1
|
Calcaterra A, Polli F, Lamelza L, Del Plato C, Cammarone S, Ghirga F, Botta B, Mazzei F, Quaglio D. Resorc[4]arene-Modified Gold-Decorated Magnetic Nanoparticles for Immunosensor Development. Bioconjug Chem 2023; 34:529-537. [PMID: 36753752 PMCID: PMC10020960 DOI: 10.1021/acs.bioconjchem.2c00605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In recent years, several efforts have been made to develop selective, sensitive, fast response, and miniaturized immunosensors with improved performance for the monitoring and screening of analytes in several matrices, significantly expanding the use of this technology in a broad range of applications. However, one of the main technical challenges in developing immunosensors is overcoming the complexity of binding antibodies (Abs) to the sensor surface. Most immobilizing approaches lead to a random orientation of Abs, resulting in lower binding site density and immunoaffinity. In this context, supramolecular chemistry has emerged as a suitable surface modification tool to achieve the preorganization of artificial receptors and to improve the functional properties of self-assembled monolayers. Herein, a supramolecular chemistry/nanotechnology-based platform was conceived to develop sensitive label-free electrochemical immunosensors, by using a resorcarene macrocycle as an artificial linker for the oriented antibody immobilization. To this aim, a water-soluble bifunctional resorc[4]arene architecture (RW) was rationally designed and synthesized to anchor gold-coated magnetic nanoparticles (Au@MNPs) and to maximize the amount of the active immobilized antibody (Ab) in the proper "end-on" orientation. The resulting supramolecular chemistry-modified nanoparticles, RW@Au@MNPs, were deposited onto graphite screen printed electrodes which were then employed to immobilize three different Abs. Furthermore, an immunosensor for atrazine (ATZ) analysis was realized and characterized by the differential pulse voltammetry technique to demonstrate the validity of the developed biosensing platform as a proof of concept for electrochemical immunosensors. The RW-based immunosensor improved AbATZ loading on Au@MNPs and sensitivity toward ATZ by almost 1.5 times compared to the random platform. Particularly, the electrochemical characterization of the developed immunosensor displays a linearity range toward ATZ within 0.05-1.5 ng/mL, a limit of detection of 0.011 ng/ml, and good reproducibility and stability. The immunosensor was tested by analyzing spiked fortified water samples with a mean recovery ranging from 95.7 to 108.4%. The overall good analytical performances of this immunodevice suggest its application for the screening and monitoring of ATZ in real matrices. Therefore, the results highlighted the successful application of the resorc[4]arene-based sensor design strategy for developing sensitive electrochemical immunosensors with improved analytical performance and simplifying the Ab immobilization procedure.
Collapse
|
2
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
3
|
Jeong Y, Jin S, Palanikumar L, Choi H, Shin E, Go EM, Keum C, Bang S, Kim D, Lee S, Kim M, Kim H, Lee KH, Jana B, Park MH, Kwak SK, Kim C, Ryu JH. Stimuli-Responsive Adaptive Nanotoxin to Directly Penetrate the Cellular Membrane by Molecular Folding and Unfolding. J Am Chem Soc 2022; 144:5503-5516. [PMID: 35235326 DOI: 10.1021/jacs.2c00084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biological nanomachines, including proteins and nucleic acids whose function is activated by conformational changes, are involved in every biological process, in which their dynamic and responsive behaviors are controlled by supramolecular recognition. The development of artificial nanomachines that mimic the biological functions for potential application as therapeutics is emerging; however, it is still limited to the lower hierarchical level of the molecular components. In this work, we report a synthetic machinery nanostructure in which actuatable molecular components are integrated into a hierarchical nanomaterial in response to external stimuli to regulate biological functions. Two nanometers core-sized gold nanoparticles are covered with ligand layers as actuatable components, whose folding/unfolding motional response to the cellular environment enables the direct penetration of the nanoparticles across the cellular membrane to disrupt intracellular organelles. Furthermore, the pH-responsive conformational movements of the molecular components can induce the apoptosis of cancer cells. This strategy based on the mechanical motion of molecular components on a hierarchical nanocluster would be useful to design biomimetic nanotoxins.
Collapse
Affiliation(s)
- Youngdo Jeong
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Soyeong Jin
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of Chemistry, School of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - L Palanikumar
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Huyeon Choi
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eunhye Shin
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Eun Min Go
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Changjoon Keum
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seunghwan Bang
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, Biomedical Engineering, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Dongkap Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of Chemistry, School of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Seungho Lee
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Minsoo Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of Chemistry, School of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hojun Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kwan Hyi Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Myoung-Hwan Park
- Department of Chemistry & Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Chaekyu Kim
- Fusion Biotechnology, Inc., Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Lloveras V, Elías-Rodríguez P, Bursi L, Shirdel E, Goñi AR, Calzolari A, Vidal-Gancedo J. Multifunctional Switch Based on Spin-Labeled Gold Nanoparticles. NANO LETTERS 2022; 22:768-774. [PMID: 35078323 DOI: 10.1021/acs.nanolett.1c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fabrication of multifunctional switches is a fundamental step in the development of nanometer-scale molecular spintronic devices. The anchoring of active organic radicals on gold nanoparticles (AuNPs) surface is little studied and the realization of AuNPs-based switches remains extremely challenging. We report the first demonstration of a surface molecular switch based on AuNPs decorated with persistent perchlorotriphenylmethyl (PTM) radicals. The redox properties of PTM are exploited to fabricate electrochemical switches with optical and magnetic responses, showing high stability and reversibility. Electronic interaction between the radicals and the gold surface is investigated by UV-vis, showing a very broad absorption band in the near-infrared (NIR) region, which becomes more intense when PTMs are reduced to anionic phase. By using multiple experimental techniques, we demonstrate that this interaction is likely favored by the preferentially flat orientation of PTM ligands on the metallic NP surface, as confirmed by first-principles simulations.
Collapse
Affiliation(s)
- Vega Lloveras
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Catalonia Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08193 Barcelona, Spain
| | - Pilar Elías-Rodríguez
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Catalonia Spain
| | - Luca Bursi
- CNR-NANO Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy
| | - Ehsan Shirdel
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Catalonia Spain
| | - Alejandro R Goñi
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Catalonia Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | | | - José Vidal-Gancedo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Catalonia Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08193 Barcelona, Spain
| |
Collapse
|
5
|
Khusnuriyalova AF, Caporali M, Hey‐Hawkins E, Sinyashin OG, Yakhvarov DG. Preparation of Cobalt Nanoparticles. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aliya F. Khusnuriyalova
- Alexander Butlerov Institute of Chemistry Kazan Federal University Kremlyovskaya 18 420008 Kazan Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences Arbuzov Street 8 420088 Kazan Russian Federation
| | - Maria Caporali
- Institute of Chemistry of Organometallic Compounds (ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Evamarie Hey‐Hawkins
- Faculty of Chemistry and Mineralogy Institute of Inorganic Chemistry Leipzig University Johannisallee 29 04103 Leipzig Germany
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences Arbuzov Street 8 420088 Kazan Russian Federation
| | - Dmitry G. Yakhvarov
- Alexander Butlerov Institute of Chemistry Kazan Federal University Kremlyovskaya 18 420008 Kazan Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences Arbuzov Street 8 420088 Kazan Russian Federation
| |
Collapse
|
6
|
Budyka MF, Nikulin PA, Gavrishova TN, Chashchikhin OV. Photomodulation of a Dual‐Color Luminescent System Combining Quantum Dots with a FRET Acceptor Ligand**. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mikhail F. Budyka
- Institute of Problems of Chemical Physics Russian Academy of Sciences pr. Akademika Semenova 1, Chernogolovka Moscow region 142432 Russian Federation
| | - Pavel A. Nikulin
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Tatiana N. Gavrishova
- Institute of Problems of Chemical Physics Russian Academy of Sciences pr. Akademika Semenova 1, Chernogolovka Moscow region 142432 Russian Federation
| | - Oleg V. Chashchikhin
- Department of Organic Chemistry Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
7
|
Sun Z, Xi L, Zheng K, Zhang Z, Baldridge KK, Olson MA. Classical and non-classical melatonin receptor agonist-directed micellization of bipyridinium-based supramolecular amphiphiles in water. SOFT MATTER 2020; 16:4788-4799. [PMID: 32400822 DOI: 10.1039/d0sm00424c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The addition of molecular recognition units into structures of amphiphiles is a means by which soft matter capable of undergoing template-directed micellization can be obtained. These supramolecular amphiphiles can bind with molecular templates using non-covalent bonding interactions, forming host-guest complexes that hold the amphiphiles together as they undergo micellization. In most cases, such templates are synthesized and designed for a specific molecular recognition motif. It is not clear, however, to what extent these types of amphiphile systems are responsive to members of a biologically derived class of molecular targets, for example, melatonin receptor agonists and their numerous isosteres. Herein, we describe the template-directed micellization and arrangement at the air-water interface of a bipyridinium-based gemini surfactant, driven by the influence of donor-acceptor CT interactions with a series of bioactive classical and non-classical melatonin isosteres. Under the conditions of templation by either 5-methoxytryptophol, N-acetylserotonin, N-acetyltryptamine, or the pharmaceutical agent agomelatine, favorable Gibbs free energies of micellization were observed with decreases in CMC by up to 70%, and concomitant increases of 28% in surface pressure, and decreases of 20% in contact angle versus untemplated solutions. Solid state thermochromic transition temperatures for inkjet-printed patterns of the templated amphiphile solutions were inversely correlated with trends observed for their respective CMCs, and exhibited no correlation to their binding constants. These findings contend for the generalizable use of melatonin receptor agonists as targets and/or templates for chemical systems, which rely on π-stacking donor-acceptor CT interactions in water to facilitate the actions of binding, sequestration, or template-directed self-assembly.
Collapse
Affiliation(s)
- Zhimin Sun
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Lihui Xi
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Kai Zheng
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Zhao Zhang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Kim K Baldridge
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Mark A Olson
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| |
Collapse
|
8
|
Moulin E, Faour L, Carmona‐Vargas CC, Giuseppone N. From Molecular Machines to Stimuli‐Responsive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906036. [PMID: 31833132 DOI: 10.1002/adma.201906036] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/18/2019] [Indexed: 05/12/2023]
Affiliation(s)
- Emilie Moulin
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| | - Lara Faour
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| | - Christian C. Carmona‐Vargas
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| | - Nicolas Giuseppone
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| |
Collapse
|
9
|
Da Silva Rodrigues R, Marshall DL, McMurtrie JC, Mullen KM. Dynamic covalent synthesis of [2]- and [3]rotaxanes both in solution and on solid supports. NEW J CHEM 2020. [DOI: 10.1039/d0nj02137g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we demonstrate the application of a dynamic covalent chemistry methodology for the synthesis of [2]- and [3]-rotaxanes not only in solution, but also on solid supports with 65% rotaxane functionalisation of the polymer resins observed.
Collapse
Affiliation(s)
| | - David L. Marshall
- Centre for Materials Science
- Queensland University of Technology
- Brisbane
- Australia
- Central Analytical Research Facility
| | - John C. McMurtrie
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| | - Kathleen M. Mullen
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| |
Collapse
|
10
|
Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, Giuseppone N. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem Rev 2019; 120:310-433. [PMID: 31869214 DOI: 10.1021/acs.chemrev.9b00288] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control over molecular movement is of fundamental and practical importance in physics, biology, and chemistry. At nanoscale, the peculiar functioning principles and the synthesis of individual molecular actuators and machines has been the subject of intense investigations and debates over the past 60 years. In this review, we focus on the design of collective motions that are achieved by integrating, in space and time, several or many of these individual mechanical units together. In particular, we provide an in-depth look at the intermolecular couplings used to physically connect a number of artificial mechanically active molecular units such as photochromic molecular switches, nanomachines based on mechanical bonds, molecular rotors, and light-powered rotary motors. We highlight the various functioning principles that can lead to their collective motion at various length scales. We also emphasize how their synchronized, or desynchronized, mechanical behavior can lead to emerging functional properties and to their implementation into new active devices and materials.
Collapse
Affiliation(s)
- Damien Dattler
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Gad Fuks
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Joakim Heiser
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Emilie Moulin
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Alexis Perrot
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Xuyang Yao
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Nicolas Giuseppone
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| |
Collapse
|
11
|
Mena-Hernando S, Pérez EM. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem Soc Rev 2019; 48:5016-5032. [DOI: 10.1039/c8cs00888d] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An overview of the progress in mechanically interlocked materials is presented. In particular, we focus on polycatenanes, polyrotaxanes, metal–organic rotaxane frameworks (MORFs), and mechanically interlocked derivatives of carbon nanotubes (MINTs).
Collapse
|
12
|
Grzelczak M, Liz-Marzán LM, Klajn R. Stimuli-responsive self-assembly of nanoparticles. Chem Soc Rev 2019; 48:1342-1361. [DOI: 10.1039/c8cs00787j] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ligand-protected nanoparticles can serve as attractive building blocks for constructing complex chemical systems.
Collapse
Affiliation(s)
- Marek Grzelczak
- Donostia International Physics Center (DIPC)
- 20018 Donostia-San Sebastián
- Spain
- Ikerbasque
- Basque Foundation for Science
| | - Luis M. Liz-Marzán
- Ikerbasque
- Basque Foundation for Science
- 48013 Bilbao
- Spain
- CIC biomaGUNE and CIBER-BBN
| | - Rafal Klajn
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|
13
|
Chu Z, Han Y, Bian T, De S, Král P, Klajn R. Supramolecular Control of Azobenzene Switching on Nanoparticles. J Am Chem Soc 2018; 141:1949-1960. [DOI: 10.1021/jacs.8b09638] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zonglin Chu
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yanxiao Han
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Tong Bian
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Soumen De
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Physics and Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
14
|
Xu WJ, Wang JJ, Zhang SY, Sun J, Qin CX, Dai LX. Tuning chain extender structure to prepare high-performance thermoplastic polyurethane elastomers. RSC Adv 2018; 8:20701-20711. [PMID: 35542369 PMCID: PMC9080844 DOI: 10.1039/c8ra02784f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/22/2018] [Indexed: 01/20/2023] Open
Abstract
In this work, a novel strategy is developed to solve the issue of mutually exclusive high mechanical robustness and thermo-stability for thermoplastic polyurethane (PU). A leaf-like and reticulate interfingering superstructure can be seen. The superstructure of polyurethanes can also be tuned by the polarity of chain extender molecular via changing the number for ferrocene redox centres, thus to further enhance the thermal stability and elasticity of PUs. As a result, by incorporating bisferrocene units into the main chain of PU, a high-performance PU elastomer can be synthesized with a highest initial degradation temperature of T5% of 345 °C, a highest tensile strength of 42.3 MPa with an elongation over 1000%, as well as a toughness of 19.6 GJ m−3. These results conclusively suggest that high-performance thermoplastic polyurethane elastomers had great promise for potential application in a wide range of practical fields. Ester-containing ferrocenyl diols are introduced as chain extenders to tune the polyurethane superstructure to optimize thermo-stability and elasticity simultaneously.![]()
Collapse
Affiliation(s)
- Wei Juan Xu
- College of Chemistry, Chemical Engineering and Materials, Science of Soochow University Suzhou 215123 China
| | - Jian Jun Wang
- College of Chemistry, Chemical Engineering and Materials, Science of Soochow University Suzhou 215123 China
| | - Shi Yu Zhang
- College of Chemistry, Chemical Engineering and Materials, Science of Soochow University Suzhou 215123 China
| | - Jun Sun
- College of Chemistry, Chemical Engineering and Materials, Science of Soochow University Suzhou 215123 China
| | - Chuan Xiang Qin
- College of Chemistry, Chemical Engineering and Materials, Science of Soochow University Suzhou 215123 China
| | - Li Xing Dai
- College of Chemistry, Chemical Engineering and Materials, Science of Soochow University Suzhou 215123 China
| |
Collapse
|
15
|
Chu Z, Han Y, Král P, Klajn R. “Precipitation on Nanoparticles”: Attractive Intermolecular Interactions Stabilize Specific Ligand Ratios on the Surfaces of Nanoparticles. Angew Chem Int Ed Engl 2018; 57:7023-7027. [DOI: 10.1002/anie.201800673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/13/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Zonglin Chu
- Department of Organic Chemistry Weizmann Institute of Science Rehovot 76100 Israel
| | - Yanxiao Han
- Department of Chemistry University of Illinois at Chicago Chicago IL 60607 USA
| | - Petr Král
- Department of Chemistry University of Illinois at Chicago Chicago IL 60607 USA
- Department of Physics, Department of Biopharmaceutical Sciences University of Illinois at Chicago Chicago IL 60607 USA
| | - Rafal Klajn
- Department of Organic Chemistry Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
16
|
Chu Z, Han Y, Král P, Klajn R. “Precipitation on Nanoparticles”: Attractive Intermolecular Interactions Stabilize Specific Ligand Ratios on the Surfaces of Nanoparticles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zonglin Chu
- Department of Organic Chemistry Weizmann Institute of Science Rehovot 76100 Israel
| | - Yanxiao Han
- Department of Chemistry University of Illinois at Chicago Chicago IL 60607 USA
| | - Petr Král
- Department of Chemistry University of Illinois at Chicago Chicago IL 60607 USA
- Department of Physics, Department of Biopharmaceutical Sciences University of Illinois at Chicago Chicago IL 60607 USA
| | - Rafal Klajn
- Department of Organic Chemistry Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
17
|
Wang Z, Cui H, Sun Z, Roch LM, Goldner AN, Nour HF, Sue ACH, Baldridge KK, Olson MA. Melatonin-directed micellization: a case for tryptophan metabolites and their classical bioisosteres as templates for the self-assembly of bipyridinium-based supramolecular amphiphiles in water. SOFT MATTER 2018; 14:2893-2905. [PMID: 29589034 DOI: 10.1039/c8sm00136g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The bulk solution properties of amphiphilic formulations are derivative of their self-assembly into higher ordered supramolecular assemblies known as micelles and of their ordering at the air-water interface. Exerting control over the surface-active properties of amphiphiles and their propensity to aggregate in pure water is most often fine-tuned by covalent modification of their molecular structure. Nevertheless structural constraints which limit the performance of amphiphiles do emerge when trying to develop more sophisticated systems which undergo for example, shape-defined controlled assembly and/or respond to external stimuli. In this regard, the template-modulated assembly of the so-called "supramolecular amphiphiles" continues to make progress ordering molecules that otherwise have very little to no driving force to aggregate in a prescribed manner in aqueous solutions. Herein we describe the template-modulated micellization and ordering at the air-water interface of bipyridinium-based supramolecular amphiphiles triggered by host-guest interactions with high specificity for the neurotransmitter melatonin over its biosynthetic synthon l-tryptophan and the thermodynamic parameters governing the template-modulated micellization process. When bound to the bipyridinium units of micellized surfactant molecules, melatonin effectively serves as "molecular glue" capable of lowering the CMC by 52% as compared to untemplated solutions. Analysis of this system suggests that a hallmark of donor-acceptor template-modulated micellization in water is a strong positively correlated temperature dependence of the CMC and the absence of a U-shaped CMC-temperature curve. Our findings make a case for the incorporation of l-tryptophan-based metabolites and their classical synthetic pharmaceutical bioisosteres as potential targets/components of donor-acceptor CT-based supramolecular amphiphile systems/materials operating in water.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Health Sciences Platform, Tianjin University, Building 24, Tianjin 300072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Contemporary chemical and material engineering often takes inspiration from nature, targeting for example strong yet light materials and materials composed of highly ordered domains at multiple different lengthscales for fundamental science and applications in e.g. sensing, catalysis, coating technology, and delivery. The preparation of such hierarchically structured functional materials through guided bottom-up assembly of synthetic building blocks requires a high level of control over their synthesis, interactions and assembly pathways. In this perspective we showcase recent work demonstrating how molecular control can be exploited to direct colloidal assembly into responsive materials with mechanical, optical or electrical properties that can be adjusted post-synthesis with external cues.
Collapse
Affiliation(s)
- M Gerth
- Laboratory of Physical Chemistry, and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MD, Eindhoven, The Netherlands
| | | |
Collapse
|
19
|
Photoactive hybrid nanosystem based on CdS quantum dot and novel diarylethylene photochrome as FRET acceptor. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.02.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Chashchikhin OV, Budyka MF. Hybrid nanosystems based on colloidal quantum dots and organic ligands (Review). HIGH ENERGY CHEMISTRY 2018. [DOI: 10.1134/s0018143918010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Zhang J, Tang Q, Gao ZZ, Huang Y, Xiao X, Tao Z. Stimuli-Responsive Supramolecular Assemblies between Twisted Cucurbit[14]uril and Hemicyanine Dyes and Their Analysis Application. J Phys Chem B 2017; 121:11119-11123. [DOI: 10.1021/acs.jpcb.7b10285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Zhang
- The
Engineering and Research Center for Southwest Bio-Pharmaceutical
Resources of National Education Ministry of China, ‡Key Laboratory of Macrocyclic and
Supramolecular Chemistry of Guizhou Province, and §College of Tobacco of Guizhou University, Guizhou University, Guiyang 550025, China
| | - Qing Tang
- The
Engineering and Research Center for Southwest Bio-Pharmaceutical
Resources of National Education Ministry of China, ‡Key Laboratory of Macrocyclic and
Supramolecular Chemistry of Guizhou Province, and §College of Tobacco of Guizhou University, Guizhou University, Guiyang 550025, China
| | - Zhong-Zheng Gao
- The
Engineering and Research Center for Southwest Bio-Pharmaceutical
Resources of National Education Ministry of China, ‡Key Laboratory of Macrocyclic and
Supramolecular Chemistry of Guizhou Province, and §College of Tobacco of Guizhou University, Guizhou University, Guiyang 550025, China
| | - Ying Huang
- The
Engineering and Research Center for Southwest Bio-Pharmaceutical
Resources of National Education Ministry of China, ‡Key Laboratory of Macrocyclic and
Supramolecular Chemistry of Guizhou Province, and §College of Tobacco of Guizhou University, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- The
Engineering and Research Center for Southwest Bio-Pharmaceutical
Resources of National Education Ministry of China, ‡Key Laboratory of Macrocyclic and
Supramolecular Chemistry of Guizhou Province, and §College of Tobacco of Guizhou University, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- The
Engineering and Research Center for Southwest Bio-Pharmaceutical
Resources of National Education Ministry of China, ‡Key Laboratory of Macrocyclic and
Supramolecular Chemistry of Guizhou Province, and §College of Tobacco of Guizhou University, Guizhou University, Guiyang 550025, China
| |
Collapse
|
22
|
Marquez MD, Zenasni O, Jamison AC, Lee TR. Homogeneously Mixed Monolayers: Emergence of Compositionally Conflicted Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8839-8855. [PMID: 28562051 DOI: 10.1021/acs.langmuir.7b00755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability to manipulate interfaces at the nanoscale via a variety of thin-film technologies offers a plethora of avenues for advancing surface applications. These include surfaces with remarkable antibiofouling properties as well as those with tunable physical and electronic properties. Molecular self-assembly is one notably attractive method used to decorate and modify surfaces. Of particular interest to surface scientists has been the thiolate-gold system, which serves as a reliable method for generating model thin-film monolayers that transform the interfacial properties of gold surfaces. Despite widespread interest, efforts to tune the interfacial properties using mixed adsorbate systems have frequently led to phase-separated domains of molecules on the surface with random sizes and shapes depending on the structure and chemical composition of the adsorbates. This feature article highlights newly emerging methods for generating mixed thin-film interfaces, not only to enhance the aforementioned properties of organic thin films, but also to give rise to interfacial compositions never before observed in nature. An example would be the development of monolayers formed from bidentate adsorbates and other unique headgroup architectures that provide the surface bonding stability necessary to allow the assembly of interfaces that expose mixtures of chains that are fundamentally different in character (i.e., either phase-incompatible or structurally dissimilar), producing compositionally "conflicted" interfaces. By also exploring the prior efforts to produce such homogeneously blended interfaces, this feature article seeks to convey the relationships between the methods of film formation and the overall properties of the resulting interfaces.
Collapse
Affiliation(s)
- Maria D Marquez
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , Houston, Texas 77204-5003, United States
| | - Oussama Zenasni
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , Houston, Texas 77204-5003, United States
| | - Andrew C Jamison
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , Houston, Texas 77204-5003, United States
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , Houston, Texas 77204-5003, United States
| |
Collapse
|
23
|
Li HG, Wang GW. Liquid-Assisted One-Pot Mechanosynthesis and Properties of Neutral Donor–Acceptor [2]Rotaxanes. J Org Chem 2017; 82:6341-6348. [DOI: 10.1021/acs.joc.7b00912] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hai-Gen Li
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Hefei National Laboratory
for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Hefei National Laboratory
for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
24
|
Molecular Plasmonics: From Molecular-Scale Measurements and Control to Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1021/bk-2016-1224.ch002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|
25
|
Ren X, Wu Y, Clarke DE, Liu J, Wu G, Scherman OA. Surface-Bound Cucurbit[8]uril Catenanes on Magnetic Nanoparticles Exhibiting Molecular Recognition. Chem Asian J 2016; 11:2382-6. [DOI: 10.1002/asia.201600875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaohe Ren
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| | - Yuchao Wu
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| | - David E. Clarke
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| | - Ji Liu
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| | - Guanglu Wu
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| |
Collapse
|
26
|
Zhang F, Ma J, Sun Y, Boussouar I, Tian D, Li H, Jiang L. Fabrication of a mercaptoacetic acid pillar[5]arene assembled nanochannel: a biomimetic gate for mercury poisoning. Chem Sci 2016; 7:3227-3233. [PMID: 29997814 PMCID: PMC6005340 DOI: 10.1039/c5sc04726a] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/29/2016] [Indexed: 11/21/2022] Open
Abstract
Mercury ion binding blocks potassium ion channels, which leads to toxicity in vivo. It is challenging to design a simple and efficient artificial system to mimic the sophisticated biological process of mercury poisoning. Herein, based on biomimetic strategies, a tunable mercury(ii) ion-gate modulated by mercaptoacetic acid-pillar[5]arene (MAP5) is reported. By virtue of the unique design of the host-guest competition, potassium ion transport can actualize the reversible switching between "on" and "off" in the absence and presence of mercury ions. Moreover, the MAP5-immobilized nanochannel is highly effective at distinguishing Hg2+ from other metal ions and can be used to detect Hg2+ and act as an excellent and robust gate valve for developing integrated circuits and nanoelectronic logic devices. This study paves a new way for better understanding the physiological phenomenon of mercury toxicity and shows great promise for biomedical research.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU) , Ministry of Education , College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China .
| | - Junkai Ma
- Key Laboratory of Pesticide and Chemical Biology (CCNU) , Ministry of Education , College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China .
| | - Yue Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU) , Ministry of Education , College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China .
| | - Imene Boussouar
- Key Laboratory of Pesticide and Chemical Biology (CCNU) , Ministry of Education , College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China .
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU) , Ministry of Education , College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China .
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU) , Ministry of Education , College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China . .,Beijing National Laboratory for Molecular Sciences (BNLMS) , Key Laboratory of Organic Solids , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , P. R. China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS) , Key Laboratory of Organic Solids , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , P. R. China
| |
Collapse
|
27
|
Olson MA, Messina MS, Thompson JR, Dawson TJ, Goldner AN, Gaspar DK, Vazquez M, Lehrman JA, Sue ACH. Reversible morphological changes of assembled supramolecular amphiphiles triggered by pH-modulated host–guest interactions. Org Biomol Chem 2016; 14:5714-20. [DOI: 10.1039/c6ob00109b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acid–base modulated host–guest binding at the micellar–water interface triggers reversible oblate ellipsoid-to-lamellar morphological transitions revealing the relationship between and morphology.
Collapse
Affiliation(s)
- M. A. Olson
- Institute for Molecular Design and Synthesis
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - M. S. Messina
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - J. R. Thompson
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - T. J. Dawson
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - A. N. Goldner
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - D. K. Gaspar
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - M. Vazquez
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - J. A. Lehrman
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - A. C.-H. Sue
- Institute for Molecular Design and Synthesis
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| |
Collapse
|
28
|
Brown A, Langton MJ, Kilah NL, Thompson AL, Beer PD. Chloride-Anion-Templated Synthesis of a Strapped-Porphyrin-Containing Catenane Host System. Chemistry 2015; 21:17664-75. [PMID: 26508679 PMCID: PMC4691337 DOI: 10.1002/chem.201502721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/10/2015] [Indexed: 01/19/2023]
Abstract
The synthesis, structure and anion-recognition properties of a new strapped-porphyrin-containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor-acceptor and coordinative pyridine-zinc interactions. The [2]catenane incorporates a three-dimensional, hydrogen-bond-donating anion-binding pocket; solid-state structural analysis of the catenane⋅chloride complex reveals that the chloride anion is encapsulated within the catenane's interlocked binding cavity through six convergent CH⋅⋅⋅⋅Cl and NH⋅⋅⋅Cl hydrogen-bonding interactions and solution-phase (1) H NMR titration experiments demonstrate that this complementary hydrogen-bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution.
Collapse
Affiliation(s)
- Asha Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Matthew J Langton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Nathan L Kilah
- School of Physical Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001 (Australia)
| | - Amber L Thompson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK).
| |
Collapse
|
29
|
Udayabhaskararao T, Kundu PK, Ahrens J, Klajn R. Reversible Photoisomerization of Spiropyran on the Surfaces of Au25 Nanoclusters. Chemphyschem 2015; 17:1805-9. [PMID: 26593975 DOI: 10.1002/cphc.201500897] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/06/2022]
Abstract
Au25 nanoclusters functionalized with a spiropyran molecular switch are synthesized via a ligand-exchange reaction at low temperature. The resulting nanoclusters are characterized by optical and NMR spectroscopies as well as by mass spectrometry. Spiropyran bound to nanoclusters isomerizes in a reversible fashion when exposed to UV and visible light, and its properties are similar to those of free spiropyran molecules in solution. The reversible photoisomerization entails the modulation of fluorescence as well as the light-controlled self-assembly of nanoclusters.
Collapse
Affiliation(s)
- T Udayabhaskararao
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Pintu K Kundu
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Johannes Ahrens
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
30
|
Heinen L, Walther A. Celebrating Soft Matter's 10th Anniversary: Approaches to program the time domain of self-assemblies. SOFT MATTER 2015; 11:7857-7866. [PMID: 26314799 DOI: 10.1039/c5sm01660f] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Self-regulating reconfigurable soft matter systems are of great interest for creating adaptive and active material properties. Such complex functionalities emerge from non-linear and interactive behavior in space and time as demonstrated by a plethora of dynamic, self-organizing biological structures (e.g., the cytoskeleton). In man-made self-assemblies, patterning of the spatial domain has advanced to creating hierarchical structures via precise molecular programming. However, orchestration of the time domain of self-assemblies is still in its infancy and lacks universal design principles. In this Emerging Area article we outline major strategies for programming the time domain of self-assemblies following the concepts of regulatory reaction networks, energy dissipation and kinetic control. Such concepts operate outside thermodynamic equilibrium and pave the way for temporally patterned, dynamic, and autonomously acting functional materials.
Collapse
Affiliation(s)
- Laura Heinen
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.
| | | |
Collapse
|
31
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
32
|
Kundu PK, Samanta D, Leizrowice R, Margulis B, Zhao H, Börner M, Udayabhaskararao T, Manna D, Klajn R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat Chem 2015. [DOI: 10.1038/nchem.2303] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Gil-Ramírez G, Leigh DA, Stephens AJ. Catenanes: fifty years of molecular links. Angew Chem Int Ed Engl 2015; 54:6110-50. [PMID: 25951013 PMCID: PMC4515087 DOI: 10.1002/anie.201411619] [Citation(s) in RCA: 412] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 02/06/2023]
Abstract
Half a century after Schill and Lüttringhaus carried out the first directed synthesis of a [2]catenane, a plethora of strategies now exist for the construction of molecular Hopf links (singly interlocked rings), the simplest type of catenane. The precision and effectiveness with which suitable templates and/or noncovalent interactions can arrange building blocks has also enabled the synthesis of intricate and often beautiful higher order interlocked systems, including Solomon links, Borromean rings, and a Star of David catenane. This Review outlines the diverse strategies that exist for synthesizing catenanes in the 21st century and examines their emerging applications and the challenges that still exist for the synthesis of more complex topologies.
Collapse
Affiliation(s)
- Guzmán Gil-Ramírez
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK) http://www.catenane.net
| | - David A Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK) http://www.catenane.net.
| | - Alexander J Stephens
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK) http://www.catenane.net
| |
Collapse
|
34
|
Gil-Ramírez G, Leigh DA, Stephens AJ. Catenane: fünfzig Jahre molekulare Verschlingungen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411619] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Luo QF, Zhu L, Rao SJ, Li H, Miao Q, Qu DH. Two Stepwise Synthetic Routes toward a Hetero[4]rotaxane. J Org Chem 2015; 80:4704-9. [PMID: 25874382 DOI: 10.1021/acs.joc.5b00627] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterorotaxanes have been emerging as an important class of mechanically interlocked molecules and have attracted much attention in recent years. Driven by the distinguishable host-guest interactions between crown ether macrocycles and ammonium with different sizes, a novel hetero[4]rotaxane was successfully prepared by employing the combination of copper-catalyzed "click" reaction and P(n-Bu)3-catalyzed esterification reaction as stoppering reactions. The hetero[4]rotaxane contains an interlocked species in which a dibenzo[24]crown-8 ring threaded by a dibenzylammonium-containing component with two benzo[21]crown-7 macrocycles at both ends to act as stoppers, and each of the two benzo[21]crown-7 rings is also threaded with a benzylalkylammonium unit to form the second interlocked species. The hetero[4]rotaxane was prepared through two different stepwise synthetic routes, and the complicated chemical structure of the hetero[4]rotaxane was well-characterized by (1)H NMR spectroscopy and high-resolution electrospray ionization (HR-ESI) mass spectrometry. The investigation shows that the construction of complicated topological heterorotaxane can be achieved via distinct approaches with high efficiencies, which may provide a foundation for the construction of more sophisticated heterorotaxane systems or functional supermolecules.
Collapse
|
36
|
Yeh YC, Rana S, Mout R, Yan B, Alfonso FS, Rotello VM. Supramolecular tailoring of protein-nanoparticle interactions using cucurbituril mediators. Chem Commun (Camb) 2015; 50:5565-8. [PMID: 24728346 DOI: 10.1039/c4cc01257g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Supramolecular modification of nanoparticle surfaces through threading of cucurbit[7]uril (CB[7]) onto surface ligands is used to regulate protein-nanoparticle interactions.
Collapse
Affiliation(s)
- Yi-Cheun Yeh
- Department of Chemistry, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Heinrich T, Traulsen CHH, Holzweber M, Richter S, Kunz V, Kastner SK, Krabbenborg SO, Huskens J, Unger WES, Schalley CA. Coupled molecular switching processes in ordered mono- and multilayers of stimulus-responsive rotaxanes on gold surfaces. J Am Chem Soc 2015; 137:4382-90. [PMID: 25782057 PMCID: PMC4410911 DOI: 10.1021/ja512654d] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 01/06/2023]
Abstract
Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimulus-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimulus-responsive surfaces may help integrate synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically switchable rotaxanes on gold surfaces. Rotaxane mono- and multilayers are shown to reversibly switch in a coupled manner between two ordered states as revealed by linear dichroism effects in angle-resolved NEXAFS spectra. Such a concerted switching process is observed only when the surfaces are well packed, while less densely packed surfaces lacking lateral order do not exhibit such effects.
Collapse
Affiliation(s)
- Thomas Heinrich
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
- BAM—Federal Institute for Materials Research
and Testing, Unter den
Eichen 44-46, 12203 Berlin, Germany
| | - Christoph H.-H. Traulsen
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
- BAM—Federal Institute for Materials Research
and Testing, Unter den
Eichen 44-46, 12203 Berlin, Germany
| | - Markus Holzweber
- BAM—Federal Institute for Materials Research
and Testing, Unter den
Eichen 44-46, 12203 Berlin, Germany
| | - Sebastian Richter
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Valentin Kunz
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Sarah K. Kastner
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Sven O. Krabbenborg
- Molecular Nanofabrication
Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication
Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wolfgang E. S. Unger
- BAM—Federal Institute for Materials Research
and Testing, Unter den
Eichen 44-46, 12203 Berlin, Germany
| | - Christoph A. Schalley
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
38
|
Xue M, Yang Y, Chi X, Yan X, Huang F. Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chem Rev 2015; 115:7398-501. [DOI: 10.1021/cr5005869] [Citation(s) in RCA: 605] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Min Xue
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yong Yang
- Department
of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Xiaodong Chi
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xuzhou Yan
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
39
|
Williams PE, Jones ST, Walsh Z, Appel EA, Abo-Hamed EK, Scherman OA. Synthesis of Conducting Polymer-Metal Nanoparticle Hybrids Exploiting RAFT Polymerization. ACS Macro Lett 2015; 4:255-259. [PMID: 35596418 DOI: 10.1021/mz500645c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The direct covalent attachment of conducting polymers (CP) to nanoparticles (NP) to form CP-NP nanohybrids is of great interest for optoelectronic device applications. Hybrids formed by covalently anchoring CP to NP, rather than traditional blending or bilayer approaches, is highly desirable. CP-NP nanohybrids have increased interfacial surface area between the two components, facilitating rapid exciton diffusion at the p-n heterojunction. These materials take advantage of the facile solution processability, lightweight characteristics, flexibility, and mechanical strength associated with CPs, and the broad spectral absorption, photostability, and high charge carrier mobility of NPs. We demonstrate the ability to polymerize a hole transporting (HT) polymer utilizing reversible-addition-fragmentation chain transfer (RAFT) polymerization and its subsequent rapid aminolysis to yield a thiol-terminated HT polymer. Subsequent facile attachment to gold (Au) and silver (Ag) NPs and cadmium selenide (CdSe) quantum dots (QDs), to form a number of CP-NP systems is demonstrated and characterized. CP-NP nanohybrids show broad spectral absorptions ranging from UV through visible to the near IR, and their facile synthesis and purification could allow for large scale industrial applications.
Collapse
Affiliation(s)
- Paul E. Williams
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Samuel T. Jones
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Zarah Walsh
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Eric A. Appel
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Enass K. Abo-Hamed
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Oren A. Scherman
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
40
|
Le Poul N, Colasson B. Electrochemically and Chemically Induced Redox Processes in Molecular Machines. ChemElectroChem 2015. [DOI: 10.1002/celc.201402399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Coelho JP, González-Rubio G, Delices A, Barcina JO, Salgado C, Ávila D, Peña-Rodríguez O, Tardajos G, Guerrero-Martínez A. Polyrotaxane-Mediated Self-Assembly of Gold Nanospheres into Fully Reversible Supercrystals. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Coelho JP, González-Rubio G, Delices A, Barcina JO, Salgado C, Avila D, Peña-Rodríguez O, Tardajos G, Guerrero-Martínez A. Polyrotaxane-mediated self-assembly of gold nanospheres into fully reversible supercrystals. Angew Chem Int Ed Engl 2014; 53:12751-5. [PMID: 25256384 DOI: 10.1002/anie.201406323] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/03/2014] [Indexed: 11/08/2022]
Abstract
The use of a thiol-functionalized nonionic surfactant to stabilize spherical gold nanoparticles in water induces the spontaneous formation of polyrotaxanes at the nanoparticle surface in the presence of the macrocycle α-cyclodextrin. Whereas using an excess of surfactant an amorphous gold nanocomposite is obtained, under controlled drying conditions the self-assembly between the surface supramolecules provides large and homogenous supercrystals with hexagonal close packing of nanoparticles. Once formed, the self-assembled supercrystals can be fully redispersed in water. The reversibility of the crystallization process may offer an excellent reusable material to prepare gold nanoparticle inks and optical sensors with the potential to be recovered after use.
Collapse
Affiliation(s)
- Joao Paulo Coelho
- Departamento de Química Física I, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain)
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Langton MJ, Beer PD. Rotaxane and catenane host structures for sensing charged guest species. Acc Chem Res 2014; 47:1935-49. [PMID: 24708030 DOI: 10.1021/ar500012a] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONSPECTUS: The promise of mechanically interlocked architectures, such as rotaxanes and catenanes, as prototypical molecular switches and shuttles for nanotechnological applications, has stimulated an ever increasing interest in their synthesis and function. The elaborate host cavities of interlocked structures, however, can also offer a novel approach toward molecular recognition: this Account describes the use of rotaxane and catenane host systems for binding charged guest species, and for providing sensing capability through an integrated optical or electrochemical reporter group. Particular attention is drawn to the exploitation of the unusual dynamic properties of interlocked molecules, such as guest-induced shuttling or conformational switching, as a sophisticated means of achieving a selective and functional sensor response. We initially survey interlocked host systems capable of sensing cationic guests, before focusing on our accomplishments in synthesizing rotaxanes and catenanes designed for the more challenging task of selective anion sensing. In our group, we have developed the use of discrete anionic templation to prepare mechanically interlocked structures for anion recognition applications. Removal of the anion template reveals an interlocked host system, possessing a unique three-dimensional geometrically restrained binding cavity formed between the interlocked components, which exhibits impressive selectivity toward complementary anionic guest species. By incorporating reporter groups within such systems, we have developed both electrochemical and optical anion sensors which can achieve highly selective sensing of anionic guests. Transition metals, lanthanides, and organic fluorophores integrated within the mechanically bonded structural framework of the receptor are perturbed by the binding of the guest, with a concomitant change in the emission profile. We have also exploited the unique dynamics of interlocked hosts by demonstrating that an anion-induced conformational change can be used as a means of signal transduction. Electrochemical sensing has been realized by integration of the redox-active ferrocene functionality within a range of rotaxane and catenanes; binding of an anion perturbs the metallocene, leading to a cathodic shift in the ferrocene/ferrocenium redox couple. In order to obtain practical sensors for target charged guest species, confinement of receptors at a surface is necessary in order to develop robust, reuseable devices. Surface confinement also offers advantages over solution based receptors, including amplification of signal, enhanced guest binding thermodynamics and the negation of solubility problems. We have fabricated anion-templated rotaxanes and catenanes on gold electrode surfaces and demonstrated that the resulting mechanically bonded self-assembled monolayers are electrochemically responsive to the binding of anions, a crucial first step toward the advancement of sophisticated, highly selective, anion sensory devices. Rotaxane and catenane host molecules may be engineered to offer a superior level of molecular recognition, and the incorporation of optical or electrochemical reporter groups within these interlocked frameworks can allow for guest sensing. Advances in synthetic templation strategies has facilitated the synthesis of interlocked architectures and widened their interest as prototype molecular machines. However, their unique host-guest properties are only now beginning to be exploited as a sophisticated approach to chemical sensing. The development of functional host-guest sensory systems such as these is of great interest to the interdisciplinary field of supramolecular chemistry.
Collapse
Affiliation(s)
- Matthew J. Langton
- Chemistry
Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield, Oxford OX1
3TA, United Kingdom
| | - Paul D. Beer
- Chemistry
Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield, Oxford OX1
3TA, United Kingdom
| |
Collapse
|
44
|
Evans NH, Beer PD. Progress in the synthesis and exploitation of catenanes since the Millennium. Chem Soc Rev 2014; 43:4658-83. [PMID: 24676138 DOI: 10.1039/c4cs00029c] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Catenanes - molecules consisting of interlocked macrocyclic rings - have been prepared by templation strategies for some thirty years. The utilization of Cu(I) cation, aromatic donor-acceptor interactions and hydrogen bonding assisted self-assembly strategies has led to the construction of numerous examples of these aesthetically pleasing species. This review seeks to discuss key developments in the synthesis and functional application of catenanes that have occurred since the Millennium. The much expanded range of metal cation templates; the genesis and growth of anion templation, as well as the use of alternative supramolecular interactions (halogen bonding and radical templation) and thermodynamically controlled reactions to synthesize catenanes are detailed. The class of catenanes that may be described as "molecular machines" are then highlighted and to conclude, attempts to fabricate catenanes onto surfaces and into metal organic frameworks (MOFs) are discussed.
Collapse
Affiliation(s)
- Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | | |
Collapse
|
45
|
Perfetti M, Pineider F, Poggini L, Otero E, Mannini M, Sorace L, Sangregorio C, Cornia A, Sessoli R. Grafting single molecule magnets on gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:323-329. [PMID: 23996936 DOI: 10.1002/smll.201301617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/05/2013] [Indexed: 06/02/2023]
Abstract
The chemical synthesis and characterization of the first hybrid material composed by gold nanoparticles and single molecule magnets (SMMs) are described. Gold nanoparticles are functionalized via ligand exchange using a tetrairon(III) SMM containing two 1,2-dithiolane end groups. The grafting is evidenced by the shift of the plasmon resonance peak recorded with a UV-vis spectrometer, by the suppression of nuclear magnetic resonance signals, by X-ray photoemission spectroscopy peaks, and by transmission electron microscopy images. The latter evidence the formation of aggregates of nanoparticles as a consequence of the cross-linking ability of Fe4 through the two 1,2-dithiolane rings located on opposite sides of the metal core. The presence of intact Fe4 molecules is directly proven by synchrotron-based X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectroscopy, while a detailed magnetic characterization, obtained using electron paramagnetic resonance and alternating-current susceptibility, confirms the persistence of SMM behavior in this new hybrid nanostructure.
Collapse
Affiliation(s)
- Mauro Perfetti
- Department of Chemistry "U. Schiff", Università di Firenze & INSTM RU Firenze, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lehr J, Lang T, Blackburn OA, Barendt TA, Faulkner S, Davis JJ, Beer PD. Anion sensing by solution- and surface-assembled osmium(II) bipyridyl rotaxanes. Chemistry 2013; 19:15898-906. [PMID: 24127251 PMCID: PMC4517173 DOI: 10.1002/chem.201302886] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Indexed: 01/21/2023]
Abstract
We report the preparation of [2]rotaxanes containing an electrochemically and optically active osmium(II) bipyridyl macrocyclic component mechanically bonded with cationic pyridinium axles. Such interlocked host systems are demonstrated to recognise and sense anionic guest species as shown by (1)H NMR, luminescence and electrochemical studies. The rotaxanes can be surface assembled on to gold electrodes through anion templation under click copper(I)-catalysed Huisgen cycloaddition conditions to form rotaxane molecular films, which, after template removal, respond electrochemically and selectively to chloride.
Collapse
Affiliation(s)
- Joshua Lehr
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ (UK)
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Fahrenbach AC, Warren SC, Incorvati JT, Avestro AJ, Barnes JC, Stoddart JF, Grzybowski BA. Organic switches for surfaces and devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:331-48. [PMID: 22933356 DOI: 10.1002/adma.201201912] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Indexed: 05/13/2023]
Abstract
The pursuit to achieve miniaturization has tantalized researchers across the fields of chemistry, physics, biology, materials science and engineering for over half a century because of its many alluring potential applications. As alternatives to traditional "top-down" manufacturing, "bottom-up" approaches, originating from the (supra)molecular level, have enabled researchers to develop switches which can be manipulated on surfaces at nanoscale dimensions with deft precision using simple external triggers. Once on surfaces, these organic switches have been shown to modulate both the physical and chemical surface properties. In this Progress Report, we shed light on recent advances made in our laboratories towards integrated systems using all-organic switches on a variety of substrates. Design concepts are revealed, as well as the overall impact of all-organic switches on the properties of their substrates, while emphasizing the considerable promise and formidable challenges these advanced composite materials pose when it comes to conferring function on them.
Collapse
Affiliation(s)
- Albert C Fahrenbach
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Xi HT, Zhao T, Sun XQ, Miao CB, Zong T, Meng Q. Rapid and efficient solvent-free synthesis of cyclophanes based on bipyridinium under mechanical ball milling. RSC Adv 2013. [DOI: 10.1039/c2ra22802e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Kaminska I, Barras A, Coffinier Y, Lisowski W, Roy S, Niedziolka-Jonsson J, Woisel P, Lyskawa J, Opallo M, Siriwardena A, Boukherroub R, Szunerits S. Preparation of a responsive carbohydrate-coated biointerface based on graphene/azido-terminated tetrathiafulvalene nanohybrid material. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5386-5393. [PMID: 22970832 DOI: 10.1021/am3013196] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A one-step method for the reduction of graphene oxide (GO) to reduced graphene oxide (rGO) is reported taking advantage of the electron-donor properties of an azido-terminated tetrathiafulvalene (TTF-N(3)). The resulting graphene/TTF-N(3) nanohybrid material is characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) spectroscopy, and by electrical and electrochemical means. The accessibility of the azide function to chemoselective modification by any alkyne-terminated partner molecule via Cu(I)-catalyzed "click" chemistry is demonstrated. In a proof of principle and motivated by the importance of glycan-modified materials, many alkynyl-terminated mannose units were grated onto graphene/TTF-N(3). The TTF-mannose units could be released efficiently from the graphene matrix by chemical oxidation of TTF-mannose surface units to TTF(2+)-mannose, using Fe(ClO(4))(3) or the electron-deficient tetracationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)).
Collapse
Affiliation(s)
- Izabela Kaminska
- Institut de Recherche Interdisciplinaire (IRI), CNRS USR 3078, Université Lille 1, Parc de la Haute Borne, 50 avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|