progress
has been made in biochemical and biophysical studies of native NORs
and their variants, a clear mechanistic understanding of this important
metalloenzyme related to its function is still elusive. We report
herein UV–vis and nuclear resonance vibrational spectroscopy
(NRVS) studies of mononitrosylated intermediates of the NOR reaction
of a biosynthetic model. The ability to selectively substitute metals
at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation
of analogues of stable reaction intermediates by replacing either
metal with a redox inactive metal. Together with previous structural
and spectroscopic results, we summarize insights gained from studying
these biosynthetic models toward understanding structural features
responsible for the NOR activity and its mechanism. The outlook on
NOR modeling is also discussed, with an emphasis on the design of
models capable of catalytic turnovers designed based on close mimics
of the secondary coordination sphere of native NORs. New insights into nitric oxide reductases (NORs) are obtained. Using
nuclear resonance vibrational spectroscopy, we probe both iron atoms
in mononitrosylated intermediates of the NOR reaction in a biosynthetic
protein model that reveal new insights into the structural and electronic
features responsible for the NOR activity and its likely mechanism.
Collapse
Affiliation(s)
| | | | - J Timothy Sage
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - Nicole C Branagan
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | | | | | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - E Ercan Alp
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | | |
Collapse
|
22
|
Hematian S, Kenkel I, Shubina TE, Dürr M, Liu JJ, Siegler MA, Ivanovic-Burmazovic I, Karlin KD. Nitrogen Oxide Atom-Transfer Redox Chemistry; Mechanism of NO(g) to Nitrite Conversion Utilizing μ-oxo Heme-Fe(III)-O-Cu(II)(L) Constructs. J Am Chem Soc 2015; 137:6602-15. [PMID: 25974136 DOI: 10.1021/jacs.5b02174] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While nitric oxide (NO, nitrogen monoxide) is a critically important signaling agent, its cellular concentrations must be tightly controlled, generally through its oxidative conversion to nitrite (NO2(-)) where it is held in reserve to be reconverted as needed. In part, this reaction is mediated by the binuclear heme a3/CuB active site of cytochrome c oxidase. In this report, the oxidation of NO(g) to nitrite is shown to occur efficiently in new synthetic μ-oxo heme-Fe(III)-O-Cu(II)(L) constructs (L being a tridentate or tetradentate pyridyl/alkylamino ligand), and spectroscopic and kinetic investigations provide detailed mechanistic insights. Two new X-ray structures of μ-oxo complexes have been determined and compared to literature analogs. All μ-oxo complexes react with 2 mol equiv NO(g) to give 1:1 mixtures of discrete [(L)Cu(II)(NO2(-))](+) plus ferrous heme-nitrosyl compounds; when the first NO(g) equiv reduces the heme center and itself is oxidized to nitrite, the second equiv of NO(g) traps the ferrous heme thus formed. For one μ-oxo heme-Fe(III)-O-Cu(II)(L) compound, the reaction with NO(g) reveals an intermediate species ("intermediate"), formally a bis-NO adduct, [(NO)(porphyrinate)Fe(II)-(NO2(-))-Cu(II)(L)](+) (λmax = 433 nm), confirmed by cryo-spray ionization mass spectrometry and EPR spectroscopy, along with the observation that cooling a 1:1 mixture of [(L)Cu(II)(NO2(-))](+) and heme-Fe(II)(NO) to -125 °C leads to association and generation of the key 433 nm UV-vis feature. Kinetic-thermodynamic parameters obtained from low-temperature stopped-flow measurements are in excellent agreement with DFT calculations carried out which describe the sequential addition of NO(g) to the μ-oxo complex.
Collapse
Affiliation(s)
- Shabnam Hematian
- †Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States
| | - Isabell Kenkel
- ‡Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Tatyana E Shubina
- ‡Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Maximilian Dürr
- ‡Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Jeffrey J Liu
- †Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States
| | - Maxime A Siegler
- †Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States
| | | | - Kenneth D Karlin
- †Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States
| |
Collapse
|
23
|
Affiliation(s)
- Ashley M. Wright
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Sanders BC, Hassan SM, Harrop TC. NO2– Activation and Reduction to NO by a Nonheme Fe(NO2)2 Complex. J Am Chem Soc 2014; 136:10230-3. [DOI: 10.1021/ja505236x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Brian C. Sanders
- Department
of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia 30602, United States
| | - Sayed M. Hassan
- College
of Agricultural and Environmental Sciences, The University of Georgia, Athens, Georgia 30605, United States
| | - Todd C. Harrop
- Department
of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
25
|
Wright AM, Zaman HT, Wu G, Hayton TW. Mechanistic Insights into the Formation of N2O by a Nickel Nitrosyl Complex. Inorg Chem 2014; 53:3108-16. [DOI: 10.1021/ic403038e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ashley M. Wright
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Homaira T. Zaman
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
26
|
Nitric oxide generation from heme/copper assembly mediated nitrite reductase activity. J Biol Inorg Chem 2014; 19:515-28. [PMID: 24430198 DOI: 10.1007/s00775-013-1081-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/18/2013] [Indexed: 01/03/2023]
Abstract
Nitric oxide (NO) as a cellular signaling molecule and vasodilator regulates a range of physiological and pathological processes. Nitrite (NO2 (-)) is recycled in vivo to generate nitric oxide, particularly in physiologic hypoxia and ischemia. The cytochrome c oxidase binuclear heme a 3/CuB active site is one entity known to be responsible for conversion of cellular nitrite to nitric oxide. We recently reported that a partially reduced heme/copper assembly reduces nitrite ion, producing nitric oxide; the heme serves as the reductant and the cupric ion provides a Lewis acid interaction with nitrite, facilitating nitrite (N-O) bond cleavage (Hematian et al., J. Am. Chem. Soc. 134:18912-18915, 2012). To further investigate this nitrite reductase chemistry, copper(II)-nitrito complexes with tridentate and tetradentate ligands were used in this study, where either O,O'-bidentate or O-unidentate modes of nitrite binding to the cupric center are present. To study the role of the reducing ability of the ferrous heme center, two different tetraarylporphyrinate-iron(II) complexes, one with electron-donating para-methoxy peripheral substituents and the other with electron-withdrawing 2,6-difluorophenyl substituents, were used. The results show that differing modes of nitrite coordination to the copper(II) ion lead to differing kinetic behavior. Here, also, the ferrous heme is in all cases the source of the reducing equivalent required to convert nitrite to nitric oxide, but the reduction ability of the heme center does not play a key role in the observed overall reaction rate. On the basis of our observations, reaction mechanisms are proposed and discussed in terms of heme/copper heterobinuclear structures.
Collapse
|
27
|
Pirota V, Gennarini F, Dondi D, Monzani E, Casella L, Dell'Acqua S. Dinuclear heme and non-heme metal complexes as bioinspired catalysts for oxidation reactions. NEW J CHEM 2014. [DOI: 10.1039/c3nj01279d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Lehnert N, Scheidt WR, Wolf MW. Structure and Bonding in Heme–Nitrosyl Complexes and Implications for Biology. NITROSYL COMPLEXES IN INORGANIC CHEMISTRY, BIOCHEMISTRY AND MEDICINE II 2013. [DOI: 10.1007/430_2013_92] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Hematian S, Siegler MA, Karlin KD. Heme/copper assembly mediated nitrite and nitric oxide interconversion. J Am Chem Soc 2012; 134:18912-5. [PMID: 23130610 DOI: 10.1021/ja3083818] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The heme(a3)/Cu(B) active site of cytochrome c oxidase is responsible for cellular nitrite reduction to nitric oxide; the same center can return NO to the nitrite pool via oxidative chemistry. Here, we show that a partially reduced heme/Cu assembly reduces NO(2)(-) ion, producing nitric oxide. The heme serves as the reductant, but the Cu(II) ion is also required. In turn, a μ-oxo heme-Fe(III)-O-Cu(II) complex facilitates NO oxidation to nitrite; the final products are the reduced heme and Cu(II)-nitrito complexes.
Collapse
Affiliation(s)
- Shabnam Hematian
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
30
|
|
31
|
Yi J, Morrow BH, Campbell ALOC, Shen JK, Richter-Addo GB. Nitric oxide coupling mediated by iron porphyrins: the N-N bond formation step is facilitated by electrons and a proton. Chem Commun (Camb) 2012; 48:9041-3. [PMID: 22858591 DOI: 10.1039/c2cc34655a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coupling of two NO molecules catalyzed by iron porphyrins is of biological importance. We use density functional theory calculations to examine the factors that control the fundamental N-N bond formation step mediated by a single iron porphyrin. The presence of an axial Im ligand, extra electrons, and most importantly a proton, enhance the N-N bond formation step in our model.
Collapse
Affiliation(s)
- Jun Yi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | | | | | | | |
Collapse
|
32
|
Wright AM, Wu G, Hayton TW. Formation of N2O from a Nickel Nitrosyl: Isolation of the cis-[N2O2]2– Intermediate. J Am Chem Soc 2012; 134:9930-3. [DOI: 10.1021/ja304204q] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ashley M. Wright
- Department of Chemistry and Biochemistry, University of California—Santa Barbara, Santa
Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California—Santa Barbara, Santa
Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California—Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
33
|
Arikawa Y, Onishi M. Reductive N–N coupling of NO molecules on transition metal complexes leading to N2O. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Arikawa Y, Matsumoto N, Asayama T, Umakoshi K, Onishi M. Conversion of oxido-bridged dinuclear ruthenium complex to dicationic dinitrosyl ruthenium complex using proton and nitric oxide: Completion of NO reduction cycle. Dalton Trans 2011; 40:2148-50. [DOI: 10.1039/c0dt01002b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Structural insights into a low-spin myoglobin variant with bis-histidine coordination from molecular modeling. Proteins 2010; 79:679-84. [DOI: 10.1002/prot.22928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/20/2010] [Accepted: 10/25/2010] [Indexed: 11/07/2022]
|
36
|
Schopfer MP, Wang J, Karlin KD. Bioinspired heme, heme/nonheme diiron, heme/copper, and inorganic NOx chemistry: *NO((g)) oxidation, peroxynitrite-metal chemistry, and *NO((g)) reductive coupling. Inorg Chem 2010; 49:6267-82. [PMID: 20666386 DOI: 10.1021/ic100033y] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The focus of this Forum Article highlights work from our own laboratories and those of others in the area of biochemical and biologically inspired inorganic chemistry dealing with nitric oxide [nitrogen monoxide, *NO((g))] and its biological roles and reactions. The latter focus is on (i) oxidation of *NO((g)) to nitrate by nitric oxide dioxygenases (NODs) and (ii) reductive coupling of two molecules of *NO((g)) to give N(2)O(g). In the former case, NODs are described, and the highlighting of possible peroxynitrite/heme intermediates and the consequences of this are given by a discussion of recent works with myoglobin and a synthetic heme model system for NOD action. Summaries of recent copper complex chemistries with *NO((g)) and O(2)(g), leading to peroxynitrite species, are given. The coverage of biological reductive coupling of *NO((g)) deals with bacterial nitric oxide reductases (NORs) with heme/nonheme diiron active sites and on heme/copper oxidases such as cytochrome c oxidase, which can mediate the same chemistry. Recently designed protein and synthetic model compounds (heme/nonheme/diiron or heme/copper) as functional mimics are discussed in some detail. We also highlight examples from the chemical literature, not necessarily involving biologically relevant metal ions, that describe the oxidation of *NO((g)) to nitrate (or nitrite) and possible peroxynitrite intermediates or reductive coupling of *NO((g)) to give nitrous oxide.
Collapse
Affiliation(s)
- Mark P Schopfer
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
37
|
Xu N, Yi J, Richter-Addo GB. Linkage isomerization in heme-NOx compounds: understanding NO, nitrite, and hyponitrite interactions with iron porphyrins. Inorg Chem 2010; 49:6253-66. [PMID: 20666385 DOI: 10.1021/ic902423v] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nitric oxide (NO) and its derivatives such as nitrite and hyponitrite are biologically important species of relevance to human health. Much of their physiological relevance stems from their interactions with the iron centers in heme proteins. The chemical reactivities displayed by the heme-NOx species (NOx = NO, nitrite, hyponitrite) are a function of the binding modes of the NOx ligands. Hence, an understanding of the types of binding modes extant in heme-NOx compounds is important if we are to unravel the inherent chemical properties of these NOx metabolites. In this Forum Article, the experimentally characterized linkage isomers of heme-NOx models and proteins are presented and reviewed. Nitrosyl linkage isomers of synthetic iron and ruthenium porphyrins have been generated by photolysis at low temperatures and characterized by spectroscopy and density functional theory calculations. Nitrite linkage isomers in synthetic metalloporphyrin derivatives have been generated from photolysis experiments and in low-temperature matrices. In the case of nitrite adducts of heme proteins, both N and O binding have been determined crystallographically, and the role of the distal H-bonding residue in myoglobin in directing the O-binding mode of nitrite has been explored using mutagenesis. To date, only one synthetic metalloporphyrin complex containing a hyponitrite ligand (displaying an O-binding mode) has been characterized by crystallography. This is contrasted with other hyponitrite binding modes experimentally determined for coordination compounds and computationally for NO reductase enzymes. Although linkage isomerism in heme-NOx derivatives is still in its infancy, opportunities now exist for a detailed exploration of the existence and stabilities of the metastable states in both heme models and heme proteins.
Collapse
Affiliation(s)
- Nan Xu
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, Oklahoma 73019, USA
| | | | | |
Collapse
|
38
|
Wang J, Schopfer MP, Puiu SC, Sarjeant AAN, Karlin KD. Reductive coupling of nitrogen monoxide (*NO) facilitated by heme/copper complexes. Inorg Chem 2010; 49:1404-19. [PMID: 20030370 DOI: 10.1021/ic901431r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The interactions of nitrogen monoxide (*NO; nitric oxide) with transition metal centers continue to be of great interest, in part due to their importance in biochemical processes. Here, we describe *NO((g)) reductive coupling chemistry of possible relevance to that process (i.e., nitric oxide reductase (NOR) biochemistry), which occurs at the heme/Cu active site of cytochrome c oxidases (CcOs). In this report, heme/Cu/*NO((g)) activity is studied using 1:1 ratios of heme and copper complex components, (F(8))Fe (F(8) = tetrakis(2,6-difluorophenyl)porphyrinate(2-)) and [(tmpa)Cu(I)(MeCN)](+) (TMPA = tris(2-pyridylmethyl)amine). The starting point for heme chemistry is the mononitrosyl complex (F(8))Fe(NO) (lambda(max) = 399 (Soret), 541 nm in acetone). Variable-temperature (1)H and (2)H NMR spectra reveal a broad peak at delta = 6.05 ppm (pyrrole) at room temperature (RT), which gives rise to asymmetrically split pyrrole peaks at 9.12 and 8.54 ppm at -80 degrees C. A new heme dinitrosyl species, (F(8))Fe(NO)(2), obtained by bubbling (F(8))Fe(NO) with *NO((g)) at -80 degrees C, could be reversibly formed, as monitored by UV-vis (lambda(max) = 426 (Soret), 538 nm in acetone), EPR (silent), and NMR spectroscopies; that is, the mono-NO complex was regenerated upon warming to RT. (F(8))Fe(NO)(2) reacts with [(tmpa)Cu(I)(MeCN)](+) and 2 equiv of acid to give [(F(8))Fe(III)](+), [(tmpa)Cu(II)(solvent)](2+), and N(2)O((g)), fitting the stoichiometric *NO((g)) reductive coupling reaction: 2*NO((g)) + Fe(II) + Cu(I) + 2H(+) --> N(2)O((g)) + Fe(III) + Cu(II) + H(2)O, equivalent to one enzyme turnover. Control reaction chemistry shows that both iron and copper centers are required for the NOR-type chemistry observed and that, if acid is not present, half the *NO is trapped as a (F(8))Fe(NO) complex, while the remaining nitrogen monoxide undergoes copper complex promoted disproportionation chemistry. As part of this study, [(F(8))Fe(III)]SbF(6) was synthesized and characterized by X-ray crystallography, along with EPR (77 K: g = 5.84 and 6.12 in CH(2)Cl(2) and THF, respectively) and variable-temperature NMR spectroscopies. These structural and physical properties suggest that at RT this complex consists of an admixture of high and intermediate spin states.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
39
|
Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin. Proc Natl Acad Sci U S A 2010; 107:8581-6. [PMID: 20421510 DOI: 10.1073/pnas.1000526107] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A structural and functional model of bacterial nitric oxide reductase (NOR) has been designed by introducing two glutamates (Glu) and three histidines (His) in sperm whale myoglobin. X-ray structural data indicate that the three His and one Glu (V68E) residues bind iron, mimicking the putative Fe(B) site in NOR, while the second Glu (I107E) interacts with a water molecule and forms a hydrogen bonding network in the designed protein. Unlike the first Glu (V68E), which lowered the heme reduction potential by approximately 110 mV, the second Glu has little effect on the heme potential, suggesting that the negatively charged Glu has a different role in redox tuning. More importantly, introducing the second Glu resulted in a approximately 100% increase in NOR activity, suggesting the importance of a hydrogen bonding network in facilitating proton delivery during NOR reactivity. In addition, EPR and X-ray structural studies indicate that the designed protein binds iron, copper, or zinc in the Fe(B) site, each with different effects on the structures and NOR activities, suggesting that both redox activity and an intermediate five-coordinate heme-NO species are important for high NOR activity. The designed protein offers an excellent model for NOR and demonstrates the power of using designed proteins as a simpler and more well-defined system to address important chemical and biological issues.
Collapse
|
40
|
Filatov AS, Hietsoi O, Sevryugina Y, Gerasimchuk NN, Petrukhina MA. Reversible Cu4 ↔ Cu6 Core Interconversion and Temperature Induced Single-Crystal-to-Single-Crystal Phase Transition for Copper(I) Carboxylate. Inorg Chem 2010; 49:1626-33. [DOI: 10.1021/ic9020367] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander S. Filatov
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, New York 12222
| | - Oleksandr Hietsoi
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, New York 12222
| | - Yulia Sevryugina
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, New York 12222
| | - Nikolay N. Gerasimchuk
- Department of Chemistry, Missouri State University, 901 South National Avenue, Springfield, Missouri, 65897
| | - Marina A. Petrukhina
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, New York 12222
| |
Collapse
|
41
|
Lucas HR, Meyer GJ, Karlin KD. Carbon monoxide and nitrogen monoxide ligand dynamics in synthetic heme and heme-copper complex systems. J Am Chem Soc 2009; 131:13924-5. [PMID: 19736941 DOI: 10.1021/ja906172c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intermolecular nitrogen monoxide (*NO) and carbon monoxide (CO) transfer from iron to copper and back, a phenomenon not previously observed, has been accomplished by employing transient-absorbance laser flash photolysis methods. A 1:1 heme/copper component system consisting of a six-coordinate ferrous species, F(8)Fe(II)(CO)(DCIM) or F(8)Fe(II)(NO)(thf) [F(8) = tetrakis(2,6-difluorophenyl)porphyrinate(2-); DCIM = 1,5-dicyclohexylimidazole; thf = tetrahydrofuran], and two ligand-copper(I) complexes, one with tridentate [(Bz)L = (benzyl)bis(2-pyridylmethyl)amine] and one with tetradentate coordination [(Py)L = tris(2-pyridylmethyl)amine], was utilized. The results suggest a lower affinity for NO versus CO binding to copper(I) and a higher rate for NO versus CO binding to heme. In fact, the latter event has been observed in cytochrome c oxidase aa(3).
Collapse
Affiliation(s)
- Heather R Lucas
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|