1
|
Guo W, Makarov AA, Buevich AV, Jiang Y. Strategy for improving circular dichroism spectra deconvolution accuracy for macrocyclic peptides in drug discovery. J Pharm Biomed Anal 2024; 252:116476. [PMID: 39298840 DOI: 10.1016/j.jpba.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Peptide therapeutics have emerged as an appealing modality in the pharmaceutical industry. Understanding peptide conformation in solution remains one of the most critical areas for peptide drug development. Circular dichroism (CD) spectroscopy is a useful technique to study the secondary structure of proteins and peptides, but the current approaches are limited to protein-focused models to predict high-order structures of peptides, and the models were built based on X-ray crystallography instead of solution-based technique, as a result, such models may have poor predictions for peptides. In this study, we present a novel CD deconvolution model to determine peptide conformation in solution. To quantitatively obtain secondary structure information using CD, a calibration model is needed beforehand to establish the relationship between each secondary structure feature and the corresponding CD response. A reference set containing the majority of cyclic peptides with known structures from solution-state NMR spectroscopy was used to build the calibration model for CD deconvolution. Improved prediction accuracy on the secondary structure determination for cyclic peptides was achieved by this model compared to the commercial standard model using commercially available platforms. This new CD deconvolution method is crucial for peptide conformational analysis in solution, and has the potential to greatly accelerate peptide drug candidate optimization in the pharmaceutical drug discovery field.
Collapse
Affiliation(s)
- Wen Guo
- Analytical Research & Development, Merck & Co., Inc., Boston, MA 02115, USA
| | - Alexey A Makarov
- Analytical Research & Development, Merck & Co., Inc., Boston, MA 02115, USA.
| | - Alexei V Buevich
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yuan Jiang
- Analytical Research & Development, Merck & Co., Inc., Boston, MA 02115, USA.
| |
Collapse
|
2
|
Busetto V, Pshanichnaya L, Lichtenberger R, Hann S, Ketting R, Falk S. MUT-7 exoribonuclease activity and localization are mediated by an ancient domain. Nucleic Acids Res 2024; 52:9076-9091. [PMID: 39188014 PMCID: PMC11347159 DOI: 10.1093/nar/gkae610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024] Open
Abstract
The MUT-7 family of 3'-5' exoribonucleases is evolutionarily conserved across the animal kingdom and plays essential roles in small RNA production in the germline. Most MUT-7 homologues carry a C-terminal domain of unknown function named MUT7-C appended to the exoribonuclease domain. Our analysis shows that the MUT7-C is evolutionary ancient, as a minimal version of the domain exists as an individual protein in prokaryotes. In animals, MUT7-C has acquired an insertion that diverged during evolution, expanding its functions. Caenorhabditis elegans MUT-7 contains a specific insertion within MUT7-C, which allows binding to MUT-8 and, consequently, MUT-7 recruitment to germ granules. In addition, in C. elegans and human MUT-7, the MUT7-C domain contributes to RNA binding and is thereby crucial for ribonuclease activity. This RNA-binding function most likely represents the ancestral function of the MUT7-C domain. Overall, this study sheds light on MUT7-C and assigns two functions to this previously uncharacterized domain.
Collapse
Affiliation(s)
- Virginia Busetto
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Lizaveta Pshanichnaya
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Raffael Lichtenberger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099Mainz, Germany
| | - Sebastian Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
3
|
Tinajero-Díaz E, Judge N, Li B, Leigh T, Murphy RD, Topham PD, Derry MJ, Heise A. Poly(l-proline)-Stabilized Polypeptide Nanostructures via Ring-Opening Polymerization-Induced Self-Assembly (ROPISA). ACS Macro Lett 2024; 13:1031-1036. [PMID: 39074359 PMCID: PMC11340022 DOI: 10.1021/acsmacrolett.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Poly(proline) II helical motifs located at the protein-water interface stabilize the three-dimensional structures of natural proteins. Reported here is the first example of synthetic biomimetic poly(proline)-stabilized polypeptide nanostructures obtained by a straightforward ring-opening polymerization-induced self-assembly (ROPISA) process through consecutive N-carboxyanhydride (NCA) polymerization. It was found that the use of multifunctional 8-arm initiators is critical for the formation of nanoparticles. Worm-like micelles as well as spherical morphologies were obtained as confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and small angle X-ray scattering (SAXS). The loading of the nanostructures with dyes is demonstrated. This fast and open-vessel procedure gives access to amino acids-based nanomaterials with potential for applications in nanomedicine.
Collapse
Affiliation(s)
- Ernesto Tinajero-Díaz
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Nicola Judge
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Bo Li
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Thomas Leigh
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Robert D. Murphy
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Paul D. Topham
- Aston
Institute
for Membrane Excellence, Aston University, B4 7ET Birmingham, U.K.
| | - Matthew J. Derry
- Aston
Institute
for Membrane Excellence, Aston University, B4 7ET Birmingham, U.K.
| | - Andreas Heise
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
- Science
Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), D02 YN77 Dublin, Ireland
- AMBER, The
SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
| |
Collapse
|
4
|
Rogers DM, Do H, Hirst JD. An Improved Diabatization Scheme for Computing the Electronic Circular Dichroism of Proteins. J Phys Chem B 2024; 128:7350-7361. [PMID: 39034688 DOI: 10.1021/acs.jpcb.4c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
We advance the quality of first-principles calculations of protein electronic circular dichroism (CD) through an amelioration of a key deficiency of a previous procedure that involved diabatization of electronic states on the amide chromophore (to obtain interamide couplings) in a β-strand conformation of a diamide. This yields substantially improved calculated far-ultraviolet (far-UV) electronic circular dichroism (CD) spectra for β-sheet conformations. The interamide couplings from the diabatization procedure for 13 secondary structural elements (13 diamide structures) are applied to compute the CD spectra for seven example proteins: myoglobin (α helix), jacalin (β strand), concanavalin A (β type I), elastase (β type II), papain (α + β), 310-helix bundle (310-helix) and snow flea antifreeze protein (polyproline). In all cases, except concanavalin A and papain, the CD spectra computed using the interamide couplings from the diabatization procedure yield improved agreement with experiment with respect to previous first-principles calculations.
Collapse
Affiliation(s)
- David M Rogers
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hainam Do
- Department of Chemical and Environmental Engineering and Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315042, China
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
5
|
Obenauer ML, Dresel JA, Schweitzer M, Besenius P, Schmid F. Atomistic Molecular Dynamics Simulations of ABA-Type Polymer Peptide Conjugates: Insights into Supramolecular Structures and their Circular Dichroism Spectra. Macromol Rapid Commun 2024; 45:e2400149. [PMID: 38973657 DOI: 10.1002/marc.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/16/2024] [Indexed: 07/09/2024]
Abstract
A combination of atomistic molecular dynamics (aMD) simulations and circular dichroism (CD) analysis is used to explore supramolecular structures of amphiphilic ABA-type triblock polymer peptide conjugates (PPC). Using the example of a recently introduced PPC with pH- and temperature responsive self-assembling behavior [Otter et al., Macromolecular Rapid Communications 2018, 39, 1800459], this study shows how molecular dynamics simulations of simplified fragment molecules can add crucial information to CD data, which helps to correctly identify the self-assembled structures and monitor the folding/unfolding pathways of the molecules. The findings offer insights into the nature of structural transitions induced by external stimuli, thus contributing to the understanding of the connection of microscopic structures with macroscopic properties.
Collapse
Affiliation(s)
| | | | - Maren Schweitzer
- Department of Chemistry, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Duesbergweg 10-14, D-55128, Mainz, Germany
| | | |
Collapse
|
6
|
Herrera MG, Amundarain MJ, Dörfler PW, Dodero VI. The Celiac-Disease Superantigen Oligomerizes and Increases Permeability in an Enterocyte Cell Model. Angew Chem Int Ed Engl 2024; 63:e202317552. [PMID: 38497459 DOI: 10.1002/anie.202317552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Celiac disease (CeD) is an autoimmune disorder triggered by gluten proteins, affecting approximately 1 % of the global population. The 33-mer deamidated gliadin peptide (DGP) is a metabolically modified wheat-gluten superantigen for CeD. Here, we demonstrate that the 33-mer DGP spontaneously assembles into oligomers with a diameter of approximately 24 nm. The 33-mer DGP oligomers present two main secondary structural motifs-a major polyproline II helix and a minor β-sheet structure. Importantly, in the presence of 33-mer DGP oligomers, there is a statistically significant increase in the permeability in the gut epithelial cell model Caco-2, accompanied by the redistribution of zonula occludens-1, a master tight junction protein. These findings provide novel molecular and supramolecular insights into the impact of 33-mer DGP in CeD and highlight the relevance of gliadin peptide oligomerization.
Collapse
Affiliation(s)
- Maria G Herrera
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, C1428EG, Argentina
| | - Maria J Amundarain
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Philipp W Dörfler
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Veronica I Dodero
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
7
|
Adak A, Castelletto V, de Sousa A, Karatzas KA, Wilkinson C, Khunti N, Seitsonen J, Hamley IW. Self-Assembly and Antimicrobial Activity of Lipopeptides Containing Lysine-Rich Tripeptides. Biomacromolecules 2024; 25:1205-1213. [PMID: 38204421 PMCID: PMC10865344 DOI: 10.1021/acs.biomac.3c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
The conformation and self-assembly of two pairs of model lipidated tripeptides in aqueous solution are probed using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). The palmitoylated lipopeptides comprise C16-YKK or C16-WKK (with two l-lysine residues) or their respective derivatives containing d-lysine (k), i.e., C16-Ykk and C16-Wkk. All four molecules self-assemble into spherical micelles which show structure factor effects in SAXS profiles due to intermicellar packing in aqueous solution. Consistent with micellar structures, the tripeptides in the coronas have a largely unordered conformation, as probed using spectroscopic methods. The molecules are found to have good cytocompatibility with fibroblasts at sufficiently low concentrations, although some loss of cell viability is noted at the highest concentrations examined (above the critical aggregation concentration of the lipopeptides, determined from fluorescence dye probe measurements). Preliminary tests also showed antimicrobial activity against both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Ana de Sousa
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Kimon-Andreas Karatzas
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Callum Wilkinson
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Nikul Khunti
- Diamond
Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| |
Collapse
|
8
|
Qiu R, Li X, Huang K, Bai W, Zhou D, Li G, Qin Z, Li Y. Cis-trans isomerization of peptoid residues in the collagen triple-helix. Nat Commun 2023; 14:7571. [PMID: 37989738 PMCID: PMC10663571 DOI: 10.1038/s41467-023-43469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Cis-peptide bonds are rare in proteins, and building blocks less favorable to the trans-conformer have been considered destabilizing. Although proline tolerates the cis-conformer modestly among all amino acids, for collagen, the most prevalent proline-abundant protein, all peptide bonds must be trans to form its hallmark triple-helix structure. Here, using host-guest collagen mimetic peptides (CMPs), we discover that surprisingly, even the cis-enforcing peptoid residues (N-substituted glycines) form stable triple-helices. Our interrogations establish that these peptoid residues entropically stabilize the triple-helix by pre-organizing individual peptides into a polyproline-II helix. Moreover, noting that the cis-demanding peptoid residues drastically reduce the folding rate, we design a CMP whose triple-helix formation can be controlled by peptoid cis-trans isomerization, enabling direct targeting of fibrotic remodeling in myocardial infarction in vivo. These findings elucidate the principles of peptoid cis-trans isomerization in protein folding and showcase the exploitation of cis-amide-favoring residues in building programmable and functional peptidomimetics.
Collapse
Affiliation(s)
- Rongmao Qiu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Xiaojing Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Kui Huang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Weizhe Bai
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Daoning Zhou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Gang Li
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China.
| | - Zhao Qin
- Department of Civil & Environmental Engineering, College of Engineering & Computer Science, Syracuse University, Syracuse, New York, 13244, USA.
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China.
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
9
|
Goncalves BG, Heise RM, Banerjee IA. Development of Self-Assembled Biomimetic Nanoscale Collagen-like Peptide-Based Scaffolds for Tissue Engineering: An In Silico and Laboratory Study. Biomimetics (Basel) 2023; 8:548. [PMID: 37999189 PMCID: PMC10669358 DOI: 10.3390/biomimetics8070548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Development of biocomposite scaffolds has gained tremendous attention due to their potential for tissue regeneration. However, most scaffolds often contain animal-derived collagen that may elicit an immunological response, necessitating the development of new biomaterials. Herein, we developed a new collagen-like peptide,(Pro-Ala-His)10 (PAH)10, and explored its ability to be utilized as a functional biomaterial by incorporating it with a newly synthesized peptide-based self-assembled gel. The gel was prepared by conjugating a pectin derivative, galataric acid, with a pro-angiogenic peptide (LHYQDLLQLQY) and further functionalized with a cortistatin-derived peptide, (Phe-Trp-Lys-Thr)4 (FWKT)4, and the bio-ionic liquid choline acetate. The self-assembly of (PAH)10 and its interactions with the galactarate-peptide conjugates were examined using replica exchange molecular dynamics (REMD) simulations. Results revealed the formation of a multi-layered scaffold, with enhanced stability at higher temperatures. We then synthesized the scaffold and examined its physicochemical properties and its ability to integrate with aortic smooth muscle cells. The scaffold was further utilized as a bioink for bioprinting to form three-dimensional cell-scaffold matrices. Furthermore, the formation of actin filaments and elongated cell morphology was observed. These results indicate that the (PAH)10 hybrid scaffold provides a suitable environment for cell adhesion, proliferation and growth, making it a potentially valuable biomaterial for tissue engineering.
Collapse
Affiliation(s)
| | | | - Ipsita A. Banerjee
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, New York, NY 10458, USA; (B.G.G.); (R.M.H.)
| |
Collapse
|
10
|
Detwiler R, McPartlon TJ, Coffey CS, Kramer JR. Clickable Polyprolines from Azido-proline N-Carboxyanhydride. ACS POLYMERS AU 2023; 3:383-393. [PMID: 37841952 PMCID: PMC10571246 DOI: 10.1021/acspolymersau.3c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 10/17/2023]
Abstract
Polyproline is a material of great interest in biomedicine due to its helical scaffold of structural importance in collagen and mucins and its ability to gel and to change conformations in response to temperature. Appending of function-modulating chemical groups to such a material is desirable to diversify potential applications. Here, we describe the synthesis of high-molecular-weight homo, block, and statistical polymers of azide-functionalized proline. The azide groups served as moieties for highly efficient click-grafting, as stabilizers of the polyproline PPII helix, and as modulators of thermoresponsiveness. Saccharides and ethylene glycol were utilized to explore small-molecule grafting, and glutamate polymers were utilized to form polyelectrolyte bottlebrush architectures. Secondary structure effects of both the azide and click modifications, as well as lower critical solution temperature behavior, were characterized. The polyazidoprolines and click products were well tolerated by live human cells and are expected to find use in diverse biomedical applications.
Collapse
Affiliation(s)
- Rachel
E. Detwiler
- Department
of Biomedical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
| | - Thomas J. McPartlon
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Clara S. Coffey
- Department
of Biomedical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
| | - Jessica R. Kramer
- Department
of Biomedical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
11
|
Faruqui N, Williams DS, Briones A, Kepiro IE, Ravi J, Kwan TO, Mearns-Spragg A, Ryadnov MG. Extracellular matrix type 0: From ancient collagen lineage to a versatile product pipeline - JellaGel™. Mater Today Bio 2023; 22:100786. [PMID: 37692377 PMCID: PMC10491728 DOI: 10.1016/j.mtbio.2023.100786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Extracellular matrix type 0 is reported. The matrix is developed from a jellyfish collagen predating mammalian forms by over 0.5 billion years. With its ancient lineage, compositional simplicity, and resemblance to multiple collagen types, the matrix is referred to as the extracellular matrix type 0. Here we validate the matrix describing its physicochemical and biological properties and present it as a versatile, minimalist biomaterial underpinning a pipeline of commercialised products under the collective name of JellaGelTM. We describe an extensive body of evidence for folding and assembly of the matrix in comparison to mammalian matrices, such as bovine collagen, and its use to support cell growth and development in comparison to known tissue-derived products, such as Matrigel™. We apply the matrix to co-culture human astrocytes and cortical neurons derived from induced pluripotent stem cells and visualise neuron firing synchronicity with correlations indicative of a homogenous extracellular material in contrast to the performance of heterogenous commercial matrices. We prove the ability of the matrix to induce spheroid formation and support the 3D culture of human immortalised, primary, and mesenchymal stem cells. We conclude that the matrix offers an optimal solution for systemic evaluations of cell-matrix biology. It effectively combines the exploitable properties of mammalian tissue extracts or top-down matrices, such as biocompatibility, with the advantages of synthetic or bottom-up matrices, such as compositional control, while avoiding the drawbacks of the two types, such as biological and design heterogeneity, thereby providing a unique bridging capability of a stem extracellular matrix.
Collapse
Affiliation(s)
- Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Andrea Briones
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ibolya E. Kepiro
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Tristan O.C. Kwan
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Maxim G. Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| |
Collapse
|
12
|
Pandey AK, Ganguly HK, Sinha SK, Daniels KE, Yap GPA, Patel S, Zondlo NJ. An Inherent Difference between Serine and Threonine Phosphorylation: Phosphothreonine Strongly Prefers a Highly Ordered, Compact, Cyclic Conformation. ACS Chem Biol 2023; 18:1938-1958. [PMID: 37595155 DOI: 10.1021/acschembio.3c00068] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Phosphorylation and dephosphorylation of proteins by kinases and phosphatases are central to cellular responses and function. The structural effects of serine and threonine phosphorylation were examined in peptides and in proteins, by circular dichroism, NMR spectroscopy, bioinformatics analysis of the PDB, small-molecule X-ray crystallography, and computational investigations. Phosphorylation of both serine and threonine residues induces substantial conformational restriction in their physiologically more important dianionic forms. Threonine exhibits a particularly strong disorder-to-order transition upon phosphorylation, with dianionic phosphothreonine preferentially adopting a cyclic conformation with restricted ϕ (ϕ ∼ -60°) stabilized by three noncovalent interactions: a strong intraresidue phosphate-amide hydrogen bond, an n → π* interaction between consecutive carbonyls, and an n → σ* interaction between the phosphate Oγ lone pair and the antibonding orbital of C-Hβ that restricts the χ2 side-chain conformation. Proline is unique among the canonical amino acids for its covalent cyclization on the backbone. Phosphothreonine can mimic proline's backbone cyclization via noncovalent interactions. The preferred torsions of dianionic phosphothreonine are ϕ,ψ = polyproline II helix > α-helix (ϕ ∼ -60°); χ1 = g-; χ2 ∼ +115° (eclipsed C-H/O-P bonds). This structural signature is observed in diverse proteins, including in the activation loops of protein kinases and in protein-protein interactions. In total, these results suggest a structural basis for the differential use and evolution of threonine versus serine phosphorylation sites in proteins, with serine phosphorylation typically inducing smaller, rheostat-like changes, versus threonine phosphorylation promoting larger, step function-like switches, in proteins.
Collapse
Affiliation(s)
- Anil K Pandey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Himal K Ganguly
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Sudipta Kumar Sinha
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar 140001, India
| | - Kelly E Daniels
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
13
|
Skowron KJ, Baliga C, Johnson T, Kremiller KM, Castroverde A, Dean TT, Allen AC, Lopez-Hernandez AM, Aleksandrova EV, Klepacki D, Mankin AS, Polikanov YS, Moore TW. Structure-Activity Relationships of the Antimicrobial Peptide Natural Product Apidaecin. J Med Chem 2023; 66:11831-11842. [PMID: 37603874 PMCID: PMC10768847 DOI: 10.1021/acs.jmedchem.3c00406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
With the growing crisis of antimicrobial resistance, it is critical to continue to seek out new sources of novel antibiotics. This need has led to renewed interest in natural product antimicrobials, specifically antimicrobial peptides. Nonlytic antimicrobial peptides are highly promising due to their unique mechanisms of action. One such peptide is apidaecin (Api), which inhibits translation termination through stabilization of the quaternary complex of the ribosome-apidaecin-tRNA-release factor. Synthetic derivatives of apidaecin have been developed, but structure-guided modifications have yet to be considered. In this work, we have focused on modifying key residues in the Api sequence that are responsible for the interactions that stabilize the quaternary complex. We present one of the first examples of a highly modified Api peptide that maintains its antimicrobial activity and interaction with the translation complex. These findings establish a starting point for further structure-guided optimization of Api peptides.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Chetana Baliga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Tatum Johnson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Kyle M Kremiller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Alexandra Castroverde
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Trevor T Dean
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - A'Lester C Allen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Ana M Lopez-Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Elena V Aleksandrova
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Dorota Klepacki
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Alexander S Mankin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Center for Biomolecular Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Yury S Polikanov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Center for Biomolecular Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Terry W Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
14
|
Schweitzer-Stenner R, Kurbaj R, O'Neill N, Andrews B, Shah R, Urbanc B. Conformational Manifold Sampled by Two Short Linear Motif Segments Probed by Circular Dichroism, Vibrational, and Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2023; 62:2571-2586. [PMID: 37595285 DOI: 10.1021/acs.biochem.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Disordered protein segments called short linear motifs (SLiM) serve as recognition sites for a variety of biological processes and act as targeting signals, modification, and ligand binding sites. While SLiMs do not adopt one of the known regular secondary structures, the conformational distribution might still reflect the structural propensities of their amino acid residues and possible interactions between them. In the past, conformational analyses of short peptides provided compelling evidence for the notion that individual residues are less conformationally flexible than locally expected for a random coil. Here, we combined various spectroscopies (NMR, IR, vibrational, and UV circular dichroism) to determine the Ramachandran plots of two SLiM motifs, i.e., GRRDSG and GRRTSG. They are two representatives of RxxS motifs that are capable of being phosphorylated by protein kinase A, an enzyme that plays a fundamental role in a variety of biological processes. Our results reveal that the nearest and non-nearest interactions between residues cause redistributions between polyproline II and β-strand basins while concomitantly stabilizing extended relative to turn-forming and helical structures. They also cause shifts in basin positions. With increasing temperature, β-strand populations become more populated at the expense of polyproline II. While molecular dynamics simulations with Amber ff14SB and CHARMM 36m force fields indicate residue-residue interactions, they do not account for the observed structural changes.
Collapse
Affiliation(s)
| | - Raghed Kurbaj
- Department of Chemistry, Drexel University, Philadelphia, PA19104Pennsylvania,United States
| | - Nichole O'Neill
- Department of Chemistry, Drexel University, Philadelphia, PA19104Pennsylvania,United States
| | - Brian Andrews
- Department of Physics, Drexel University, Philadelphia,PA19104Pennsylvania,United States
| | - Riya Shah
- Department of Physics, Drexel University, Philadelphia,PA19104Pennsylvania,United States
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia,PA19104Pennsylvania,United States
| |
Collapse
|
15
|
Michaelis M, Cupellini L, Mensch C, Perry CC, Delle Piane M, Colombi Ciacchi L. Tidying up the conformational ensemble of a disordered peptide by computational prediction of spectroscopic fingerprints. Chem Sci 2023; 14:8483-8496. [PMID: 37592980 PMCID: PMC10430726 DOI: 10.1039/d3sc02202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
The most advanced structure prediction methods are powerless in exploring the conformational ensemble of disordered peptides and proteins and for this reason the "protein folding problem" remains unsolved. We present a novel methodology that enables the accurate prediction of spectroscopic fingerprints (circular dichroism, infrared, Raman, and Raman optical activity), and by this allows for "tidying up" the conformational ensembles of disordered peptides and disordered regions in proteins. This concept is elaborated for and applied to a dodecapeptide, whose spectroscopic fingerprint is measured and theoretically predicted by means of enhanced-sampling molecular dynamics coupled with quantum mechanical calculations. Following this approach, we demonstrate that peptides lacking a clear propensity for ordered secondary-structure motifs are not randomly, but only conditionally disordered. This means that their conformational landscape, or phase-space, can be well represented by a basis-set of conformers including about 10 to 100 structures. The implications of this finding have profound consequences both for the interpretation of experimental electronic and vibrational spectral features of peptides in solution and for the theoretical prediction of these features using accurate and computationally expensive techniques. The here-derived methods and conclusions are expected to fundamentally impact the rationalization of so-far elusive structure-spectra relationships for disordered peptides and proteins, towards improved and versatile structure prediction methods.
Collapse
Affiliation(s)
- Monika Michaelis
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via G. Moruzzi 13 Pisa I-56124 Italy
| | - Carl Mensch
- Molecular Spectroscopy Research Group, Department of Chemistry, University of Antwerp Groenenborgerlaan 171 Antwerp 2020 Belgium
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Massimo Delle Piane
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 Torino 10129 Italy
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
| |
Collapse
|
16
|
Aschi M, Palombi L, Amadei A. Theoretical-Computational Modeling of CD Spectra of Aqueous Monosaccharides by Means of Molecular Dynamics Simulations and Perturbed Matrix Method. Molecules 2023; 28:molecules28083591. [PMID: 37110825 PMCID: PMC10144652 DOI: 10.3390/molecules28083591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The electronic circular dichroism (ECD) spectra of aqueous d-glucose and d-galactose were modeled using a theoretical-computational approach combining molecular dynamics (MD) simulations and perturbed matrix method (PMM) calculations, hereafter termed MD-PMM. The experimental spectra were reproduced with a satisfactory accuracy, confirming the good performances of MD-PMM in modeling different spectral features in complex atomic-molecular systems, as already reported in previous studies. The underlying strategy of the method was to perform a preliminary long timescale MD simulation of the chromophore followed by the extraction of the relevant conformations through essential dynamics analysis. On this (limited) number of relevant conformations, the ECD spectrum was calculated via the PMM approach. This study showed that MD-PMM was able to reproduce the essential features of the ECD spectrum (i.e., the position, the intensity, and the shape of the bands) of d-glucose and d-galactose while avoiding the rather computationally expensive aspects, which were demonstrated to be important for the final outcome, such as (i) the use of a large number of chromophore conformations; (ii) the inclusion of quantum vibronic coupling; and (iii) the inclusion of explicit solvent molecules interacting with the chromophore atoms within the chromophore itself (e.g., via hydrogen bonds).
Collapse
Affiliation(s)
- Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila via Vetoio (Coppito 2), 67010 l'Aquila, Italy
| | - Laura Palombi
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila via Vetoio (Coppito 2), 67010 l'Aquila, Italy
| | - Andrea Amadei
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy
| |
Collapse
|
17
|
Bhatt MR, Zondlo NJ. Synthesis and conformational preferences of peptides and proteins with cysteine sulfonic acid. Org Biomol Chem 2023; 21:2779-2800. [PMID: 36920119 DOI: 10.1039/d3ob00179b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Cysteine sulfonic acid (Cys-SO3H; cysteic acid) is an oxidative post-translational modification of cysteine, resulting from further oxidation from cysteine sulfinic acid (Cys-SO2H). Cysteine sulfonic acid is considered an irreversible post-translational modification, which serves as a biomarker of oxidative stress that has resulted in oxidative damage to proteins. Cysteine sulfonic acid is anionic, as a sulfonate (Cys-SO3-; cysteate), in the ionization state that is almost exclusively present at physiological pH (pKa ∼ -2). In order to understand protein structural changes that can occur upon oxidation to cysteine sulfonic acid, we analyzed its conformational preferences, using experimental methods, bioinformatics, and DFT-based computational analysis. Cysteine sulfonic acid was incorporated into model peptides for α-helix and polyproline II helix (PPII). Within peptides, oxidation of cysteine to the sulfonic acid proceeds rapidly and efficiently at room temperature in solution with methyltrioxorhenium (MeReO3) and H2O2. Peptides containing cysteine sulfonic acid were also generated on solid phase using trityl-protected cysteine and oxidation with MeReO3 and H2O2. Using methoxybenzyl (Mob)-protected cysteine, solid-phase oxidation with MeReO3 and H2O2 generated the Mob sulfone precursor to Cys-SO2- within fully synthesized peptides. These two solid-phase methods allow the synthesis of peptides containing either Cys-SO3- or Cys-SO2- in a practical manner, with no solution-phase synthesis required. Cys-SO3- had low PPII propensity for PPII propagation, despite promoting a relatively compact conformation in ϕ. In contrast, in a PPII initiation model system, Cys-SO3- promoted PPII relative to neutral Cys, with PPII initiation similar to Cys thiolate but less than Cys-SO2- or Ala. In an α-helix model system, Cys-SO3- promoted α-helix near the N-terminus, due to favorable helix dipole interactions and favorable α-helix capping via a sulfonate-amide side chain-main chain hydrogen bond. Across all peptides, the sulfonate side chain was significantly less ordered than that of the sulfinate. Analysis of Cys-SO3- in the PDB revealed a very strong propensity for local (i/i or i/i + 1) side chain-main chain sulfonate-amide hydrogen bonds for Cys-SO3-, with >80% of Cys-SO3- residues exhibiting these interactions. DFT calculations conducted to explore these conformational preferences indicated that side chain-main chain hydrogen bonds of the sulfonate with the intraresidue amide and/or with the i + 1 amide were favorable. However, hydrogen bonds to water or to amides, as well as interactions with oxophilic metals, were weaker for the sulfonate than the sulfinate, due to lower charge density on the oxygens in the sulfonate.
Collapse
Affiliation(s)
- Megh R Bhatt
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
18
|
Chiriboga M, Green CM, Mathur D, Hastman DA, Melinger JS, Veneziano R, Medintz IL, Díaz SA. Structural and optical variation of pseudoisocyanine aggregates nucleated on DNA substrates. Methods Appl Fluoresc 2023; 11. [PMID: 36719011 PMCID: PMC10362908 DOI: 10.1088/2050-6120/acb2b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023]
Abstract
Coherently coupled pseudoisocyanine (PIC) dye aggregates have demonstrated the ability to delocalize electronic excitations and ultimately migrate excitons with much higher efficiency than similar designs where excitations are isolated to individual chromophores. Here, we report initial evidence of a new type of PIC aggregate, formed through heterogeneous nucleation on DNA oligonucleotides, displaying photophysical properties that differ significantly from previously reported aggregates. This new aggregate, which we call the super aggregate (SA) due to the need for elevated dye excess to form it, is clearly differentiated from previously reported aggregates by spectroscopic and biophysical characterization. In emission spectra, the SA exhibits peak narrowing and, in some cases, significant quantum yield variation, indicative of stronger coupling in cyanine dyes. The SA was further characterized with circular dichroism and atomic force microscopy observing unique features depending on the DNA substrate. Then by integrating an AlexaFluorTM647 (AF) dye as an energy transfer acceptor into the system, we observed mixed energy transfer characteristics using the different DNA. For example, SA formed with a rigid DNA double crossover tile (DX-tile) substrate resulted in AF emission sensitization. While SA formed with more flexible non-DX-tile DNA (i.e. duplex and single strand DNA) resulted in AF emission quenching. These combined characterizations strongly imply that DNA-based PIC aggregate properties can be controlled through simple modifications to the DNA substrate's sequence and geometry. Ultimately, we aim to inform rational design principles for future device prototyping. For example, one key conclusion of the study is that the high absorbance cross-section and efficient energy transfer observed with rigid substrates made for better photonic antennae, compared to flexible DNA substrates.
Collapse
Affiliation(s)
- Matthew Chiriboga
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America.,Department of Bioengineering. College of Engineering and Computing, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States of America
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Divita Mathur
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America.,Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - David A Hastman
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Joseph S Melinger
- Electronics Sciences and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Remi Veneziano
- Department of Bioengineering. College of Engineering and Computing, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States of America
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| |
Collapse
|
19
|
Zhou C, Fan G, Deng L. Theoretical study of the helical conformers and ECD spectra of 8-aminoquinoline polymers. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Wang X, Liu X, Wang X, Wang Y, Xiao Y, Zhuo Z, Li Y. A versatile technique based on surface-enhanced Raman spectroscopy for label-free detection of amino acids and peptide formation in body fluids. Mikrochim Acta 2022; 189:82. [PMID: 35112159 DOI: 10.1007/s00604-022-05191-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
Abstract
As an effective analytical method, surface-enhanced Raman spectroscopy (SERS) is widely used in the detection of nucleic acids, amino acids, and other biomolecules. However, obtaining the SERS signal of nonaromatic amino acids is still a challenge. In this work, excess sodium borohydride was used as a reducing agent to prevent the surface of silver nanoparticles from being coated with AgO to enable amino acid molecules to reach the surface of silver nano-substrates. Calcium ions were used as aggregators for silver nano-substrates to successfully achieve the label-free and accurate fingerprint determination of various nonaromatic amino acids. Different types of amino acids were distinguished based on the changes in their peak intensity that were obtained using colorless and transparent organic dichloromethane (DCM) as the internal standard. A Raman signal for low-concentration amino acids in body fluids was detected, and the detection limit for tyrosine was 5 ng/mL. Moreover, the physical and chemical properties of peptides and the formation of peptide chains were further analyzed. The proposed method can potentially be applied to protein sequencing.
Collapse
Affiliation(s)
- Xiaoqing Wang
- College of Pharmacy, Harbin Medical University, No. 157, Health Road, Nangang District, Harbin City, Heilongjiang Province, China.,School of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China
| | - XiaoLong Liu
- College of Pharmacy, Harbin Medical University, No. 157, Health Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - XiaoTong Wang
- College of Pharmacy, Harbin Medical University, No. 157, Health Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - YunPeng Wang
- College of Pharmacy, Harbin Medical University, No. 157, Health Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Yanlong Xiao
- The Second Hospital of Jilin University, Jilin University, Changchun, People's Republic of China
| | - Zhu Zhuo
- The Second Hospital of Jilin University, Jilin University, Changchun, People's Republic of China
| | - Yang Li
- College of Pharmacy, Harbin Medical University, No. 157, Health Road, Nangang District, Harbin City, Heilongjiang Province, China. .,Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China.
| |
Collapse
|
21
|
Kubyshkin V, Bürck J, Babii O, Budisa N, Ulrich AS. Remarkably high solvatochromism in the circular dichroism spectra of the polyproline-II conformation: limitations or new opportunities? Phys Chem Chem Phys 2021; 23:26931-26939. [PMID: 34825904 DOI: 10.1039/d1cp04551b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular dichroism is a conventional method for studying the secondary structures of peptides and proteins and their transitions. While certain circular dichroism features are characteristic of α-helices and β-strands, the third most abundant secondary structure, the polyproline-II helix, does not exhibit a strictly conserved spectroscopic appearance. Due to its extended nature, the polyproline-II helix is highly accessible to the surrounding solvent; thus, the environment has a critical influence on the lineshape of the circular dichroism spectra of this structure. To showcase possible effects due to the medium, in this work, we report an experimental spectroscopic study of polyproline-II-forming oligomeric peptides in various environments: solvents, detergent micelles, and liposomes. Strikingly, the examination of an oligomeric peptide in a solvent series showed a remarkable 7 nm solvatochromic shift in the main negative band starting with hexafluoropropan-2-ol and moving to hexane. Furthermore, a previously predicted positive band below 200 nm was discovered in the spectra in nonpolar environments. In isotropic liposomes, the expected transition to the transmembrane state correlated with the appearance of a positive band at 228 nm. Our results demonstrate that changes in solvation should be taken into consideration when assessing the circular dichroism spectra of peptides expected to adopt the polyproline-II conformation. Although this precaution may complicate spectral analysis, characterization of solvent-induced spectral changes can generate new opportunities for testing the location of peptides in complex systems such as micelles or lipid bilayers.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, Manitoba, R3T 2N2, Canada. .,Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| |
Collapse
|
22
|
Shiratori T, Goto S, Sakaguchi T, Kasai T, Otsuka Y, Higashi K, Makino K, Takahashi H, Komatsu K. Singular value decomposition analysis of the secondary structure features contributing to the circular dichroism spectra of model proteins. Biochem Biophys Rep 2021; 28:101153. [PMID: 34712848 PMCID: PMC8528683 DOI: 10.1016/j.bbrep.2021.101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Amyloid fibril formation occurs in restricted environment, such as the interface between intercellular fluids and bio-membranes. Conformational interconversion from α-helix to β-structure does not progress in fluids; however, it can occur after sedimentary aggregation during amyloid fibril formation induced by heat treatment of hen egg white lysozyme (HEWL). Secondary structures of various proteins and denatured proteins titrated with 2,2,2-trifluoroethanol (TFE) were examined using their CD spectra. Gaussian peak/trough and singular value decompositions (SVD) showed that the spectral pattern of the α-helix comprised a sharp trough at wavelength 207 nm and a broad trough at 220 nm. Conversely, we distinguished two patterns for β-sheet-a spread barrel type, corresponding to ConA, and a tightly weaved type, corresponding to the soybean trypsin inhibitor. Herein, we confirmed that the spectral/conformational interconversion of the heat-treated HEWL was not observed in the dissolved fluid.
Collapse
Affiliation(s)
- Tomoki Shiratori
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Satoru Goto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomoyo Sakaguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Takahiro Kasai
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuta Otsuka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kyohei Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kosho Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hideyo Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazushi Komatsu
- Department of Mathematics, Faculty of Science, Kochi University, 2-5-1 Akebonocho, Kochi, 780-8520, Japan
| |
Collapse
|
23
|
Arakawa T, Tokunaga M, Kita Y, Niikura T, Baker RW, Reimer JM, Leschziner AE. Structure Analysis of Proteins and Peptides by Difference Circular Dichroism Spectroscopy. Protein J 2021; 40:867-875. [PMID: 34709521 DOI: 10.1007/s10930-021-10024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
Difference circular dichroism (CD) spectroscopy was used here to characterize changes in structure of flexible peptides upon altering their environments. Environmental changes were introduced by binding to a large target structure, temperature shift (or concentration increase) or so-called membrane-mimicking solvents. The first case involved binding of a largely disordered peptide to its target structure associated with chromatin remodeling, leading to a transition into a highly helical structure. The second example was a short 8HD (His-Asp) repeat peptide that can bind metal ions. Both Zn and Ni at μM concentrations resulted in different type of changes in secondary structure, suggesting that these metal ions provide different environments for the peptide to assume unique secondary structures. The third case is related to a few short neuroprotective peptides that were largely disordered in aqueous solution. Increased temperature resulted in induction of significant, though small, β-sheet structures. Last example was the induction of non-helical structures for short neuroprotective peptides by membrane-mimicking solvents, including trifluoroethanol, dodecylphosphocholine and sodium dodecylsulfate. While these agents are known to induce α-helix, none of the neuropeptides underwent transition to a typical helical structure. However, trifluoroethanol did induce α-helix for the first peptide involved in chromatin remodeling described above in the first example.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA, 92130, USA.
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Yoshiko Kita
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA, 92130, USA
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Richard W Baker
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Janice M Reimer
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
24
|
Jephthah S, Pesce F, Lindorff-Larsen K, Skepö M. Force Field Effects in Simulations of Flexible Peptides with Varying Polyproline II Propensity. J Chem Theory Comput 2021; 17:6634-6646. [PMID: 34524800 PMCID: PMC8515809 DOI: 10.1021/acs.jctc.1c00408] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Five peptides previously suggested to possess polyproline II (PPII) structure have here been investigated by using atomistic molecular dynamics simulations to compare how well four different force fields known for simulating intrinsically disordered proteins relatively well (Amber ff99SB-disp, Amber ff99SB-ILDN, CHARM36IDPSFF, and CHARMM36m) can capture this secondary structure element. The results revealed that all force fields sample PPII structures but to different extents and with different propensities toward other secondary structure elements, in particular, the β-sheet and "random coils". A cluster analysis of the simulations of histatin 5 also revealed that the conformational ensembles of the force fields are quite different. We compared the simulations to circular dichroism and nuclear magnetic resonance spectroscopy experiments and conclude that further experiments and methods for interpreting them are needed to assess the accuracy of force fields in determining PPII structure.
Collapse
Affiliation(s)
- Stéphanie Jephthah
- Division of Theoretical Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Francesco Pesce
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Marie Skepö
- Division of Theoretical Chemistry, Lund University, SE-221 00 Lund, Sweden
| |
Collapse
|
25
|
Chen Z, Chi Z, Sun Y, Lv Z. Chirality in peptide-based materials: From chirality effects to potential applications. Chirality 2021; 33:618-642. [PMID: 34342057 DOI: 10.1002/chir.23344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Chirality is ubiquitous in nature with primary cellular functions that include construction of right-/left-handed helix and selective communications among diverse biomolecules. Of particularly intriguing are the chiral peptide-based materials that can be deliberately designed to change physicochemistry properties via tuning peptide sequences. Critically, understanding their chiral effects are fundamental for the development of novel materials in chemistry and biomedicine fields. Here, we review recent researches on chirality in peptide-based materials, summarizing relevant typical chiral effects towards recognition, amplification, and induction. Driven forces for the chiral discrimination in affinity interaction as well as the handedness preferences in supramolecular structure formation at both the macroscale and microscale are illustrated. The implementation of such chirality effects of artificial copolymers, assembled aggregates and their composites in the fields of bioseparation and bioenrichment, cell incubation, protein aggregation inhibitors, chiral smart gels, and bionic electro devices are also presented. At last, the challenges in these areas and possible directions are pointed out. The diversity of chiral roles in the origin of life and chirality design in different organic or composite systems as well as their applications in drug development and chirality detection in environmental protection are discussed.
Collapse
Affiliation(s)
- Zhonghui Chen
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Zhenguo Chi
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Sun
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| |
Collapse
|
26
|
Quan BD, Wojtas M, Sone ED. Polyaminoacids in Biomimetic Collagen Mineralization: Roles of Isomerization and Disorder in Polyaspartic and Polyglutamic Acids. Biomacromolecules 2021; 22:2996-3004. [PMID: 34152724 DOI: 10.1021/acs.biomac.1c00402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The extracellular matrix of hard connective tissues is composed primarily of mineralized collagen fibrils. Acidic noncollagenous proteins play important roles in mediating mineralization of collagen. Polyaspartate, a homopolymer substitute for such proteins, has been used extensively in in vitro models to produce biomimetic mineralized collagen. Polyglutamate behaves differently in mineralization models, despite its chemical similarity. We show that polyaspartate is a 350 times more effective inhibitor of solution precipitation of hydroxyapatite than polyglutamate. Supersaturated CaP solutions stabilized with polyaspartic acid produce collagen with aligned intrafibrillar mineral, while solutions containing polyglutamate lead to the formation of unaligned mineral clusters on the fibril surface. Molecular analysis showed that the commercial polyaspartic acid contains substantial isomerization, unlike polyglutamic acid. Hence, the secondary structure of polyaspartic acid is more disordered than that of polyglutamic acid. The increased flexibility of the polyaspartic acid chain may explain its potency as an inhibitor of solution crystallization and a mediator of intrafibrillar collagen mineralization.
Collapse
Affiliation(s)
- Bryan D Quan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Magdalena Wojtas
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Eli D Sone
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.,Department of Materials Science & Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
27
|
Spectroscopy of model-membrane liposome-protein systems: complementarity of linear dichroism, circular dichroism, fluorescence and SERS. Emerg Top Life Sci 2021; 5:61-75. [PMID: 33942863 DOI: 10.1042/etls20200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
A range of membrane models have been developed to study components of cellular systems. Lipid vesicles or liposomes are one such artificial membrane model which mimics many properties of the biological system: they are lipid bilayers composed of one or more lipids to which other molecules can associate. Liposomes are thus ideal to study the roles of cellular lipids and their interactions with other membrane components to understand a wide range of cellular processes including membrane disruption, membrane transport and catalytic activity. Although liposomes are much simpler than cellular membranes, they are still challenging to study and a variety of complementary techniques are needed. In this review article, we consider several currently used analytical methods for spectroscopic measurements of unilamellar liposomes and their interaction with proteins and peptides. Among the variety of spectroscopic techniques seeing increasing application, we have chosen to discuss: fluorescence based techniques such as FRET (fluorescence resonance energy transfer) and FRAP (fluorescence recovery after photobleaching), that are used to identify localisation and dynamics of molecules in the membrane; circular dichroism (CD) and linear dichroism (LD) for conformational and orientation changes of proteins on membrane binding; and SERS (Surface Enhanced Raman Spectroscopy) as a rapidly developing ultrasensitive technique for site-selective molecular characterisation. The review contains brief theoretical basics of the listed techniques and recent examples of their successful applications for membrane studies.
Collapse
|
28
|
A theoretical study to the loliolide molecule and its isomers: a study by circular dichroism, QTAIM, and NMR theoretical methods. J Mol Model 2021; 27:116. [PMID: 33788017 DOI: 10.1007/s00894-021-04725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
The determination of an absolute configuration is a challenge in the structure elucidation of chiral natural products. With advancements in computational chemistry of chiroptical spectroscopy, the time-dependent density functional theory (TDDFT) calculation has emerged as a very promising tool. This paper attempts to illustrate the applicability of computational approaches in comparison with experimental data to understand the conformation, interaction, and stabilization of the loliolide's isomers. The quantum chemical calculations were used from optimized geometries of the (6R,7aS)-, (6S,7aR)-, (6R,7aR)-, and (6S,7aS)-6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one. The spectroscopic values were obtained for 13C NMR isotropic shielding by GIAO method in mPW1PW91/cc-pVTZ level, in TDDFT at the ωB97X-D/cc-pVTZ level to the circular dichroism, and in theoretical analyses of non-covalent interaction to study the isomer's stability. The TDDFT calculation of circular dichroism can be used to quantify the individual isomers and the nature of excitation in the molecule. The (6R,7aS) and (6R,7aR) isomers present a higher stability due to electronegativity associated at the hydroxyl group.
Collapse
|
29
|
Baranyai Z, Biri-Kovács B, Krátký M, Szeder B, Debreczeni ML, Budai J, Kovács B, Horváth L, Pári E, Németh Z, Cervenak L, Zsila F, Méhes E, Kiss É, Vinšová J, Bősze S. Cellular Internalization and Inhibition Capacity of New Anti-Glioma Peptide Conjugates: Physicochemical Characterization and Evaluation on Various Monolayer- and 3D-Spheroid-Based in Vitro Platforms. J Med Chem 2021; 64:2982-3005. [PMID: 33719423 DOI: 10.1021/acs.jmedchem.0c01399] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most therapeutic agents used for treating brain malignancies face hindered transport through the blood-brain barrier (BBB) and poor tissue penetration. To overcome these problems, we developed peptide conjugates of conventional and experimental anticancer agents. SynB3 cell-penetrating peptide derivatives were applied that can cross the BBB. Tuftsin derivatives were used to target the neuropilin-1 transport system for selectivity and better tumor penetration. Moreover, SynB3-tuftsin tandem compounds were synthesized to combine the beneficial properties of these peptides. Most of the conjugates showed high and selective efficacy against glioblastoma cells. SynB3 and tandem derivatives demonstrated superior cellular internalization. The penetration profile of the conjugates was determined on a lipid monolayer and Transwell co-culture system with noncontact HUVEC-U87 monolayers as simple ex vivo and in vitro BBB models. Importantly, in 3D spheroids, daunomycin-peptide conjugates possessed a better tumor penetration ability than daunomycin. These conjugates are promising tools for the delivery systems with tunable features.
Collapse
Affiliation(s)
- Zsuzsa Baranyai
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.,Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Márta L Debreczeni
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Johanna Budai
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Bence Kovács
- Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-4, H-2163 Vácrátót, Hungary
| | - Lilla Horváth
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Edit Pári
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Zsuzsanna Németh
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - László Cervenak
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Előd Méhes
- Department of Biological Physics, Institute of Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
30
|
Santoro AM, Zimbone S, Magrì A, La Mendola D, Grasso G. The Role of Copper (II) on Kininogen Binding to Tropomyosin in the Presence of a Histidine-Proline-Rich Peptide. Int J Mol Sci 2020; 21:ijms21249343. [PMID: 33302425 PMCID: PMC7762548 DOI: 10.3390/ijms21249343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
The antiangiogenic activity of the H/P domain of histidine-proline-rich glycoprotein is mediated by its binding with tropomyosin, a protein exposed on endothelial cell-surface during the angiogenic switch, in presence of zinc ions. Although it is known that copper ion serum concentration is significantly increased in cancer patients, its role in the interaction of H/P domain with tropomyosin, has not yet been studied. In this paper, by using ELISA assay, we determined the modulating effect of TetraHPRG peptide, a sequence of 20 aa belonging to H/P domain, on the binding of Kininogen (HKa) with tropomyosin, both in absence and presence of copper and zinc ions. A potentiometric study was carried out to characterize the binding mode adopted by metal ions with TetraHPRG, showing the formation of complex species involving imidazole amide nitrogen atoms in metal binding. Moreover, circular dichroism showed a conformational modification of ternary systems formed by TetraHPRG, HKa and copper or zinc. Interestingly, slight pH variation influenced the HKa-TetraHPRG-tropomyosin binding. All these results indicate that both metal ions are crucial in the interaction between TetraHPRG, tropomyosin and HKa.
Collapse
Affiliation(s)
- Anna Maria Santoro
- CNR Istituto di Cristallografia Sede Secondaria di Catania, Via Gaifami 18, 95126 Catania, Italy; (A.M.S.); (S.Z.); (A.M.)
| | - Stefania Zimbone
- CNR Istituto di Cristallografia Sede Secondaria di Catania, Via Gaifami 18, 95126 Catania, Italy; (A.M.S.); (S.Z.); (A.M.)
| | - Antonio Magrì
- CNR Istituto di Cristallografia Sede Secondaria di Catania, Via Gaifami 18, 95126 Catania, Italy; (A.M.S.); (S.Z.); (A.M.)
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Correspondence: (D.L.M.); (G.G.)
| | - Giulia Grasso
- CNR Istituto di Cristallografia Sede Secondaria di Catania, Via Gaifami 18, 95126 Catania, Italy; (A.M.S.); (S.Z.); (A.M.)
- Correspondence: (D.L.M.); (G.G.)
| |
Collapse
|
31
|
Durojaye OA, Mushiana T, Uzoeto HO, Cosmas S, Udowo VM, Osotuyi AG, Ibiang GO, Gonlepa MK. Potential therapeutic target identification in the novel 2019 coronavirus: insight from homology modeling and blind docking study. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020; 21:44. [PMID: 38624499 PMCID: PMC7529470 DOI: 10.1186/s43042-020-00081-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background The 2019-nCoV which is regarded as a novel coronavirus is a positive-sense single-stranded RNA virus. It is infectious to humans and is the cause of the ongoing coronavirus outbreak which has elicited an emergency in public health and a call for immediate international concern has been linked to it. The coronavirus main proteinase which is also known as the 3C-like protease (3CLpro) is a very important protein in all coronaviruses for the role it plays in the replication of the virus and the proteolytic processing of the viral polyproteins. The resultant cytotoxic effect which is a product of consistent viral replication and proteolytic processing of polyproteins can be greatly reduced through the inhibition of the viral main proteinase activities. This makes the 3C-like protease of the coronavirus a potential and promising target for therapeutic agents against the viral infection. Results This study describes the detailed computational process by which the 2019-nCoV main proteinase coding sequence was mapped out from the viral full genome, translated and the resultant amino acid sequence used in modeling the protein 3D structure. Comparative physiochemical studies were carried out on the resultant target protein and its template while selected HIV protease inhibitors were docked against the protein binding sites which contained no co-crystallized ligand. Conclusion In line with results from this study which has shown great consistency with other scientific findings on coronaviruses, we recommend the administration of the selected HIV protease inhibitors as first-line therapeutic agents for the treatment of the current coronavirus epidemic.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- School of Life Sciences, Department of Molecular and Cell Biology, University of Science and Technology of China, Hefei, China
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State Nigeria
- Department of Chemical Sciences, Coal City University, Emene, Enugu State Nigeria
| | - Talifhani Mushiana
- School of Chemistry and Material Sciences, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | | | - Samuel Cosmas
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State Nigeria
| | | | - Abayomi Gaius Osotuyi
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Glory Omini Ibiang
- Department of Biological Sciences, Coal City University, Emene, Enugu State Nigeria
| | - Miapeh Kous Gonlepa
- School of Public Affairs, Department of Public Administration, University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
Zhang J, Liu S, Li H, Tian X, Li X. Tryptophan-Based Self-Assembling Peptides with Bacterial Flocculation and Antimicrobial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11316-11323. [PMID: 32907333 DOI: 10.1021/acs.langmuir.0c01957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tryptophan as an aromatic amino acid with a hydrophobic indole group plays important roles in stabilizing protein structures and enhancing molecular bindings in nature, but was rarely used in the molecular design of self-assembling peptides or gelators. Therefore, we prepared a series of short peptides from Trp amino acids and examined the potential roles of Trp residues for regulating peptide self-assembly and gelation. The introduced Trp amino acids not only diversify the molecular structures of peptide gelators, but also promote aromatic and hydrogen-bonding interactions for supramolecular self-assembling and gelation, which generates self-assembled nanostructures with twisted helical morphologies and supramolecular hydrogels with low minimal gelation concentrations. More importantly, the self-assembling peptides with Trp residues displayed strong preference for interacting with the lipidic membranes of bacteria, which resulted in bacterial flocculation and the death of E. coli and S. aureus.
Collapse
Affiliation(s)
- Jikun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shengnan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xin Tian
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
33
|
Madhanagopal B, More SH, Bansode ND, Ganesh KN. Conformation and Morphology of 4-(NH 2/OH)-Substituted l/d-Prolyl Polypeptides: Effect of Homo- and Heterochiral Backbones on Formation of β-Structures and Nanofibers. ACS OMEGA 2020; 5:21781-21795. [PMID: 32905392 PMCID: PMC7469381 DOI: 10.1021/acsomega.0c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The relative stereochemistry of C2 and C4 in 4-substituted prolyl polypeptides plays an important role in defining the derived conformation in solution. cis-(2S,4S)-Amino/hydroxy-l-prolyl polypeptide (lC-Amp 9/lC-Hyp 9) shows a PPII conformation in phosphate buffer and a β-structure in a relatively hydrophobic solvent, trifluoroethanol (TFE). It is now demonstrated that the homochiral enantiomeric cis-substituted d-prolyl polypeptide (dC-Amp 9/dC-Hyp 9) exhibits mirror image β-structures in TFE. In the case of alternating heterochiral prolyl peptides, it is the trans-substituted [lT(2S,4R)-dT(2R,4S)] n prolyl polypeptide that shows β-structures in TFE, while the cis-substituted [lC(2S,4S)-dC(2R,4R)] n prolyl polypeptide is disordered in both phosphate buffer and TFE. The results highlight the important chirality-specific structural requirements for β-structure formation. The observed conformation in solution (circular dichroism (CD)) is also correlated with the morphology of the self-assemblies (field emission scanning electron microscopy (FESEM)), with the PPII form leading to spherical nanoparticles and β-structures leading to nanofiber formation. The results shed light on the role of relative stereochemistry at C2 and C4 in defining the polyproline peptide conformation in solution and how different conformations drive self-assemblies of peptides toward specific nanostructures.
Collapse
Affiliation(s)
- Bharath
Raj Madhanagopal
- Indian
Institute of Science Education and Research (IISER), Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| | - Shahaji H. More
- Indian
Institute of Science Education and Research (IISER), Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| | - Nitin D. Bansode
- LCPO,
ENSCBP, UMR 5629, University of Bordeaux, Pessac 33600, France
| | - Krishna N. Ganesh
- Indian
Institute of Science Education and Research (IISER), Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
- Indian
Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
34
|
Kumar A, Toal SE, DiGuiseppi D, Schweitzer-Stenner R, Wong BM. Water-Mediated Electronic Structure of Oligopeptides Probed by Their UV Circular Dichroism, Absorption Spectra, and Time-Dependent DFT Calculations. J Phys Chem B 2020; 124:2579-2590. [PMID: 32207305 DOI: 10.1021/acs.jpcb.0c00657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the UV absorption spectra of a series of cationic GxG peptides (where x denotes a guest residue) in aqueous solution and find that only a subset of these spectra show a strong dependence with temperature. To explore whether or not this observation reflects conformational dependencies, we carry out time-dependent density functional calculations for the polyproline II (pPII) and β-strand conformations in implicit and explicit water. We find that the calculated CD spectra for pPII can qualitatively account for the experimental spectra irrespective of the water model. The β-strand UV-CD spectra, however, require the explicit consideration of water. Contrary to conventional wisdom, we find that both the NV1 and NV2 band are the envelopes of contributions from multiple transitions that involve more than just the HOMOs and LUMOs of the peptide groups. A natural transition orbital analysis reveals that some of the transitions have a charge-transfer character. The overall manifold of transitions depends on the peptide's backbone conformation, peptide hydration, and side chain of the guest residue. Our results reveal that peptide groups, side chains, and hydration shells must be considered as an entity for a physically valid characterization of UV absorbance and circular dichroism.
Collapse
Affiliation(s)
- Anshuman Kumar
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California, Riverside, Riverside, California 92521, United States
| | - Siobhan E Toal
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - David DiGuiseppi
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | | - Bryan M Wong
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
35
|
Léon D, Vermeuel MP, Gupta P, Bunagan MR. The effect of salt and temperature on the conformational changes of P1LEA-22, a repeat unit of plant Late Embryogenesis Abundant proteins. J Pept Sci 2020; 26:e3247. [PMID: 32162463 DOI: 10.1002/psc.3247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 11/11/2022]
Abstract
The effect of choline chloride on the conformational dynamics of the 11-mer repeat unit P1LEA-22 of group 3 Late Embryogenesis Abundant (G3LEA) proteins was studied. Circular dichroism data of aqueous solutions of P1LEA-22 revealed that the peptide favors a polyproline II (PPII) helix structure at low temperature, with increasing temperature promoting a gain of unstructured conformations. Furthermore, increases in sample FeCl3 or choline chloride concentrations causes a gain in PPII helical structure at low temperature. The potential role of PPII structure in intrinsically disordered and G3LEA proteins is discussed, including its ability to easily access other secondary structural conformations such as α-helix and β-sheet, which have been observed for dehydrated G3LEA proteins. The observed effect of FeCl3 and choline chloride salts on P1LEA-22 suggests favorable cation interactions with the PPII helix, supporting ion sequestration as a G3LEA protein function. As choline chloride is suggested to improve salt tolerance and protect cell membrane in plants at low temperature, our results support adoption of the PPII structure as a possible damage-preventing measure of Late Embryogenesis Abundant proteins.
Collapse
Affiliation(s)
- David Léon
- Department of Chemistry, The College of New Jersey, Ewing, NJ, USA
| | | | - Priya Gupta
- Department of Chemistry, The College of New Jersey, Ewing, NJ, USA
| | | |
Collapse
|
36
|
Rogers DM, Jasim SB, Dyer NT, Auvray F, Réfrégiers M, Hirst JD. Electronic Circular Dichroism Spectroscopy of Proteins. Chem 2019. [DOI: 10.1016/j.chempr.2019.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Two/three-dimensional interfacial properties of the novel peptide as a selective destroyer of biomembrane. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Castelletto V, Edwards-Gayle CJC, Hamley IW, Pelin JNBD, Alves WA, Aguilar AM, Seitsonen J, Ruokolainen J. Self-Assembly of a Catalytically Active Lipopeptide and Its Incorporation into Cubosomes. ACS APPLIED BIO MATERIALS 2019; 2:3639-3647. [PMID: 32064461 PMCID: PMC7011704 DOI: 10.1021/acsabm.9b00489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022]
Abstract
The self-assembly and biocatalytic activity of the proline-functionalized lipopeptide PRW-NH-C16 are examined and compared to that of the related PRW-O-C16 lipopeptide, which differs in having an ester linker between the lipid chain and tripeptide headgroup instead of an amide linker. Lipopeptide PRW-NH-C16 self-assembles into spherical micelles above a critical aggregation concentration, similar to the behavior of PRW-O-C16 reported previously [B. M. Soares et al. Phys. Chem. Chem. Phys., 2017, 19, 1181-1189]. However, PRW-NH-C16 shows an improved catalytic activity in a model aldol reaction. In addition, we explore the incorporation of the biocatalytic lipopeptide into lipid cubosomes. SAXS shows that increasing lipopeptide concentration leads to an expansion of the monoolein cubosome lattice spacing and a loss of long-range cubic order as the lipopeptide is encapsulated in the cubosomes. At higher loadings of lipopeptide, reduced cubosome formation is observed at the expense of vesicle formation. Our results show that the peptide-lipid chain linker does not influence self-assembly but does impart an improved biocatalytic activity. Furthermore, we show that lipopeptides can be incorporated into lipid cubosomes, leading to restructuring into vesicles at high loadings. These findings point the way toward the future development of bioactive lipopeptide assemblies and slow release cubosome-based delivery systems.
Collapse
Affiliation(s)
- Valeria Castelletto
- Department of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | | | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | - Juliane N B D Pelin
- Centro de Ciências Naturais e Humanas, Federal do ABC, Santo André 09210-580, Brazil
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Federal do ABC, Santo André 09210-580, Brazil
| | - Andrea M Aguilar
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| |
Collapse
|
39
|
Kumar A, Schweitzer-Stenner R, Wong BM. A new interpretation of the structure and solvent dependence of the far UV circular dichroism spectrum of short oligopeptides. Chem Commun (Camb) 2019; 55:5701-5704. [PMID: 31032831 DOI: 10.1039/c9cc01513b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UV circular dichroism (UVCD) spectroscopy is a prominent tool for exploring secondary structures of polypeptides and proteins. In the unfolded state of these biomolecules, most of the individual residues primarily sample a conformation called polyproline II. Its CD spectrum contains a negatively biased positive couplet with a pronounced negative maximum below and a weak positive maximum above 200 nm. It is traditionally rationalized in terms of an excitonic coupling mechanism augmented by polarization effects. In this work, we carry out new time-dependent density functional theory calculations on the cationic tripeptide GAG in implicit and explicit water to determine the transitions that give rise to the observed CD signals of polyproline II and β-strand conformations. Our results reveal a plethora of electronic transitions that are governed by configurational interactions between multiple molecular orbital transitions of comparable energy. We also show that reproducing the CD spectra of polyproline II and β-strand conformations requires the explicit consideration of water molecules. The structure dependence of delocalized occupied orbitals contributes to the experimentally-observed invalidation of Flory's isolated pair hypothesis.
Collapse
Affiliation(s)
- Anshuman Kumar
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, University of California-Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
40
|
Edwards-Gayle CC, Castelletto V, Hamley IW, Barrett G, Greco F, Hermida-Merino D, Rambo RP, Seitsonen J, Ruokolainen J. Self-Assembly, Antimicrobial Activity, and Membrane Interactions of Arginine-Capped Peptide Bola-Amphiphiles. ACS APPLIED BIO MATERIALS 2019; 2:2208-2218. [PMID: 31157325 PMCID: PMC6537463 DOI: 10.1021/acsabm.9b00172] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
Abstract
The self-assembly and antimicrobial activity of two novel arginine-capped bola-amphiphile peptides, namely RA6R and RA9R (R, arginine; A, alanine) are investigated. RA6R does not self-assemble in water due to its high solubility, but RA9R self-assembles above a critical aggregation concentration into ordered nanofibers due to the high hydrophobicity of the A9block. The structure of the RA9R nanofibers is studied by cryogenic transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). Circular dichroism spectroscopy shows that both RA6R and RA9R adopt coil conformations in water at low concentration, but only RA9R adopts a β-sheet conformation at high concentration. SAXS and differential scanning calorimetry are used to study RA6R and RA9R interactions with a mixed lipid membrane that models a bacterial cell wall, consisting of multilamellar 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol/1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine vesicles. Cytotoxicity studies show that RA6R is more cytocompatible than RA9R. RA6R has enhanced activity against the Gram-negative pathogen P. aeruginosa at a concentration where viability of mammalian cells is retained. RA9R has little antimicrobial activity, independently of concentration. Our results highlight the influence of the interplay between relative charge and hydrophobicity on the self-assembly, cytocompatibility, and bioactivity of peptide bola-amphiphiles.
Collapse
Affiliation(s)
- Charlotte
J. C. Edwards-Gayle
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Ian W. Hamley
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Glyn Barrett
- School
of Biological Sciences, University of Reading, Reading RG6 6UR, U.K.
| | - Francesca Greco
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | | | - Robert P. Rambo
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Jani Seitsonen
- Department
of Applied Physics, Aalto School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Janne Ruokolainen
- Department
of Applied Physics, Aalto School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| |
Collapse
|
41
|
Castelletto V, Barnes RH, Karatzas KA, Edwards-Gayle CJC, Greco F, Hamley IW, Seitsonen J, Ruokolainen J. Restructuring of Lipid Membranes by an Arginine-Capped Peptide Bolaamphiphile. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1302-1311. [PMID: 30056711 DOI: 10.1021/acs.langmuir.8b01014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We study the self-assembly of arginine-capped bolaamphiphile peptide RA3R (A: alanine, R: arginine) together with its binding to model membranes and its cytotoxicity and antimicrobial activity. Anionic 2-oleoyl-1-palmitoyl- sn-glycero-3-phospho-rac-(1-glycerol) sodium salt/2-oleoyl-1-palmitoyl- sn-glycero-3-phosphoethanolamine (POPG/POPE) vesicles and zwitterionic 1,2-dioleoyl- sn-glycero-3-phosphocholine/2-oleoyl-1-palmitoyl- sn-glycero-3-phosphocholine (POPC/DOPC) vesicles are used as model membranes to mimic bacterial and mammalian cell membranes, respectively. We show that RA3R adopts a polyproline-II collagen-like conformation in water. Binding of RA3R to POPG/POPE vesicles induces a strong correlation between the lipid bilayers, driven by RA3R/POPG attractive electrostatic interaction together with a shift of the intramolecular POPE zwitterionic interaction toward an attractive electrostatic interaction with the RA3R. Populations of RA3R/POPG/POPE vesicles comprise different bilayer spacings, dA and dB, controlled by the conformation of the lipid chains corresponding to the Lβ (gel-like) and Lα (liquid-crystal) phases, respectively. Cryo-TEM images reveal the presence of vesicles with no internal structure, compartmentalized thin-wall vesicles, or multilayer vesicles with uncorrelated layers and compartmentalization depending on the RA3R/POPG/POPE composition. In contrast, the interaction of RA3R with multilamellar POPC/DOPC vesicles leads to the decorrelation of the lipid bilayers. RA3R was tolerated by skin fibroblast cells for a concentration up to 0.01 wt %, while 0.25 wt % RA3R proved to be an efficient antibacterial agent against Gram-positive bacteria L. monocytogenes. Our results highlight the ability of RA3R to distinguish between bacterial and mammalian cells and establish this peptide as a candidate to reduce the proliferation of L. monocytogenes bacteria.
Collapse
Affiliation(s)
- Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Ruth H Barnes
- School of Chemistry, Food Biosciences and Pharmacy , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Kimon-Andreas Karatzas
- School of Chemistry, Food Biosciences and Pharmacy , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Charlotte J C Edwards-Gayle
- School of Chemistry, Food Biosciences and Pharmacy , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Francesca Greco
- School of Chemistry, Food Biosciences and Pharmacy , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Jani Seitsonen
- Department of Applied Physics , Aalto School of Science , P.O. Box 15100, FI-00076 Aalto , Finland
| | - Janne Ruokolainen
- Department of Applied Physics , Aalto School of Science , P.O. Box 15100, FI-00076 Aalto , Finland
| |
Collapse
|
42
|
Turner M, Mutter ST, Platts JA. Molecular dynamics simulation on the effect of transition metal binding to the N-terminal fragment of amyloid-β. J Biomol Struct Dyn 2019; 37:4590-4600. [PMID: 30526382 DOI: 10.1080/07391102.2018.1555490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report molecular dynamics simulations of three possible adducts of Fe(II) to the N-terminal 1-16 fragments of the amyloid-β peptide, along with analogous simulations of Cu(II) and Zn(II) adducts. We find that multiple simulations from different starting points reach pseudo-equilibration within 100-300 ns, leading to over 900 ns of equilibrated trajectory data for each system. The specifics of the coordination modes for Fe(II) have only a weak effect on peptide secondary and tertiary structures, and we therefore compare one of these with analogous models of Cu(II) and Zn(II) complexes. All share broadly similar structural features, with mixture of coil, turn and bend in the N-terminal region and helical structure for residues 11-16. Within this overall pattern, subtle effects due to changes in metal are evident: Fe(II) complexes are more compact and are more likely to occupy bridge and ribbon regions of Ramachandran maps, while Cu(II) coordination leads to greater occupancy of the poly-proline region. Analysis of representative clusters in terms of molecular mechanics energy and atoms-in-molecules properties indicates similarity of four-coordinate Cu and Zn complexes, compared to five-coordinate Fe complex that exhibits lower stability and weaker metal-ligand bonding. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Matthew Turner
- School of Chemistry, Cardiff University , Park Place , Cardiff , UK
| | - Shaun T Mutter
- School of Chemistry, Cardiff University , Park Place , Cardiff , UK
| | - James A Platts
- School of Chemistry, Cardiff University , Park Place , Cardiff , UK
| |
Collapse
|
43
|
Milles S, Salvi N, Blackledge M, Jensen MR. Characterization of intrinsically disordered proteins and their dynamic complexes: From in vitro to cell-like environments. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:79-100. [PMID: 30527137 DOI: 10.1016/j.pnmrs.2018.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 05/08/2023]
Abstract
Over the last two decades, it has become increasingly clear that a large fraction of the human proteome is intrinsically disordered or contains disordered segments of significant length. These intrinsically disordered proteins (IDPs) play important regulatory roles throughout biology, underlining the importance of understanding their conformational behavior and interaction mechanisms at the molecular level. Here we review recent progress in the NMR characterization of the structure and dynamics of IDPs in various functional states and environments. We describe the complementarity of different NMR parameters for quantifying the conformational propensities of IDPs in their isolated and phosphorylated states, and we discuss the challenges associated with obtaining structural models of dynamic protein-protein complexes involving IDPs. In addition, we review recent progress in understanding the conformational behavior of IDPs in cell-like environments such as in the presence of crowding agents, in membrane-less organelles and in the complex environment of the human cell.
Collapse
Affiliation(s)
- Sigrid Milles
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Nicola Salvi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
44
|
The yeast GRASP Grh1 displays a high polypeptide backbone mobility along with an amyloidogenic behavior. Sci Rep 2018; 8:15690. [PMID: 30356074 PMCID: PMC6200761 DOI: 10.1038/s41598-018-33955-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/06/2018] [Indexed: 12/25/2022] Open
Abstract
GRASPs are proteins involved in cell processes that seem paradoxical: responsible for shaping the Golgi cisternae and involved in unconventional secretion mechanisms that bypass the Golgi. Despite its physiological relevance, there is still a considerable lack of studies on full-length GRASPs. Our group has previously reported an unexpected behavior of the full-length GRASP from the fungus C. neoformans: its intrinsically-disordered characteristic. Here, we generalize this finding by showing that it is also observed in the GRASP from S. cerevisae (Grh1), which strongly suggests it might be a general property within the GRASP family. Furthermore, Grh1 is also able to form amyloid-like fibrils either upon heating or when submitted to changes in the dielectric constant of its surroundings, a condition that is experienced by the protein when in close contact with membranes of cell compartments, such as the Golgi apparatus. Intrinsic disorder and fibril formation can thus be two structural properties exploited by GRASP during its functional cycle.
Collapse
|
45
|
Furuta M, Fujisawa T, Urago H, Eguchi T, Shingae T, Takahashi S, Blanch EW, Unno M. Raman optical activity of tetra-alanine in the poly(l-proline) II type peptide conformation. Phys Chem Chem Phys 2018; 19:2078-2086. [PMID: 28045149 DOI: 10.1039/c6cp07828a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The poly(l-proline) II (PPII) helix is considered to be a major conformation in disordered polypeptides and unfolded proteins in aqueous solution. The PPII conformation can be identified by using Raman optical activity (ROA), which measures the different intensities of right- and left-circularly polarized Raman scattered light from chiral molecules and provides information on stereochemistry associated with vibrational motions. In the present study, we used tetra-alanine (Ala4) as a model system, since its central amide bond adopts the PPII conformation. The predominance of the PPII conformation was supported by 11 ns molecular dynamics (MD) simulations at 300 K. The MD snapshots were used for subsequent quantum mechanical/molecular mechanical (QM/MM) calculations to compute the Raman and ROA spectra. The present MD + QM/MM analysis leads to a good agreement between the observed and simulated spectra, allowing us to assign most of the spectral features including the ROA band near 1320 cm-1, which has been used as a marker for the PPII conformation. This positive ROA band has three components. The lower frequency component near 1310 cm-1 arises from an internal peptide bond, whereas the higher frequency components around 1320-1335 cm-1 appear due to N- and C-terminal peptide groups. The MD + QM/MM calculations also reproduced the electronic circular dichroism spectra of Ala4. The present results provide a satisfactory framework for future investigations of unfolded/disordered proteins as well as peptides in solutions by chiral spectroscopic methods.
Collapse
Affiliation(s)
- Masakazu Furuta
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Hiroyasu Urago
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Takahiro Eguchi
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Takahito Shingae
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Ewan W Blanch
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| |
Collapse
|
46
|
Li SS, Li BQ, Liu JJ, Lu SH, Zhai HL. Tchebichef image moment approach to the prediction of protein secondary structures based on circular dichroism. Proteins 2018; 86:751-758. [DOI: 10.1002/prot.25509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/29/2018] [Accepted: 04/14/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Sha Sha Li
- College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Bao Qiong Li
- College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Jin Jin Liu
- College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Shao Hua Lu
- College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Hong Lin Zhai
- College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| |
Collapse
|
47
|
Hamley IW, Castelletto V, Dehsorkhi A, Torras J, Aleman C, Portnaya I, Danino D. The Conformation and Aggregation of Proline-Rich Surfactant-Like Peptides. J Phys Chem B 2018; 122:1826-1835. [PMID: 29357666 DOI: 10.1021/acs.jpcb.7b11463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The secondary structure of proline-rich surfactant-like peptides is examined for the first time and is found to be influenced by charged end groups in peptides P6K, P6E, and KP6E and an equimolar mixture of P6K and P6E. The peptides exhibit a conformational transition from unordered to polyproline II (PPII) above a critical concentration, detected from circular dichroism (CD) measurements and unexpectedly from fluorescence dye probe measurements. Isothermal titration calorimetry (ITC) measurements provided the Gibbs energies of hydration of P6K and P6E, which correspond essentially to the hydration energies of the terminal charged residues. A detailed analysis of peptide conformation for these peptides was performed using density functional theory calculations, and this was used as a basis for hybrid quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) simulations. Quantum mechanics simulations in implicit water show both peptides (and their 1:1 mixture) exhibit PPII conformations. However, hybrid QM/MM MD simulations suggest that some deviations from this conformation are present for P6K and P6E in peptide bonds close to the charged residue, whereas in the 1:1 mixture a PPII structure is observed. Finally, aggregation of the peptides was investigated using replica exchange molecular dynamics simulations. These reveal a tendency for the average aggregate size (as measured by the radius of gyration) to increase with increasing temperature, which is especially marked for P6K, although the fraction of the most populated clusters is larger for P6E.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights , Reading RG6 6AD, U.K
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights , Reading RG6 6AD, U.K
| | - Ashkan Dehsorkhi
- Department of Chemistry, University of Reading, Whiteknights , Reading RG6 6AD, U.K
| | - Juan Torras
- Departament d'Enginyeria Química (EEBE) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain
| | - Carlos Aleman
- Departament d'Enginyeria Química (EEBE) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain
| | - Irina Portnaya
- Department of Biotechnology and Food Engineering and the Russell Berrie Nanotechnology Institute, Technion , Haifa, Israel 32000
| | - Dganit Danino
- Department of Biotechnology and Food Engineering and the Russell Berrie Nanotechnology Institute, Technion , Haifa, Israel 32000
| |
Collapse
|
48
|
Methods to Characterize the Nanostructure and Molecular Organization of Amphiphilic Peptide Assemblies. Methods Mol Biol 2018; 1777:3-21. [PMID: 29744826 DOI: 10.1007/978-1-4939-7811-3_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methods to characterize the nanostructure and molecular organization of aggregates of peptides such as amyloid or amphiphilic peptide assemblies are reviewed. We discuss techniques to characterize conformation and secondary structure including circular and linear dichroism and FTIR and Raman spectroscopies, as well as fluorescence methods to detect aggregation. NMR spectroscopy methods, especially solid-state NMR measurements to probe beta-sheet packing motifs, are also briefly outlined. Also discussed are scattering methods including X-ray diffraction and small-angle scattering techniques including SAXS (small-angle X-ray scattering) and SANS (small-angle neutron scattering) and dynamic light scattering. Imaging methods are direct methods to uncover features of peptide nanostructures, and we provide a summary of electron microscopy and atomic force microscopy techniques. Selected examples are highlighted showing data obtained using these techniques, which provide a powerful suite of methods to probe ordering from the molecular scale to the aggregate superstructure.
Collapse
|
49
|
Ghag G, Holler CJ, Taylor G, Kukar TL, Uversky VN, Rangachari V. Disulfide bonds and disorder in granulin-3: An unusual handshake between structural stability and plasticity. Protein Sci 2017; 26:1759-1772. [PMID: 28608407 PMCID: PMC5563133 DOI: 10.1002/pro.3212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022]
Abstract
Granulins (GRNs) are a family of small (∼6 kDa) proteins generated by the proteolytic processing of their precursor, progranulin (PGRN), in many cell types. Both PGRN and GRNs are implicated in a plethora of biological functions, often in opposing roles to each other. Lately, GRNs have generated significant attention due to their implicated roles in neurodegenerative disorders. Despite their physiological and pathological significance, the structure-function relationships of GRNs are poorly defined. GRNs contain 12 conserved cysteines forming six intramolecular disulfide bonds, making them rather exceptional, even among a few proteins with high disulfide bond density. Solution NMR investigations in the past have revealed a unique structure containing putative interdigitated disulfide bonds for several GRNs, but GRN-3 was unsolvable due to its heterogeneity and disorder. In our previous report, we showed that abrogation of disulfide bonds in GRN-3 renders the protein completely disordered (Ghag et al., Prot Eng Des Sel 2016). In this study, we report the cellular expression and biophysical analysis of fully oxidized, native GRN-3. Our results indicate that both E. coli and human embryonic kidney (HEK) cells do not exclusively make GRN-3 with homogenous disulfide bonds, likely due to the high cysteine density within the protein. Biophysical analysis suggests that GRN-3 structure is dominated by irregular loops held together only by disulfide bonds, which induced remarkable thermal stability to the protein despite the lack of regular secondary structure. This unusual handshake between disulfide bonds and disorder within GRN-3 could suggest a unique adaptation of intrinsically disordered proteins towards structural stability.
Collapse
Affiliation(s)
- Gaurav Ghag
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, 39406
| | - Christopher J Holler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Georgia Taylor
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Thomas L Kukar
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, 39406
| |
Collapse
|
50
|
Felip-León C, Galindo F, Miravet JF, Castelletto V, Hamley IW. Thermally Regulated Reversible Formation of Vesicle-Like Assemblies by Hexaproline Amphiphiles. J Phys Chem B 2017; 121:7443-7446. [DOI: 10.1021/acs.jpcb.7b06167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Carles Felip-León
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, Avda Sos Baynat
s/n, 12071 Castelló, Spain
| | - Francisco Galindo
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, Avda Sos Baynat
s/n, 12071 Castelló, Spain
| | - Juan F. Miravet
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, Avda Sos Baynat
s/n, 12071 Castelló, Spain
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|