1
|
Serebryany E, Martin RW, Takahashi GR. The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins. Biomolecules 2024; 14:594. [PMID: 38786000 PMCID: PMC11118217 DOI: 10.3390/biom14050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and βγ) to contain little cysteine. Yet, the Cys content of γ-crystallins is well above the average for human proteins. We review literature relevant to this longstanding puzzle and take advantage of expanding genomic databases and improved machine learning tools for protein structure prediction to investigate it further. We observe remarkably low Cys conservation in the βγ-crystallin superfamily; however, in γ-crystallin, the spatial positioning of Cys residues is clearly fine-tuned by evolution. We propose that the requirements of long-term lens transparency and high lens optical power impose competing evolutionary pressures on lens βγ-crystallins, leading to distinct adaptations: high Cys content in γ-crystallins but low in βB-crystallins. Aquatic species need more powerful lenses than terrestrial ones, which explains the high methionine content of many fish γ- (and even β-) crystallins. Finally, we discuss synergies between sulfur-containing and aromatic residues in crystallins and suggest future experimental directions.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Physiology & Biophysics, Stony Brook University, SUNY, Stony Brook, NY 11794, USA
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, SUNY, Stony Brook, NY 11794, USA
| | - Rachel W. Martin
- Department of Chemistry, UCI Irvine, Irvine, CA 92697-2025, USA
- Department of Molecular Biology & Biochemistry, UCI Irvine, Irvine, CA 92697-3900, USA
| | - Gemma R. Takahashi
- Department of Molecular Biology & Biochemistry, UCI Irvine, Irvine, CA 92697-3900, USA
| |
Collapse
|
2
|
Wang XW, Zhang X, Cui CY, Li B, Goldfarb D, Yang Y, Su XC. Stabilizing Nitroxide Spin Labels for Structural and Conformational Studies of Biomolecules by Maleimide Treatment. Chemistry 2023; 29:e202301350. [PMID: 37354082 DOI: 10.1002/chem.202301350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
Nitroxide (NO) spin radicals are effective in characterizing structures, interactions and dynamics of biomolecules. The EPR applications in cell lysates or intracellular milieu require stable spin labels, but NO radicals are unstable in such conditions. We showed that the destabilization of NO radicals in cell lysates or even in cells is caused by NADPH/NADH related enzymes, but not by the commonly believed reducing reagents such as GSH. Maleimide stabilizes the NO radicals in the cell lysates by consumption of the NADPH/NADH that are essential for the enzymes involved in destabilizing NO radicals, instead of serving as the solo thiol scavenger. The maleimide treatment retains the crowding properties of the intracellular components and allows to perform long-time EPR measurements of NO labeled biomolecules close to the intracellular conditions. The strategy of maleimide treatment on cell lysates for the EPR applications has been demonstrated on double electron-electron resonance (DEER) measurements on a number of NO labeled protein samples. The method opens a broad application range for the NO labeled biomolecules by EPR in conditions that resemble the intracellular milieu.
Collapse
Affiliation(s)
- Xi-Wei Wang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xing Zhang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao-Yu Cui
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Delhommel F, Martínez-Lumbreras S, Sattler M. Combining NMR, SAXS and SANS to characterize the structure and dynamics of protein complexes. Methods Enzymol 2022; 678:263-297. [PMID: 36641211 DOI: 10.1016/bs.mie.2022.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding the structure and dynamics of biological macromolecules is essential to decipher the molecular mechanisms that underlie cellular functions. The description of structure and conformational dynamics often requires the integration of complementary techniques. In this review, we highlight the utility of combining nuclear magnetic resonance (NMR) spectroscopy with small angle scattering (SAS) to characterize these challenging biomolecular systems. NMR can assess the structure and conformational dynamics of multidomain proteins, RNAs and biomolecular complexes. It can efficiently provide information on interaction surfaces, long-distance restraints and relative domain orientations at residue-level resolution. Such information can be readily combined with high-resolution structural data available on subcomponents of biomolecular assemblies. Moreover, NMR is a powerful tool to characterize the dynamics of biomolecules on a wide range of timescales, from nanoseconds to seconds. On the other hand, SAS approaches provide global information on the size and shape of biomolecules and on the ensemble of all conformations present in solution. Therefore, NMR and SAS provide complementary data that are uniquely suited to investigate dynamic biomolecular assemblies. Here, we briefly review the type of data that can be obtained by both techniques and describe different approaches that can be used to combine them to characterize biomolecular assemblies. We then provide guidelines on which experiments are best suited depending on the type of system studied, ranging from fully rigid complexes, dynamic structures that interconvert between defined conformations and systems with very high structural heterogeneity.
Collapse
Affiliation(s)
- Florent Delhommel
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Santiago Martínez-Lumbreras
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany.
| |
Collapse
|
4
|
Gaber A, Pavšič M. Modeling and Structure Determination of Homo-Oligomeric Proteins: An Overview of Challenges and Current Approaches. Int J Mol Sci 2021; 22:9081. [PMID: 34445785 PMCID: PMC8396596 DOI: 10.3390/ijms22169081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Protein homo-oligomerization is a very common phenomenon, and approximately half of proteins form homo-oligomeric assemblies composed of identical subunits. The vast majority of such assemblies possess internal symmetry which can be either exploited to help or poses challenges during structure determination. Moreover, aspects of symmetry are critical in the modeling of protein homo-oligomers either by docking or by homology-based approaches. Here, we first provide a brief overview of the nature of protein homo-oligomerization. Next, we describe how the symmetry of homo-oligomers is addressed by crystallographic and non-crystallographic symmetry operations, and how biologically relevant intermolecular interactions can be deciphered from the ordered array of molecules within protein crystals. Additionally, we describe the most important aspects of protein homo-oligomerization in structure determination by NMR. Finally, we give an overview of approaches aimed at modeling homo-oligomers using computational methods that specifically address their internal symmetry and allow the incorporation of other experimental data as spatial restraints to achieve higher model reliability.
Collapse
|
5
|
Molecular insights on CALX-CBD12 interdomain dynamics from MD simulations, RDCs, and SAXS. Biophys J 2021; 120:3664-3675. [PMID: 34310942 DOI: 10.1016/j.bpj.2021.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022] Open
Abstract
Na+/Ca2+ exchangers (NCXs) are secondary active transporters that couple the translocation of Na+ with the transport of Ca2+ in the opposite direction. The exchanger is an essential Ca2+ extrusion mechanism in excitable cells. It consists of a transmembrane domain and a large intracellular loop that contains two Ca2+-binding domains, CBD1 and CBD2. The two CBDs are adjacent to each other and form a two-domain Ca2+ sensor called CBD12. Binding of intracellular Ca2+ to CBD12 activates the NCX but inhibits the NCX of Drosophila, CALX. NMR spectroscopy and SAXS studies showed that CALX and NCX CBD12 constructs display significant interdomain flexibility in the apo state but assume rigid interdomain arrangements in the Ca2+-bound state. However, detailed structure information on CBD12 in the apo state is missing. Structural characterization of proteins formed by two or more domains connected by flexible linkers is notoriously challenging and requires the combination of orthogonal information from multiple sources. As an attempt to characterize the conformational ensemble of CALX-CBD12 in the apo state, we applied molecular dynamics (MD) simulations, NMR (1H-15N residual dipolar couplings), and small-angle x-ray scattering (SAXS) data in a combined strategy to select an ensemble of conformations in agreement with the experimental data. This joint approach demonstrated that CALX-CBD12 preferentially samples closed conformations, whereas the wide-open interdomain arrangement characteristic of the Ca2+-bound state is less frequently sampled. These results are consistent with the view that Ca2+ binding shifts the CBD12 conformational ensemble toward extended conformers, which could be a key step in the NCXs' allosteric regulation mechanism. This strategy, combining MD with NMR and SAXS, provides a powerful approach to select ensembles of conformations that could be applied to other flexible multidomain systems.
Collapse
|
6
|
Rocha MA, Sprague-Piercy MA, Kwok AO, Roskamp KW, Martin RW. Chemical Properties Determine Solubility and Stability in βγ-Crystallins of the Eye Lens. Chembiochem 2021; 22:1329-1346. [PMID: 33569867 PMCID: PMC8052307 DOI: 10.1002/cbic.202000739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Indexed: 11/10/2022]
Abstract
βγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post-translational modifications that can cause age-related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid-liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high-resolution structure include dye-binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET.
Collapse
Affiliation(s)
- Megan A. Rocha
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| |
Collapse
|
7
|
Guseman AJ, Whitley MJ, González JJ, Rathi N, Ambarian M, Gronenborn AM. Assessing the Structures and Interactions of γD-Crystallin Deamidation Variants. Structure 2020; 29:284-291.e3. [PMID: 33264606 DOI: 10.1016/j.str.2020.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/12/2020] [Accepted: 11/06/2020] [Indexed: 11/25/2022]
Abstract
Cataracts involve the deposition of the crystallin proteins in the vertebrate eye lens, causing opacification and blindness. They are associated with either genetic mutation or protein damage that accumulates over the lifetime of the organism. Deamidation of Asn residues in several different crystallins has been observed and is frequently invoked as a cause of cataract. Here, we investigated the properties of Asp variants, deamidation products of γD-crystallin, by solution NMR, X-ray crystallography, and other biophysical techniques. No substantive structural or stability changes were noted for all seven Asn to Asp γD-crystallins. Importantly, no changes in diffusion interaction behavior could be detected. Our combined experimental results demonstrate that introduction of single Asp residues on the surface of γD-crystallin by deamidation is unlikely to be the driver of cataract formation in the eye lens.
Collapse
Affiliation(s)
- Alex J Guseman
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Matthew J Whitley
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Jeremy J González
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Nityam Rathi
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Mikayla Ambarian
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
| |
Collapse
|
8
|
Roskamp KW, Paulson CN, Brubaker WD, Martin RW. Function and Aggregation in Structural Eye Lens Crystallins. Acc Chem Res 2020; 53:863-874. [PMID: 32271004 DOI: 10.1021/acs.accounts.0c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crystallins are transparent, refractive proteins that contribute to the focusing power of the vertebrate eye lens. These proteins are extremely soluble and resist aggregation for decades, even under crowded conditions. Crystallins have evolved to avoid strong interprotein interactions and have unusual hydration properties. Crystallin aggregation resulting from mutation, damage, or aging can lead to cataract, a disease state characterized by opacity of the lens.Different aggregation mechanisms can occur, following multiple pathways and leading to aggregates with varied morphologies. Studies of variant proteins found in individuals with childhood-onset cataract have provided insight into the molecular factors underlying crystallin stability and solubility. Modulation of exposed hydrophobic surface is critical, as is preventing specific intermolecular interactions that could provide nucleation sites for aggregation. Biophysical measurements and structural biology techniques are beginning to provide a detailed picture of how crystallins crowd into the lens, providing high refractivity while avoiding excessively tight binding that would lead to aggregation.Despite the central biological importance of refractivity, relatively few experimental measurements have been made for lens crystallins. Our work and that of others have shown that hydration is important to the high refractive index of crystallin proteins, as are interactions between pairs of aromatic residues and potentially other specific structural features.This Account describes our efforts to understand both the functional and disease states of vertebrate eye lens crystallins, particularly the γ-crystallins. We use a variety of biophysical techniques, notably NMR spectroscopy, to investigate crystallin stability and solubility. In the first section, we describe efforts to understand the relative stability and aggregation propensity of different γS-crystallin variants. The second section focuses on interactions of these proteins with the holdase chaperone αB-crystallin. The third, fourth, and fifth sections explore different modes of aggregation available to crystallin proteins, and the final section highlights the importance of refractive index and the sometimes conflicting demands of selection for refractivity and solubility.
Collapse
Affiliation(s)
- Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Carolyn N. Paulson
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - William D. Brubaker
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
9
|
Delhommel F, Gabel F, Sattler M. Current approaches for integrating solution NMR spectroscopy and small-angle scattering to study the structure and dynamics of biomolecular complexes. J Mol Biol 2020; 432:2890-2912. [DOI: 10.1016/j.jmb.2020.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 01/24/2023]
|
10
|
Chen Q, Xu S, Lu X, Boeri MV, Pepelyayeva Y, Diaz EL, Soni SD, Allaire M, Forstner MB, Bahnson BJ, Rozovsky S. 77Se NMR Probes the Protein Environment of Selenomethionine. J Phys Chem B 2020; 124:601-616. [PMID: 31846581 DOI: 10.1021/acs.jpcb.9b07466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur is critical for the correct structure and proper function of proteins. Yet, lacking a sensitive enough isotope, nuclear magnetic resonance (NMR) experiments are unable to deliver for sulfur in proteins the usual wealth of chemical, dynamic, and structural information. This limitation can be circumvented by substituting sulfur with selenium, which has similar physicochemical properties and minimal impact on protein structures but possesses an NMR compatible isotope (77Se). Here we exploit the sensitivity of 77Se NMR to the nucleus' chemical milieu and use selenomethionine as a probe for its proteinaceous environment. However, such selenium NMR spectra of proteins currently resist a reliable interpretation because systematic connections between variations of system variables and changes in 77Se NMR parameters are still lacking. To start narrowing this knowledge gap, we report here on a biological 77Se magnetic resonance data bank based on a systematically designed library of GB1 variants in which a single selenomethionine was introduced at different locations within the protein. We recorded the resulting isotropic 77Se chemical shifts and relaxation times for six GB1 variants by solution-state 77Se NMR. For four of the GB1 variants we were also able to determine the chemical shift anisotropy tensor of SeM by solid-state 77Se NMR. To enable interpretation of the NMR data, the structures of five of the GB1 variants were solved by X-ray crystallography to a resolution of 1.2 Å, allowing us to unambiguously determine the conformation of the selenomethionine. Finally, we combine our solution- and solid-state NMR data with the structural information to arrive at general insights regarding the execution and interpretation of 77Se NMR experiments that exploit selenomethionine to probe proteins.
Collapse
Affiliation(s)
- Qingqing Chen
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Shiping Xu
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Xingyu Lu
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Instrumentation and Service Center for Physical Sciences , Westlake University , Hangzhou , Zhejiang 310024 , China
| | - Michael V Boeri
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Neuroscience Department, Medical Toxicology Research Division , U.S. Army Medical Research Institute of Chemical Defense , 8350 Ricketts Point Road , Gunpowder , Maryland 21010 , United States
| | - Yuliya Pepelyayeva
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Elizabeth L Diaz
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Sunil-Datta Soni
- Neuroscience Department, Medical Toxicology Research Division , U.S. Army Medical Research Institute of Chemical Defense , 8350 Ricketts Point Road , Gunpowder , Maryland 21010 , United States
| | - Marc Allaire
- Berkeley Center for Structural Biology, Molecular Biophysics & Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Martin B Forstner
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Brian J Bahnson
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
11
|
Demerdash O, Shrestha UR, Petridis L, Smith JC, Mitchell JC, Ramanathan A. Using Small-Angle Scattering Data and Parametric Machine Learning to Optimize Force Field Parameters for Intrinsically Disordered Proteins. Front Mol Biosci 2019; 6:64. [PMID: 31475155 PMCID: PMC6705226 DOI: 10.3389/fmolb.2019.00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) play important roles in many aspects of normal cell physiology, such as signal transduction and transcription, as well as pathological states, including Alzheimer's, Parkinson's, and Huntington's disease. Unlike their globular counterparts that are defined by a few structures and free energy minima, IDP/IDR comprise a large ensemble of rapidly interconverting structures and a corresponding free energy landscape characterized by multiple minima. This aspect has precluded the use of structural biological techniques, such as X-ray crystallography and nuclear magnetic resonance (NMR) for resolving their structures. Instead, low-resolution techniques, such as small-angle X-ray or neutron scattering (SAXS/SANS), have become a mainstay in characterizing coarse features of the ensemble of structures. These are typically complemented with NMR data if possible or computational techniques, such as atomistic molecular dynamics, to further resolve the underlying ensemble of structures. However, over the past 10–15 years, it has become evident that the classical, pairwise-additive force fields that have enjoyed a high degree of success for globular proteins have been somewhat limited in modeling IDP/IDR structures that agree with experiment. There has thus been a significant effort to rehabilitate these models to obtain better agreement with experiment, typically done by optimizing parameters in a piecewise fashion. In this work, we take a different approach by optimizing a set of force field parameters simultaneously, using machine learning to adapt force field parameters to experimental SAXS scattering profiles. We demonstrate our approach in modeling three biologically IDP ensembles based on experimental SAXS profiles and show that our optimization approach significantly improve force field parameters that generate ensembles in better agreement with experiment.
Collapse
Affiliation(s)
- Omar Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Utsab R Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Loukas Petridis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Jeremy C Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Arvind Ramanathan
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|
12
|
Russell RW, Fritz MP, Kraus J, Quinn CM, Polenova T, Gronenborn AM. Accuracy and precision of protein structures determined by magic angle spinning NMR spectroscopy: for some 'with a little help from a friend'. JOURNAL OF BIOMOLECULAR NMR 2019; 73:333-346. [PMID: 30847635 PMCID: PMC6693955 DOI: 10.1007/s10858-019-00233-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
We present a systematic investigation into the attainable accuracy and precision of protein structures determined by heteronuclear magic angle spinning solid-state NMR for a set of four proteins of varied size and secondary structure content. Structures were calculated using synthetically generated random sets of C-C distances up to 7 Å at different degrees of completeness. For single-domain proteins, 9-15 restraints per residue are sufficient to derive an accurate model structure, while maximum accuracy and precision are reached with over 15 restraints per residue. For multi-domain proteins and protein assemblies, additional information on domain orientations, quaternary structure and/or protein shape is needed. As demonstrated for the HIV-1 capsid protein assembly, this can be accomplished by integrating MAS NMR with cryoEM data. In all cases, inclusion of TALOS-derived backbone torsion angles improves the accuracy for small number of restraints, while no further increases are noted for restraint completeness above 40%. In contrast, inclusion of TALOS-derived torsion angle restraints consistently increases the precision of the structural ensemble at all degrees of distance restraint completeness.
Collapse
Affiliation(s)
- Ryan W Russell
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Matthew P Fritz
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Jodi Kraus
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Harnessing the Combined Power of SAXS and NMR. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:171-180. [DOI: 10.1007/978-981-13-2200-6_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Yadav DK, Lukavsky PJ. NMR solution structure determination of large RNA-protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:57-81. [PMID: 27888840 DOI: 10.1016/j.pnmrs.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Structure determination of RNA-protein complexes is essential for our understanding of the multiple layers of RNA-mediated posttranscriptional regulation of gene expression. Over the past 20years, NMR spectroscopy became a key tool for structural studies of RNA-protein interactions. Here, we review the progress being made in NMR structure determination of large ribonucleoprotein assemblies. We discuss approaches for the design of RNA-protein complexes for NMR structural studies, established and emerging isotope and segmental labeling schemes suitable for large RNPs and how to gain distance restraints from NOEs, PREs and EPR and orientational information from RDCs and SAXS/SANS in such systems. The new combination of NMR measurements with MD simulations and its potential will also be discussed. Application and combination of these various methods for structure determination of large RNPs will be illustrated with three large RNA-protein complexes (>40kDa) and other interesting complexes determined in the past six and a half years.
Collapse
Affiliation(s)
- Deepak Kumar Yadav
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Peter J Lukavsky
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic.
| |
Collapse
|
15
|
Prischi F, Pastore A. Application of Nuclear Magnetic Resonance and Hybrid Methods to Structure Determination of Complex Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:351-68. [PMID: 27165336 DOI: 10.1007/978-3-319-27216-0_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current main challenge of Structural Biology is to undertake the structure determination of increasingly complex systems in the attempt to better understand their biological function. As systems become more challenging, however, there is an increasing demand for the parallel use of more than one independent technique to allow pushing the frontiers of structure determination and, at the same time, obtaining independent structural validation. The combination of different Structural Biology methods has been named hybrid approaches. The aim of this review is to critically discuss the most recent examples and new developments that have allowed structure determination or experimentally-based modelling of various molecular complexes selecting them among those that combine the use of nuclear magnetic resonance and small angle scattering techniques. We provide a selective but focused account of some of the most exciting recent approaches and discuss their possible further developments.
Collapse
Affiliation(s)
- Filippo Prischi
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Annalisa Pastore
- Department of Clinical Neurosciences, King's College London, Denmark Hill Campus, London, UK.
| |
Collapse
|
16
|
Kikhney AG, Svergun DI. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 2015; 589:2570-7. [PMID: 26320411 DOI: 10.1016/j.febslet.2015.08.027] [Citation(s) in RCA: 392] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 12/17/2022]
Abstract
Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.
Collapse
Affiliation(s)
- Alexey G Kikhney
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22607 Hamburg, Germany.
| |
Collapse
|
17
|
Yang S. Methods for SAXS-based structure determination of biomolecular complexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7902-10. [PMID: 24888261 PMCID: PMC4285438 DOI: 10.1002/adma.201304475] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/10/2014] [Indexed: 05/20/2023]
Abstract
Measurements from small-angle X-ray scattering (SAXS) are highly informative to determine the structures of bimolecular complexes in solution. Here, current and recent SAXS-driven developments are described, with an emphasis on computational modeling. In particular, accurate methods to computing one theoretical scattering profile from a given structure model are discussed, with a key focus on structure factor coarse-graining and hydration contribution. Methods for reconstructing topological structures from an experimental SAXS profile are currently under active development. We report on several modeling tools designed for conformation generation that make use of either atomic-level or coarse-grained representations. Furthermore, since large, flexible biomolecules can adopt multiple well-defined conformations, a traditional single-conformation SAXS analysis is inappropriate, so we also discuss recent methods that utilize the concept of ensemble optimization, weighing in on the SAXS contributions of a heterogeneous mixture of conformations. These tools will ultimately posit the usefulness of SAXS data beyond a simple space-filling approach by providing a reliable structure characterization of biomolecular complexes under physiological conditions.
Collapse
Affiliation(s)
- Sichun Yang
- Center for Proteomics and Department of Pharmacology, Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4988, USA
| |
Collapse
|
18
|
Lemak A, Wu B, Yee A, Houliston S, Lee HW, Gutmanas A, Fang X, Garcia M, Semesi A, Wang YX, Prestegard JH, Arrowsmith CH. Structural characterization of a flexible two-domain protein in solution using small angle X-ray scattering and NMR data. Structure 2014; 22:1862-1874. [PMID: 25456817 PMCID: PMC5046226 DOI: 10.1016/j.str.2014.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 01/09/2023]
Abstract
Multidomain proteins in which individual domains are connected by linkers often possess inherent interdomain flexibility that significantly complicates their structural characterization in solution using either nuclear magnetic resonance (NMR) spectroscopy or small-angle X-ray scattering (SAXS) alone. Here, we report a protocol for joint refinement of flexible multidomain protein structures against NMR distance and angular restraints, residual dipolar couplings, and SAXS data. The protocol is based on the ensemble optimization method principle (Bernadó et al., 2007) and is compared with different refinement strategies for the structural characterization of the flexible two-domain protein sf3636 from Shigella flexneri 2a. The results of our refinement suggest the existence of a dominant population of configurational states in solution possessing an overall elongated shape and restricted relative twisting of the two domains.
Collapse
Affiliation(s)
- Alexander Lemak
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Bin Wu
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Adelinda Yee
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Hsiau-Wei Lee
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Aleksandras Gutmanas
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Xianyang Fang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Maite Garcia
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Anthony Semesi
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
19
|
Enzymatic hydrolysis studies of arabinogalactan-protein structure from Acacia gum: The self-similarity hypothesis of assembly from a common building block. Carbohydr Polym 2014; 112:648-61. [DOI: 10.1016/j.carbpol.2014.06.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/23/2022]
|
20
|
Göbl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:26-63. [PMID: 24924266 DOI: 10.1016/j.pnmrs.2014.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 05/22/2023]
Abstract
NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes.
Collapse
Affiliation(s)
- Christoph Göbl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Biology, University of Graz, Graz, Austria.
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
21
|
Hennig J, Sattler M. The dynamic duo: combining NMR and small angle scattering in structural biology. Protein Sci 2014; 23:669-82. [PMID: 24687405 DOI: 10.1002/pro.2467] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/12/2022]
Abstract
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X-ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well-suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR-derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state-of-the-art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr.1, D-85764, Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany
| | | |
Collapse
|
22
|
Zhao H, Chen Y, Rezabkova L, Wu Z, Wistow G, Schuck P. Solution properties of γ-crystallins: hydration of fish and mammal γ-crystallins. Protein Sci 2013; 23:88-99. [PMID: 24282025 DOI: 10.1002/pro.2394] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 11/06/2022]
Abstract
Lens γ crystallins are found at the highest protein concentration of any tissue, ranging from 300 mg/mL in some mammals to over 1000 mg/mL in fish. Such high concentrations are necessary for the refraction of light, but impose extreme requirements for protein stability and solubility. γ-crystallins, small stable monomeric proteins, are particularly associated with the lowest hydration regions of the lens. Here, we examine the solvation of selected γ-crystallins from mammals (human γD and mouse γS) and fish (zebrafish γM2b and γM7). The thermodynamic water binding coefficient B₁ could be probed by sucrose expulsion, and the hydrodynamic hydration shell of tightly bound water was probed by translational diffusion and structure-based hydrodynamic boundary element modeling. While the amount of tightly bound water of human γD was consistent with that of average proteins, the water binding of mouse γS was found to be relatively low. γM2b and γM7 crystallins were found to exhibit extremely low degrees hydration, consistent with their role in the fish lens. γM crystallins have a very high methionine content, in some species up to 15%. Structure-based modeling of hydration in γM7 crystallin suggests low hydration is associated with the large number of surface methionine residues, likely in adaptation to the extremely high concentration and low hydration environment in fish lenses. Overall, the degree of hydration appears to balance stability and tissue density requirements required to produce and maintain the optical properties of the lens in different vertebrate species.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland, 20892
| | | | | | | | | | | |
Collapse
|
23
|
Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS. Biochem Soc Trans 2013; 40:955-62. [PMID: 22988847 DOI: 10.1042/bst20120149] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, IDPs (intrinsically disordered proteins) have emerged as pivotal actors in biology. Despite IDPs being present in all kingdoms of life, they are more abundant in eukaryotes where they are involved in the vast majority of regulation and signalling processes. The realization that, in some cases, functional states of proteins were partly or fully disordered was in contradiction to the traditional view where a well defined three-dimensional structure was required for activity. Several experimental evidences indicate, however, that structural features in IDPs such as transient secondary-structural elements and overall dimensions are crucial to their function. NMR has been the main tool to study IDP structure by probing conformational preferences at residue level. Additionally, SAXS (small-angle X-ray scattering) has the capacity to report on the three-dimensional space sampled by disordered states and therefore complements the local information provided by NMR. The present review describes how the synergy between NMR and SAXS can be exploited to obtain more detailed structural and dynamic models of IDPs in solution. These combined strategies, embedded into computational approaches, promise the elucidation of the structure-function properties of this important, but elusive, family of biomolecules.
Collapse
|
24
|
Kurut A, Lund M. Solution electrostatics beyond pH: a coarse grained approach to ion specific interactions between macromolecules. Faraday Discuss 2013; 160:271-8; discussion 311-27. [DOI: 10.1039/c2fd20073b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Chen B, Zuo X, Wang YX, Dayie TK. Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy. Nucleic Acids Res 2012; 40:3117-30. [PMID: 22139931 PMCID: PMC3326309 DOI: 10.1093/nar/gkr1154] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022] Open
Abstract
Riboswitches are a newly discovered large family of structured functional RNA elements that specifically bind small molecule targets out of a myriad of cellular metabolites to modulate gene expression. Structural studies of ligand-bound riboswitches by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy have provided insights into detailed RNA-ligand recognition and interactions. However, the structures of ligand-free riboswitches remain poorly characterized. In this study, we have used a variety of biochemical, biophysical and computational techniques including small-angle X-ray scattering and NMR spectroscopy to characterize the ligand-free and ligand-bound forms of SAM-II riboswitch. Our data demonstrate that the RNA adopts multiple conformations along its folding pathway and suggest that the RNA undergoes marked conformational changes upon Mg(2+) compaction and S-adenosylmethionine (SAM) metabolite binding. Further studies indicated that Mg(2+) ion is not essential for the ligand binding but can stabilize the complex by facilitating loop/stem interactions. In the presence of millimolar concentration of Mg(2+) ion, the RNA samples a more compact conformation. This conformation is near to, but distinct from, the native fold and competent to bind the metabolite. We conclude that the formation of various secondary and tertiary structural elements, including a pseudoknot, occur to sequester the putative Shine-Dalgarno sequence of the RNA only after metabolite binding.
Collapse
Affiliation(s)
- Bin Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiaobing Zuo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
26
|
Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM. High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. JOURNAL OF BIOMOLECULAR NMR 2011; 51:227-33. [PMID: 21938394 PMCID: PMC3204959 DOI: 10.1007/s10858-011-9565-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/29/2011] [Indexed: 05/12/2023]
Abstract
X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular assemblies and membrane proteins often diffract weakly and such large systems encroach upon the molecular tumbling limit of solution NMR, new methods are essential to extend structures of such systems to high resolution. Here we present a method that incorporates solid-state NMR restraints alongside of X-ray reflections to the conventional model building and refinement steps of structure calculations. Using the 3.7 Å crystal structure of the integral membrane protein complex DsbB-DsbA as a test case yielded a significantly improved backbone precision of 0.92 Å in the transmembrane region, a 58% enhancement from using X-ray reflections alone. Furthermore, addition of solid-state NMR restraints greatly improved the overall quality of the structure by promoting 22% of DsbB transmembrane residues into the most favored regions of Ramachandran space in comparison to the crystal structure. This method is widely applicable to any protein system where X-ray data are available, and is particularly useful for the study of weakly diffracting crystals.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Lindsay J. Sperling
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Deborah A. Berthold
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Charles D. Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna E. Nesbitt
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Andrew J. Nieuwkoop
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Robert B. Gennis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
- CORRESPONDING AUTHOR:
| |
Collapse
|
27
|
A simple procedure to evaluate the efficiency of bio-macromolecular rigid-body refinement by small-angle scattering. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 41:1-11. [DOI: 10.1007/s00249-011-0751-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/06/2011] [Indexed: 02/02/2023]
|
28
|
Bernadó P, Svergun DI. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. MOLECULAR BIOSYSTEMS 2011; 8:151-67. [PMID: 21947276 DOI: 10.1039/c1mb05275f] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small-angle scattering of X-rays (SAXS) is an established method to study the overall structure and structural transitions of biological macromolecules in solution. For folded proteins, the technique provides three-dimensional low resolution structures ab initio or it can be used to drive rigid-body modeling. SAXS is also a powerful tool for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs), and is highly complementary to the high resolution methods of X-ray crystallography and NMR. Here we present the basic principles of SAXS and review the main approaches to the characterization of IDPs and flexible multidomain proteins using SAXS. Together with the standard approaches based on the analysis of overall parameters, a recently developed Ensemble Optimization Method (EOM) is now available. The latter method allows for the co-existence of multiple protein conformations in solution compatible with the scattering data. Analysis of the selected ensembles provides quantitative information about flexibility and also offers insights into structural features. Examples of the use of SAXS and combined approaches with NMR, X-ray crystallography, and computational methods to characterize completely or partially disordered proteins are presented.
Collapse
Affiliation(s)
- Pau Bernadó
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
29
|
Breukels V, Konijnenberg A, Nabuurs SM, Doreleijers JF, Kovalevskaya NV, Vuister GW. Overview on the use of NMR to examine protein structure. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2011; Chapter 17:Unit17.5. [PMID: 21488042 DOI: 10.1002/0471140864.ps1705s64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Any protein structure determination process contains several steps, starting from obtaining a suitable sample, then moving on to acquiring data and spectral assignment, and lastly to the final steps of structure determination and validation. This unit describes all of these steps, starting with the basic physical principles behind NMR and some of the most commonly measured and observed phenomena such as chemical shift, scalar and residual coupling, and the nuclear Overhauser effect. Then, in somewhat more detail, the process of spectral assignment and structure elucidation is explained. Furthermore, the use of NMR to study protein-ligand interaction, protein dynamics, or protein folding is described.
Collapse
Affiliation(s)
- Vincent Breukels
- Protein Biophysics, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Around half of all protein structures solved nowadays using solution-state nuclear magnetic resonance (NMR) spectroscopy have been because of automated data analysis. The pervasiveness of computational approaches in general hides, however, a more nuanced view in which the full variety and richness of the field appears. This review is structured around a comparison of methods associated with three NMR observables: classical nuclear Overhauser effect (NOE) constraint gathering in contrast with more recent chemical shift and residual dipole coupling (RDC) based protocols. In each case, the emphasis is placed on the latest research, covering mainly the past 5 years. By describing both general concepts and representative programs, the objective is to map out a field in which--through the very profusion of approaches--it is all too easy to lose one's bearings.
Collapse
|
31
|
Lee HW, Wylie G, Bansal S, Wang X, Barb AW, Macnaughtan MA, Ertekin A, Montelione GT, Prestegard JH. Three-dimensional structure of the weakly associated protein homodimer SeR13 using RDCs and paramagnetic surface mapping. Protein Sci 2011; 19:1673-85. [PMID: 20589905 DOI: 10.1002/pro.447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The traditional NMR-based method for determining oligomeric protein structure usually involves distinguishing and assigning intra- and intersubunit NOEs. This task becomes challenging when determining symmetric homo-dimer structures because NOE cross-peaks from a given pair of protons occur at the same position whether intra- or intersubunit in origin. While there are isotope-filtering strategies for distinguishing intra from intermolecular NOE interactions in these cases, they are laborious and often prove ineffectual in cases of weak dimers, where observation of intermolecular NOEs is rare. Here, we present an efficient procedure for weak dimer structure determination based on residual dipolar couplings (RDCs), chemical shift changes upon dilution, and paramagnetic surface perturbations. This procedure is applied to the Northeast Structural Genomics Consortium protein target, SeR13, a negatively charged Staphylococcus epidermidis dimeric protein (K(d) 3.4 ± 1.4 mM) composed of 86 amino acids. A structure determination for the monomeric form using traditional NMR methods is presented, followed by a dimer structure determination using docking under orientation constraints from RDCs data, and scoring under residue pair potentials and shape-based predictions of RDCs. Validation using paramagnetic surface perturbation and chemical shift perturbation data acquired on sample dilution is also presented. The general utility of the dimer structure determination procedure and the possible relevance of SeR13 dimer formation are discussed.
Collapse
Affiliation(s)
- Hsiau-Wei Lee
- Complex Carbohydrate Research Center, Northeast Structural Genomics Consortium, The University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Campagne S, Gervais V, Milon A. Nuclear magnetic resonance analysis of protein-DNA interactions. J R Soc Interface 2011; 8:1065-78. [PMID: 21389020 DOI: 10.1098/rsif.2010.0543] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent methodological and instrumental advances in solution-state nuclear magnetic resonance have opened up the way to investigating challenging problems in structural biology such as large macromolecular complexes. This review focuses on the experimental strategies currently employed to solve structures of protein-DNA complexes and to analyse their dynamics. It highlights how these approaches can help in understanding detailed molecular mechanisms of target recognition.
Collapse
Affiliation(s)
- S Campagne
- Université de Toulouse, UPS, Department of Structural Biology and Biophysics, F-31077 Toulouse, France
| | | | | |
Collapse
|
33
|
Wang X, Lee HW, Liu Y, Prestegard JH. Structural NMR of protein oligomers using hybrid methods. J Struct Biol 2011; 173:515-29. [PMID: 21074622 PMCID: PMC3040251 DOI: 10.1016/j.jsb.2010.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/03/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022]
Abstract
Solving structures of native oligomeric protein complexes using traditional high-resolution NMR techniques remains challenging. However, increased utilization of computational platforms, and integration of information from less traditional NMR techniques with data from other complementary biophysical methods, promises to extend the boundary of NMR-applicable targets. This article reviews several of the techniques capable of providing less traditional and complementary structural information. In particular, the use of orientational constraints coming from residual dipolar couplings and residual chemical shift anisotropy offsets are shown to simplify the construction of models for oligomeric complexes, especially in cases of weak homo-dimers. Combining this orientational information with interaction site information supplied by computation, chemical shift perturbation, paramagnetic surface perturbation, cross-saturation and mass spectrometry allows high resolution models of the complexes to be constructed with relative ease. Non-NMR techniques, such as mass spectrometry, EPR and small angle X-ray scattering, are also expected to play increasingly important roles by offering alternative methods of probing the overall shape of the complex. Computational platforms capable of integrating information from multiple sources in the modeling process are also discussed in the article. And finally a new, detailed example on the determination of a chemokine tetramer structure will be used to illustrate how a non-traditional approach to oligomeric structure determination works in practice.
Collapse
Affiliation(s)
- Xu Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Hsiau-Wei Lee
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Yizhou Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| |
Collapse
|
34
|
Bernadó P. Low‐resolution structural approaches to study biomolecular assemblies. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pau Bernadó
- Institute for Research in Biomedicine, Barcelona, Spain
| |
Collapse
|
35
|
Semiempirical configuration interaction calculations in biochemical environments. Biophys Chem 2011; 153:173-8. [DOI: 10.1016/j.bpc.2010.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 11/21/2022]
|
36
|
Madl T, Gabel F, Sattler M. NMR and small-angle scattering-based structural analysis of protein complexes in solution. J Struct Biol 2010; 173:472-82. [PMID: 21074620 DOI: 10.1016/j.jsb.2010.11.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 01/14/2023]
Abstract
Structural analysis of multi-domain protein complexes is a key challenge in current biology and a prerequisite for understanding the molecular basis of essential cellular processes. The use of solution techniques is important for characterizing the quaternary arrangements and dynamics of domains and subunits of these complexes. In this respect solution NMR is the only technique that allows atomic- or residue-resolution structure determination and investigation of dynamic properties of multi-domain proteins and their complexes. As experimental NMR data for large protein complexes are sparse, it is advantageous to combine these data with additional information from other solution techniques. Here, the utility and computational approaches of combining solution state NMR with small-angle X-ray and Neutron scattering (SAXS/SANS) experiments for structural analysis of large protein complexes is reviewed. Recent progress in experimental and computational approaches of combining NMR and SAS are discussed and illustrated with recent examples from the literature. The complementary aspects of combining NMR and SAS data for studying multi-domain proteins, i.e. where weakly interacting domains are connected by flexible linkers, are illustrated with the structural analysis of the tandem RNA recognition motif (RRM) domains (RRM1-RRM2) of the human splicing factor U2AF65 bound to a nine-uridine (U9) RNA oligonucleotide.
Collapse
Affiliation(s)
- Tobias Madl
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | | | | |
Collapse
|
37
|
Zhang J, Sapienza PJ, Ke H, Chang A, Hengel SR, Wang H, Phillips GN, Lee AL. Crystallographic and nuclear magnetic resonance evaluation of the impact of peptide binding to the second PDZ domain of protein tyrosine phosphatase 1E. Biochemistry 2010; 49:9280-91. [PMID: 20839809 PMCID: PMC3001272 DOI: 10.1021/bi101131f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PDZ (PSD95/Discs large/ZO-1) domains are ubiquitous protein interaction motifs found in scaffolding proteins involved in signal transduction. Despite the fact that many PDZ domains show a limited tendency to undergo structural change, the PDZ family has been associated with long-range communication and allostery. One of the PDZ domains studied most in terms of structure and biophysical properties is the second PDZ ("PDZ2") domain from protein tyrosine phosphatase 1E (PTP1E, also known as PTPL1). Previously, we showed through NMR relaxation studies that binding of the RA-GEF2 C-terminal peptide substrate results in long-range propagation of side-chain dynamic changes in human PDZ2 [Fuentes, E. J., et al. (2004) J. Mol. Biol. 335, 1105-1115]. Here, we present the first X-ray crystal structures of PDZ2 in the absence and presence of RA-GEF2 ligand, determined to resolutions of 1.65 and 1.3 Å, respectively. These structures deviate somewhat from previously determined NMR structures and indicate that very minor structural changes in PDZ2 accompany peptide binding. NMR residual dipolar couplings confirm the crystal structures to be accurate models of the time-averaged atomic coordinates of PDZ2. The impact on side-chain dynamics was further tested with a C-terminal peptide from APC, which showed results nearly identical to those of RA-GEF2. Thus, allosteric transmission in PDZ2 induced by peptide binding is conveyed purely and robustly by dynamics. (15)N relaxation dispersion measurements did not detect appreciable populations of a kinetic structural intermediate. Collectively, for ligand binding to PDZ2, these data support a lock-and-key binding model from a structural perspective and an allosteric model from a dynamical perspective, which together suggest a complex energy landscape for functional transitions within the ensemble.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paul J. Sapienza
- Division of Medicinal Chemistry & Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hengming Ke
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Aram Chang
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, 53706
| | - Sarah R. Hengel
- The Department of Chemistry at The College of St. Scholastica, Duluth, MN 55812, USA
| | - Huanchen Wang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - George N. Phillips
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, 53706
| | - Andrew L. Lee
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Division of Medicinal Chemistry & Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
38
|
Wang YX, Zuo X, Wang J, Yu P, Butcher SE. Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering. Methods 2010; 52:180-91. [PMID: 20554045 PMCID: PMC5370570 DOI: 10.1016/j.ymeth.2010.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Indexed: 12/21/2022] Open
Abstract
Among the greatest advances in biology today are the discoveries of various roles played by RNA in biological processes. However, despite significant advances in RNA structure determination using X-ray crystallography [1] and solution NMR [2-4], the number of bona fide RNA structures is very limited, in comparison with the growing number of known functional RNAs. This is because of great difficulty in growing crystals or/and obtaining phase information, and severe size constraints on structure determination by solution NMR spectroscopy. Clearly, there is an acute need for new methodologies for RNA structure determination. The prevailing approach for structure determination of RNA in solution is a "bottom-up" approach that was basically transplanted from the approach used for determining protein structures, despite vast differences in both structural features and chemical compositions between these two types of biomacromolecules. In this chapter, we describe a new method, which has been reported recently, for rapid global structure determination of RNAs using solution-based NMR spectroscopy and small-angle X-ray scattering. The method treats duplexes as major building blocks of RNA structures. By determining the global orientations of the duplexes and the overall shape, the global structure of an RNA can be constructed and further regularized using Xplor-NIH. The utility of the method was demonstrated in global structure determination of two RNAs, a 71-nt and 102-nt RNAs with an estimated backbone RMSD ∼3.0Å. The global structure opens door to high-resolution structure determination in solution.
Collapse
Affiliation(s)
- Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
39
|
Miyashita O, Gorba C, Tama F. Structure modeling from small angle X-ray scattering data with elastic network normal mode analysis. J Struct Biol 2010; 173:451-60. [PMID: 20850542 DOI: 10.1016/j.jsb.2010.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 11/24/2022]
Abstract
Computational algorithms to construct structural models from SAXS experimental data are reviewed. SAXS data provides a wealth of information to study the structure and dynamics of biological molecules, however it does not provide atomic details of structures. Thus combining the low-resolution data with already known X-ray structure is a common approach to study conformational transitions of biological molecules. This review provides a survey of SAXS modeling approaches. In addition, we will discuss theoretical backgrounds and performance of our approach, in which elastic network normal mode analysis is used to predict reasonable conformational transitions from known X-ray structures, and find alternative conformations that are consistent with SAXS data.
Collapse
Affiliation(s)
- Osamu Miyashita
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
40
|
Structural characterization of protein-protein complexes by integrating computational docking with small-angle scattering data. J Mol Biol 2010; 403:217-30. [PMID: 20804770 DOI: 10.1016/j.jmb.2010.08.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/05/2010] [Accepted: 08/16/2010] [Indexed: 11/20/2022]
Abstract
X-ray crystallography and NMR can provide detailed structural information of protein-protein complexes, but technical problems make their application challenging in the high-throughput regime. Other methods such as small-angle X-ray scattering (SAXS) are more promising for large-scale application, but at the cost of lower resolution, which is a problem that can be solved by complementing SAXS data with theoretical simulations. Here, we propose a novel strategy that combines SAXS data and accurate protein-protein docking simulations. The approach has been benchmarked on a large pool of known structures with synthetic SAXS data, and on three experimental examples. The combined approach (pyDockSAXS) provided a significantly better success rate (43% for the top 10 predictions) than either of the two methods alone. Further analysis of the influence of different docking parameters made it possible to increase the success rates for specific cases, and to define guidelines for improving the data-driven protein-protein docking protocols.
Collapse
|
41
|
Rambo RP, Tainer JA. Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Curr Opin Struct Biol 2010; 20:128-37. [PMID: 20097063 DOI: 10.1016/j.sbi.2009.12.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/24/2009] [Accepted: 12/24/2009] [Indexed: 11/28/2022]
Abstract
Small-angle X-ray scattering (SAXS) is changing how we perceive biological structures, because it reveals dynamic macromolecular conformations and assemblies in solution. SAXS information captures thermodynamic ensembles, enhances static structures detailed by high-resolution methods, uncovers commonalities among diverse macromolecules, and helps define biological mechanisms. SAXS-based experiments on RNA riboswitches and ribozymes and on DNA-protein complexes including DNA-PK and p53 discover flexibilities that better define structure-function relationships. Furthermore, SAXS results suggest conformational variation is a general functional feature of macromolecules. Thus, accurate structural analyses will require a comprehensive approach that assesses both flexibility, as seen by SAXS, and detail, as determined by X-ray crystallography and NMR. Here, we review recent SAXS computational tools, technologies, and applications to nucleic acids and related structures.
Collapse
Affiliation(s)
- Robert P Rambo
- Life Science Division, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|