1
|
Gunathilake C, Soliman I, Panthi D, Tandler P, Fatani O, Ghulamullah NA, Marasinghe D, Farhath M, Madhujith T, Conrad K, Du Y, Jaroniec M. A comprehensive review on hydrogen production, storage, and applications. Chem Soc Rev 2024. [PMID: 39421882 DOI: 10.1039/d3cs00731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The transformation from combustion-based to renewable energy technologies is of paramount importance due to the rapid depletion of fossil fuels and the dramatic increase in atmospheric CO2 levels resulting from growing global energy demands. To achieve the Paris Agreement's long-term goal of carbon neutrality by 2050, the full implementation of clean and sustainable energy sources is essential. Consequently, there is an urgent demand for zero or low-carbon fuels with high energy density that can produce electricity and heat, power vehicles, and support global trade. This review presents the global motivation to reduce carbon dioxide by utilizing hydrogen technology, which is key to meeting future energy demands. It discusses the basic properties of hydrogen and its application in both prototype and large-scale efficient technologies. Hydrogen is a clean fuel and a versatile energy carrier; when used in fuel cells or combustion devices, the final product is water vapor. Hydrogen gas production methods are reviewed across renewable and non-renewable sources, with reaction processes categorized as green, blue, grey, black, pink, and turquoise, depending on the reaction pathway and CO2 emissions management. This review covers the applications of hydrogen technology in petroleum refining, chemical and metrological production, hydrogen fuel cell electric vehicles (HFCEVs), backup power generation, and its use in transportation, space, and aeronautics. It assesses physical and material-based hydrogen storage methods, evaluating their feasibility, performance, and safety, and comparing HFCEVs with battery and gasoline vehicles from environmental and economic perspectives. Finally, the prospects and challenges associated with hydrogen production, handling, storage, transportation, and safety are also discussed.
Collapse
Affiliation(s)
- Chamila Gunathilake
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH, 44242, USA.
- Department of Chemical & Process Engineering, Faculty of Engineering, University of Peradeniya, 20400, Sri Lanka
| | - Ibrahim Soliman
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44240, USA
| | - Dhruba Panthi
- Department of Engineering Technology, Kent State University at Tuscarawas, New Philadelphia, OH 44663, USA
| | - Peter Tandler
- Department of Chemistry, Walsh University, North Canton, OH, 44720, USA
- Center for Scientific Excellence, Walsh University, North Canton, OH, 44720, USA
| | - Omar Fatani
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
| | - Noman Alias Ghulamullah
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
| | - Dinesh Marasinghe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH, 44242, USA.
- Department of Chemical & Process Engineering, Faculty of Engineering, University of Peradeniya, 20400, Sri Lanka
| | - Mohamed Farhath
- Department of Chemical Sciences, South Eastern University of Sri Lanka, Sammanthurai, 32200, Sri Lanka
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, 20400, Sri Lanka
| | - Kirt Conrad
- CEO/Executive Director, Stark Area Regional Transit Authority, 1600 Gateway Blvd SE., Canton, OH 44707, USA
| | - Yanhai Du
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
- Materials Science, College of Arts & Sciences, Kent State University, Kent, OH, 44242, USA
| | - Mietek Jaroniec
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
2
|
Bellomi S, Cano-Blanco DC, Barlocco I, Delgado JJ, Chen X, Prati L, Ferri D, Dimitratos N, Roldan A, Villa A. Probing the Metal/Oxide Interface of IrCoCeO x in N 2H 4·H 2O Decomposition: An Experimental and Computational Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54897-54906. [PMID: 39344045 DOI: 10.1021/acsami.4c12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Understanding the structure of a functional catalyst is crucial to disclosing the complexity of heterogeneous processes and improving their efficiency. Herein, coprecipitated cobalt-ceria (CoCeOx) oxides doped with Ir (IrCoCeOx) were synthesized and used to assess the performances of metal/oxide interfaces in the N2H4·H2O decomposition performed in aqueous NaOH. Kinetic experiments in batch showed that CoO is the active phase of CoCeOx and that the copresence of Ir and Co (IrCoCeOx) enhanced H2 productivity. A comprehensive characterization (X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy, and in situ diffuse reflectance infrared Fourier transform spectroscopy) combined with robust computational modeling based on the density functional theory was employed to attribute the IrCoCeOx performance enhancement to the Ir/CoO metal/oxide interface, the active site of the reaction. On these sites, the improved H2 productivity in the presence of aqueous NaOH was studied operando through modulated excitation-attenuated total reflectance infrared coupled with phase sensitive detection. The formation of surface Co-hydroxyl and -imido groups at the Ir/CoO interface induced the preferential breakage of the N-H bond of N2H4·H2O, favoring the production of H2.
Collapse
Affiliation(s)
- Silvio Bellomi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Daniel C Cano-Blanco
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ilaria Barlocco
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Juan J Delgado
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real (Cádiz), Spain
| | - Xiaowei Chen
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real (Cádiz), Spain
| | - Laura Prati
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Davide Ferri
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, 40126 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, U.K
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| |
Collapse
|
3
|
Tang S, Zhang Z, Xu L, Qin H, Dong J, Lv Q, Han J, Song F. Ultrafine nickel-rhodium nanoparticles anchored on two-dimensional vanadium carbide for high performance hydrous hydrazine decomposition at mild conditions. J Colloid Interface Sci 2024; 669:228-235. [PMID: 38713961 DOI: 10.1016/j.jcis.2024.04.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/14/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
The development of heterogeneous supported nanocatalysts with a high kinetics combined with low cost is off importance but remains still challenged for hydrazine hydrate served as a promising hydrogen storage material. Herein, by virtue of surficial functional groups, ultrafine NiRh NPs were monodispersed on the two-dimensional V2C surface via a conventional wet chemical co-reduction. The optimized NiRh/V2C system demonstrates an excellent catalytic performance toward selectively catalyzing dehydrogenation of hydrazine hydrate, affording 100% H2 selectivity with the turnover frequency (TOF) value of 987.5 h-1 at 323 K. Such an enhancement is mainly attributed to synergistic effect of nanosystem, which will optimize local surface energy and promote electron transfer in NiRh/V2C system, thereby improving the kinetic selectivity of catalytic hydrazine hydrate decomposition. This work has provided a facile strategy for developing nanocatalysts with high kinetics that could enable huge industrial applications in the future.
Collapse
Affiliation(s)
- Siyuan Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhipeng Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Linlin Xu
- Qingdao Hengxing University of Science and Technology, Qingdao 266000, China.
| | - Haotian Qin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianling Dong
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Quanjiang Lv
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jian Han
- Department of Chemistry, The Pennsylvania State University, University park, PA 16802, USA
| | - Fuzhan Song
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
4
|
Bellomi S, Barlocco I, Tumiati S, Fumagalli P, Dimitratos N, Roldan A, Villa A. Effects of oxygen functionalities on hydrous hydrazine decomposition over carbonaceous materials. Dalton Trans 2023; 52:15871-15877. [PMID: 37830287 DOI: 10.1039/d3dt02310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Metal-free heterogeneous catalysis is promising in the context of H2 generation. Therefore, establishing structure-activity relationships is a crucial issue to improve the development of more efficient catalysts. Herein, to evaluate the reactivity of the oxygen functionalities in carbonaceous materials, commercial functionalized pyrolytically stripped carbon nanofibers (CNFs) were used as catalysts in the liquid-phase hydrous hydrazine decomposition process and its activity was compared to that of a pristine CNF material. Different oxygenated groups were inserted by treating CNFs with hydrogen peroxide for 1 h (O1-H2O2) and HNO3 for 1 h (O1-HNO3) and 6 h (O6-HNO3). An increase in activity was observed as a function of the oxidizing agent strength (HNO3 > H2O2) and the functionalization time (6 h > 1 h). A thorough characterization of the catalysts demonstrated that the activity could be directly correlated with the oxygen content (O6-HNO3 > O1-HNO3 > O1-H2O2 > CNFs) and pointed out the active sites for the reaction at carbon-oxygen double bond groups (CO and COOH). Systematic DFT calculations supported rationalization of the experimental kinetic trends with respect to each oxygen group (CO, C-O-C, C-OH and COOH).
Collapse
Affiliation(s)
- Silvio Bellomi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133, Milano, Italy.
| | - Ilaria Barlocco
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133, Milano, Italy.
| | - Simone Tumiati
- Dipartimento di Scienze della Terra Ardito Desio, Università degli Studi di Milano, via Mangiagalli 34, Milano I-20133, Italy
| | - Patrizia Fumagalli
- Dipartimento di Scienze della Terra Ardito Desio, Università degli Studi di Milano, via Mangiagalli 34, Milano I-20133, Italy
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, Bologna 40126, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133, Milano, Italy.
| |
Collapse
|
5
|
Althabaiti SA, Khan Z, Narasimharao K, Bawaked SM, Al-Sheheri SZ, Mokhtar M, Malik MA. Selective Thermal and Photocatalytic Decomposition of Aqueous Hydrazine to Produce H 2 over Ag-Modified TiO 2 Nanomaterial. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2076. [PMID: 37513087 PMCID: PMC10383222 DOI: 10.3390/nano13142076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
An Ag-modified TiO2 nanomaterial was prepared by a one-pot synthesis method using tetra butyl titanate, silver nitrate, and sodium hydroxide in water at 473 K for 3 h. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to determine the structure and morphology of the synthesized Ag-modified TiO2 nanomaterial. The diffuse reflectance UV-visible and photoluminescence spectroscopy results revealed that metallic Ag nanoparticles decreased the optical band gap and photoluminescence intensity of the TiO2. In addition, the Raman peak intensity and absorbance were increased after Ag modification onto TiO2. The photocatalytic efficiency of the synthesized samples was tested for decomposition of aqueous hydrazine solution under visible light irradiation. The photocatalytic efficiency of Ag-modified TiO2 nanomaterials was higher than that of bare TiO2 and Ag metal NPs due to the synergistic effect between the Ag metal and TiO2 structures. In addition, the surface plasmon resonance (SPR) electron transfer from Ag metal particles to the conduction band of TiO2 is responsible for superior activity of TiO2-Ag catalyst. The Ag-modified TiO2 nanomaterials offered a 100% H2 selectivity within 30 min of reaction time and an apparent rate constant of 0.018 min-1 with an activation energy of 34.4 kJ/mol under visible light radiation.
Collapse
Affiliation(s)
- Shaeel Ahmed Althabaiti
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Zaheer Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Katabathini Narasimharao
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Salem Mohamed Bawaked
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Soad Zahir Al-Sheheri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohamed Mokhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
6
|
Wei YW, Yang G, Xu XX, Liu YY, Li BJ, Wang YZ, Zhao YX. Ultrafine Pt nanoparticles anchored on core-shell structured zeolite-carbon for efficient catalysis of hydrogen generation. RSC Adv 2023; 13:7673-7681. [PMID: 36908540 PMCID: PMC9993129 DOI: 10.1039/d3ra00358b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 03/10/2023] Open
Abstract
Ammonia borane (AB) is a potential hydrogen storage material with high-efficiency hydrolytic dehydrogenation under a suitable catalyst. Noble metal catalysts have drawn a lot of attention. In this study, a carbon-coated zeolite was obtained by calcination at high temperatures using glucose as a carbon source. Pt nanoparticles were fixed on a core-shell composite support by a simple chemical reduction method. A series of catalysts were prepared with different synthesis parameters. The results show that PSC-2 has excellent catalytic performance for hydrolytic dehydrogenation of AB in alkaline solution at room temperature, and the turnover frequency (TOF) is 593 min-1. The excellent catalytic performance is attributed to the carbon layer on the zeolite surface which inhibits the aggregation or deformation of metals in the catalytic reaction. The metal-support interaction activates the water and accelerates the rate-limiting step of hydrolysis. The activation energy (E a = 44 kJ mol-1) was calculated based on the reaction temperature. In addition, the kinetics of AB hydrolysis was studied, and the effects of catalyst concentration, AB concentration and NaOH concentration on AB hydrolysis rate were further investigated. The high-efficiency catalyst prepared in this work provides a new strategy for the development of chemical hydrogen production in the field of catalysis.
Collapse
Affiliation(s)
- Yue-Wei Wei
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Guang Yang
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Xi-Xi Xu
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Yan-Yan Liu
- College of Science, Henan Agricultural University Zhengzhou 450002 China
| | - Bao-Jun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Yong-Zhao Wang
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
| | - Yong-Xiang Zhao
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
| |
Collapse
|
7
|
Bellomi S, Barlocco I, Chen X, Delgado JJ, Arrigo R, Dimitratos N, Roldan A, Villa A. Enhanced stability of sub-nanometric iridium decorated graphitic carbon nitride for H 2 production upon hydrous hydrazine decomposition. Phys Chem Chem Phys 2023; 25:1081-1095. [PMID: 36520142 DOI: 10.1039/d2cp04387d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Stabilizing metal nanoparticles is vital for large scale implementations of supported metal catalysts, particularly for a sustainable transition to clean energy, e.g., H2 production. In this work, iridium sub-nanometric particles were deposited on commercial graphite and on graphitic carbon nitride by a wet impregnation method to investigate the metal-support interaction during the hydrous hydrazine decomposition reaction. To establish a structure-activity relationship, samples were characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. The catalytic performance of the synthesized materials was evaluated under mild reaction conditions, i.e. 323 K and ambient pressure. The results showed that graphitic carbon nitride (GCN) enhances the stability of Ir nanoparticles compared to graphite, while maintaining remarkable activity and selectivity. Simulation techniques including Genetic Algorithm geometry screening and electronic structure analyses were employed to provide a valuable atomic level understanding of the metal-support interactions. N anchoring sites of GCN were found to minimise the thermodynamic driving force of coalescence, thus improving the catalyst stability, as well as to lead charge redistributions in the cluster improving the resistance to poisoning by decomposition intermediates.
Collapse
Affiliation(s)
- Silvio Bellomi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy.
| | - Ilaria Barlocco
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy.
| | - Xiaowei Chen
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz) E-11510, Spain
| | - Juan J Delgado
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz) E-11510, Spain
| | - Rosa Arrigo
- School of Science, Engineering and Environment, University of Salford, M5 4WT, Manchester, UK
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, Bologna 40126, Italy.,Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy.
| |
Collapse
|
8
|
Adamou P, Bellomi S, Hafeez S, Harkou E, Al-Salem S, Villa A, Dimitratos N, Manos G, Constantinou A. Recent progress for hydrogen production from ammonia and hydrous hydrazine decomposition: A review on heterogeneous catalysts. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Matyshak VA, Silchenkova ON. Catalytic Decomposition of Hydrazine and Hydrazine Derivatives to Produce Hydrogen-Containing Gas Mixtures: A Review. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Khanam S, Rout SK. Plasmonic Metal/Semiconductor Heterostructure for Visible Light-Enhanced H 2 Production. ACS OMEGA 2022; 7:25466-25475. [PMID: 35910098 PMCID: PMC9330258 DOI: 10.1021/acsomega.2c02459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A plasmonic Ag/Bi2WO6 heterostructure, having Ag NPs deposited on Bi2WO6, is obtained by a hydrothermal and photodeposition method. The synthesized Ag/Bi2WO6 composite exhibits strong visible light absorption with a localized surface plasmon resonance (LSPR) and shows an enhanced photoabsorption property. It is demonstrated that such a Ag/Bi2WO6 heterostructure shows excellent plasmon-enhanced photocatalytic activity in the dehydrogenation of ammonia borane (NH3BH3) solution under visible light irradiation, which is due to the results from the synergetic effect between Ag NPs and emerging W5+ ions. More importantly, the performance of a Ag/Bi2WO6 hybrid is almost eight times higher than that of sole Bi2WO6 nanosheets. The introduction of LSPR of Ag in Bi2WO6 improves the electrical conductivity of the composite and lowers the recombination rate of charge carriers. This study opens up the opportunity of rationally fabricating plasmonic metal/semiconductor heterostructures for highly efficient photocatalysis.
Collapse
|
11
|
Barlocco I, Bellomi S, Tumiati S, Fumagalli P, Dimitratos N, Roldan A, Villa A. Selective decomposition of hydrazine over metal free carbonaceous materials. Phys Chem Chem Phys 2022; 24:3017-3029. [PMID: 35037926 DOI: 10.1039/d1cp05179b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a combined experimental and computational investigation unravelling the hydrazine hydrate decomposition reaction on metal-free catalysts. The study focuses on commercial graphite and two different carbon nanofibers, pyrolytically stripped (CNF-PS) and high heat-treated (CNF-HHT), respectively, treated at 700 and 3000 °C to increase their intrinsic defects. Raman spectroscopy demonstrated a correlation between the initial catalytic activity and the intrinsic defectiveness of carbonaceous materials. CNF-PS with higher defectivity (ID/IG = 1.54) was found to be the best performing metal-free catalyst, showing a hydrazine conversion of 94% after 6 hours of reaction and a selectivity to H2 of 89%. In addition, to unveil the role of NaOH, CNF-PS was also tested in the absence of alkaline solution, showing a decrease in the reaction rate and selectivity to H2. Density functional theory (DFT) demonstrated that the single vacancies (SV) present on the graphitic layer are the only active sites promoting hydrazine decomposition, whereas other defects such as double vacancy (DV) and Stone-Wales (SW) defects are unable to adsorb hydrazine fragments. Two symmetrical and one asymmetrical dehydrogenation pathways were found, in addition to an incomplete decomposition pathway forming N2 and NH3. On the most stable hydrogen production pathway, the effect of the alkaline medium was elucidated through calculations concerning the diffusion and recombination of atomic hydrogen. Indeed, the presence of NaOH helps the extraction of H species without additional energetic barriers, as opposed to the calculations performed in a polarizable continuum medium. Considering the initial hydrazine dissociative adsorption, the first step of the dehydrogenation pathway is more favourable than the scission of the N-N bond, which leads to NH3 as the product. This first reaction step is crucial to define the reaction mechanisms and the computational results are in agreement with the experimental ones. Moreover, comparing two different hydrogen production pathways (with and without diffusion and recombination), we confirmed that the presence of sodium hydroxide in the experimental reaction environment can modify the energy gap between the two pathways, leading to an increased reaction rate and selectivity to H2.
Collapse
Affiliation(s)
- Ilaria Barlocco
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, Milano I-20133, Italy.
| | - Silvio Bellomi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, Milano I-20133, Italy.
| | - Simone Tumiati
- Dipartimento di Scienze della Terra Ardito Desio, Università degli Studi di Milano, via Mangiagalli 34, Milano I-20133, Italy
| | - Patrizia Fumagalli
- Dipartimento di Scienze della Terra Ardito Desio, Università degli Studi di Milano, via Mangiagalli 34, Milano I-20133, Italy
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale e dei Materiali, ALMA MATER STUDIORUM Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, Milano I-20133, Italy.
| |
Collapse
|
12
|
Kaleeswari K, Tamil Selvi A. Selective hydrogenation of substituted styrene to alkylbenzene catalyzed by Al2O3 nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium-Palladium Nanoparticles. MATERIALS 2021; 14:ma14123258. [PMID: 34204765 PMCID: PMC8231493 DOI: 10.3390/ma14123258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023]
Abstract
The present study investigates a process for the selective production of hydrogen from the catalytic decomposition of formic acid in the presence of iridium and iridium-palladium nanoparticles under various conditions. It was found that a loading of 1 wt.% of 2% palladium in the presence of 1% iridium over activated charcoal led to a 43% conversion of formic acid to hydrogen at room temperature after 4 h. Increasing the temperature to 60 °C led to further decomposition and an improvement in conversion yield to 63%. Dilution of formic acid from 0.5 to 0.2 M improved the decomposition, reaching conversion to 81%. The reported process could potentially be used in commercial applications.
Collapse
|
14
|
Lei J, Wang B, Li YP, Ji WJ, Wang K, Qi H, Chou PT, Zhang MM, Bian H, Zhai QG. A New Molecular Recognition Concept: Multiple Hydrogen Bonds and Their Optically Triggered Proton Transfer in Confined Metal-Organic Frameworks for Superior Sensing Element. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22457-22465. [PMID: 33970593 DOI: 10.1021/acsami.1c03410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a new sensing mechanism based on an indium-dihydroxyterephthalic acid metal-organic framework (MOF, SNNU-153), in which the spatially fitted analyte-MOF hydrogen-bond (H-bond) formation provides selective recognition while the analyte-H-bond assisted excited-state intramolecular proton transfer (ESIPT) and the resulting ratiometric emission act as a superior signal transducer with ultrafast response. The synergy of ESIPT signal transduction and confined MOF pore enables the SNNU-153 sensor selectively sensing hydrazine even among nitrogen-containing hydride analogs such as NH3, NH2OH, and (Me)2NNH2. The key of H-bond and associated ESIPT was further counter evidenced by an indium-2,5-dimethoxyterephthalic acid MOF (SNNU-152), where the hydroxyl protons were removed by methylation, showing near inertness to N2H4. The new molecular recognition concept thus makes SNNU-153 a powerful N2H4 sensor, which should be far-reaching to other sensing elements.
Collapse
Affiliation(s)
- Jiao Lei
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Bingqiang Wang
- Key Laboratory of Magnetic Molecules & Magnetic Information, Materials Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen, Shanxi 041004, China
| | - Yong-Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Wen-Juan Ji
- Key Laboratory of Magnetic Molecules & Magnetic Information, Materials Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen, Shanxi 041004, China
| | - Ke Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Honglan Qi
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Miao-Miao Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Hongtao Bian
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
15
|
Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO 2: Effect of Reaction Parameters on the Activity. NANOMATERIALS 2021; 11:nano11051340. [PMID: 34069534 PMCID: PMC8161091 DOI: 10.3390/nano11051340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
In the present work, an Ir/CeO2 catalyst was prepared by the deposition-precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen, which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques, i.e., X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma-mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study, modifying parameters such as temperature, the mass of the catalyst, stirring speed and concentration of base in order to find the optimal conditions of reaction, which allow performing the test in a kinetically limited regime.
Collapse
|
16
|
Zhao M, Chen Z, Shi Y, Hood ZD, Lyu Z, Xie M, Chi M, Xia Y. Kinetically Controlled Synthesis of Rhodium Nanocrystals with Different Shapes and a Comparison Study of Their Thermal and Catalytic Properties. J Am Chem Soc 2021; 143:6293-6302. [PMID: 33852314 DOI: 10.1021/jacs.1c02734] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the synthesis of Rh nanocrystals with different shapes by controlling the kinetics involved in the growth of preformed Rh cubic seeds. Specifically, Rh nanocrystals with cubic, cuboctahedral, and octahedral shapes can all be obtained from the same cubic seeds under suitable reduction kinetics for the precursor. The success of such a synthesis also relies on the use of a halide-free precursor to avoid oxidative etching, as well as the involvement of a sufficiently high temperature to remove Br- ions from the seeds while ensuring adequate surface diffusion. The availability of Rh nanocrystals with cubic and octahedral shapes allows for an evaluation of the facet dependences of their thermal and catalytic properties. The data from in situ electron microscopy studies indicate that the cubic and octahedral Rh nanocrystals can keep their original shapes up to 700 and 500 °C, respectively. When tested as catalysts for hydrazine decomposition, the octahedral nanocrystals exhibit almost 4-fold enhancement in terms of H2 selectivity relative to the cubic counterpart. As for ethanol oxidation, the order is reversed, with the cubic nanocrystals being about three times more active than the octahedral sample.
Collapse
Affiliation(s)
- Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zitao Chen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zachary D Hood
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Vasilchenko D, Topchiyan P, Berdyugin S, Plyusnin P, Shayapov V, Baidina I, Komarov V, Bukhtiyarov A, Gerasimov E. Tetranitratopalladate(II) Salts with Tetraalkylammonium Cations: Structural Aspects, Reactivity, and Applicability toward Palladium Deposition for Catalytic Applications. Inorg Chem 2021; 60:2983-2995. [DOI: 10.1021/acs.inorgchem.0c03038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Danila Vasilchenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
| | - Polina Topchiyan
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
| | - Semen Berdyugin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
| | - Pavel Plyusnin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
| | - Vladimir Shayapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
| | - Iraida Baidina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
| | - Vladislav Komarov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
| | | | | |
Collapse
|
18
|
Qiu YP, Zhou LL, Shi Q, Wang P. Free-standing Pt-Ni nanowires catalyst for H 2 generation from hydrous hydrazine. Chem Commun (Camb) 2021; 57:623-626. [PMID: 33346288 DOI: 10.1039/d0cc07372e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Free-standing Pt-Ni nanowires were fabricated by a one-pot solvothermal method. Nanowires with an optimal Pt/Ni ratio of 1.86 exhibited a high activity and a 100% H2 selectivity for hydrous hydrazine decomposition at mild temperatures, which are comparable to the levels of supported catalysts. Our study reveals for the first time that basic support is not a prerequisite for achieving favorable catalytic performance and provides a renewed perspective for the design of advanced catalysts for on-demand H2 generation from hydrous hydrazine.
Collapse
Affiliation(s)
- Yu-Ping Qiu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Liang-Liang Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Qing Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Ping Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| |
Collapse
|
19
|
Awasthi MK, Rai RK, Behrens S, Singh SK. Low-temperature hydrogen production from methanol over a ruthenium catalyst in water. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01470b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient conversion of methanol to hydrogen gas and formate with an appreciably high TOF and TON is achieved over the in situ generated ruthenium catalyst in water at low temperature.
Collapse
Affiliation(s)
- Mahendra K. Awasthi
- Catalysis Group, Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Rohit K. Rai
- KAUST Catalysis Center and Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Kingdom of Saudi Arabia
| | - Silke Behrens
- Institut für Katalyseforschung und – Technologie (IKFT)
- Karlsruher Institut für Technologie (KIT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| | - Sanjay K. Singh
- Catalysis Group, Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| |
Collapse
|
20
|
Zhang A, Yao Q, Lu ZH. Recent Progress on Catalysts for Hydrogen Evolution from Decomposition of Hydrous Hydrazine. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Abstract
Hydrous hydrazine (N2H4∙H2O) is a candidate for a hydrogen carrier for storage and transportation due to low material cost, high hydrogen content of 8.0%, and liquid stability at room temperature. Pt and Pt nanoalloy catalysts have been welcomed by researchers for the dehydrogenation of hydrous hydrazine recently. Therefore, in this review, we give a summary of Pt nanoalloy catalysts for the dehydrogenation of hydrous hydrazine and briefly introduce the decomposition mechanism of hydrous hydrazine to prove the design principle of the catalyst. The chemical characteristics of hydrous hydrazine and the mechanism of dehydrogenation reaction are briefly introduced. The catalytic activity of hydrous hydrazine on different supports and the factors affecting the selectivity of hydrogen catalyzed by Ni-Pt are analyzed. It is expected to provide a new way for the development of high-activity catalysts for the dehydrogenation of hydrous hydrazine to produce hydrogen.
Collapse
|
22
|
Elishav O, Mosevitzky Lis B, Miller EM, Arent DJ, Valera-Medina A, Grinberg Dana A, Shter GE, Grader GS. Progress and Prospective of Nitrogen-Based Alternative Fuels. Chem Rev 2020; 120:5352-5436. [PMID: 32501681 DOI: 10.1021/acs.chemrev.9b00538] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alternative fuels are essential to enable the transition to a sustainable and environmentally friendly energy supply. Synthetic fuels derived from renewable energies can act as energy storage media, thus mitigating the effects of fossil fuels on environment and health. Their economic viability, environmental impact, and compatibility with current infrastructure and technologies are fuel and power source specific. Nitrogen-based fuels pose one possible synthetic fuel pathway. In this review, we discuss the progress and current research on utilization of nitrogen-based fuels in power applications, covering the complete fuel cycle. We cover the production, distribution, and storage of nitrogen-based fuels. We assess much of the existing literature on the reactions involved in the ammonia to nitrogen atom pathway in nitrogen-based fuel combustion. Furthermore, we discuss nitrogen-based fuel applications ranging from combustion engines to gas turbines, as well as their exploitation by suggested end-uses. Thereby, we evaluate the potential opportunities and challenges of expanding the role of nitrogen-based molecules in the energy sector, outlining their use as energy carriers in relevant fields.
Collapse
Affiliation(s)
- Oren Elishav
- The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Bar Mosevitzky Lis
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Elisa M Miller
- Materials and Chemical Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Douglas J Arent
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Agustin Valera-Medina
- College of Physical Sciences and Engineering, Cardiff University, Wales, United Kingdom
| | - Alon Grinberg Dana
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gennady E Shter
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Gideon S Grader
- The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3200003, Israel.,The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
23
|
Qiu YP, Shi Q, Zhou LL, Chen MH, Chen C, Tang PP, Walker GS, Wang P. NiPt Nanoparticles Anchored onto Hierarchical Nanoporous N-Doped Carbon as an Efficient Catalyst for Hydrogen Generation from Hydrazine Monohydrate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18617-18624. [PMID: 32223189 DOI: 10.1021/acsami.0c03096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Catalytic decomposition of the hydrogen-rich hydrazine monohydrate (N2H4·H2O) represents a promising hydrogen storage/production technology. A rational design of advanced N2H4·H2O decomposition catalysts requires an overall consideration of intrinsic activity, number, and accessibility of active sites. We herein report the synthesis of a hierarchically nanostructured NiPt/N-doped carbon catalyst using a three-step method that can simultaneously address these issues. The chelation of metal precursors with polydopamine and thermolysis of the resulting complexes under reductive atmosphere resulted in a concurrent formation of N-doped carbon substrate and catalytically active NiPt alloy nanoparticles. Thanks to the usage of a silica nanosphere template and dopamine precursor, the N-doped carbon substrate possesses a hierarchical macroporous-mesoporous architecture. This, together with the uniform dispersion of tiny NiPt nanoparticles on the carbon substrate, offers opportunity for creating abundant and accessible active sites. Benefiting from these favorable attributes, the NiPt/N-doped carbon catalyst enables a complete and rapid hydrogen production from alkaline N2H4·H2O solution with a rate of 1602 h-1 at 50 °C, which outperforms most existing catalysts for N2H4·H2O decomposition.
Collapse
Affiliation(s)
- Yu-Ping Qiu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Qing Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Liang-Liang Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Mu-Hua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Chen Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Piao-Ping Tang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Gavin S Walker
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ping Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| |
Collapse
|
24
|
Huang M, Yao Q, Feng G, Zou H, Lu ZH. Nickel–Ceria Nanowires Embedded in Microporous Silica: Controllable Synthesis, Formation Mechanism, and Catalytic Applications. Inorg Chem 2020; 59:5781-5790. [DOI: 10.1021/acs.inorgchem.0c00600] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Meiling Huang
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Qilu Yao
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Gang Feng
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Hongtao Zou
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Zhang-Hui Lu
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
25
|
Pei Y, Wang L, Huang L, Hu Y, Jia Q, Zhang H, Zhang S. ISOBAM-stabilized Ni 2+ colloidal catalysts: high catalytic activities for hydrogen generation from hydrolysis of KBH 4. NANOTECHNOLOGY 2020; 31:134003. [PMID: 31783396 DOI: 10.1088/1361-6528/ab5d58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
ISOBAM-104-stabilized Ni2+ colloidal catalysts were synthesized through a facile method and used for hydrogen generation from hydrolysis of potassium borohydride (KBH4). Ni nanoparticles (NPs) were formed as the active phase during the catalytic process. Ultraviolet-visible spectrophotometry (UV-vis) and transmission electron microscopy were employed to characterize the structure and particle size of the as-formed Ni NPs. The results suggested that the catalytic activity of Ni2+ colloidal catalyst increased with the decreased size of as-formed Ni NPs, which is consistent with the results of density functional theory calculation. The highest catalytic activity of the catalyst can be 12400 ml-H2 min-1 g-Ni-1, which was even higher than that of noble Pt or Pd colloidal catalysts prepared using identical methods and catalytic conditions. According to the Arrhenius method, the ISOBAM-104-stabilized Ni2+ colloidal catalysts showed low activation energies of about 41.3 kJ mol-1 for the hydrogen generation from hydrolysis basic KBH4 solution.
Collapse
Affiliation(s)
- Yuantao Pei
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Luo Y, Yang Q, Nie W, Yao Q, Zhang Z, Lu ZH. Anchoring IrPdAu Nanoparticles on NH 2-SBA-15 for Fast Hydrogen Production from Formic Acid at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8082-8090. [PMID: 31986879 DOI: 10.1021/acsami.9b16981] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen (H2), a regenerable and promising energy carrier, acts as an essential role in the construction of a sustainable energy system. Formic acid (HCOOH, FA), a natural biological metabolic products and also accessible through carbon dioxide (CO2) reduction, has a great potential to serve as a prospective H2 supplier for the fuel cell. Herein, ultrafine and electron-rich IrPdAu alloy nanoparticles with a size of 1.4 nm are highly dispersed on amine-modified mesoporous SiO2 (NH2-SBA-15) and used as a highly active and selective catalyst for fast H2 production from FA. The as-synthesized IrPdAu/NH2-SBA-15 possesses superior catalytic activity and 100% H2 selectivity with initial turnover frequency values of 6316 h-1 with the additive of sodium formate (SF) and 4737 h-1 even without SF at 298 K, comparable to the most effective heterogeneous catalysts ever published. The excellent performance of IrPdAu/NH2-SBA-15 was not only ascribed to the combination of the electronic synergistic effect of trimetallic alloys and the strong metal-support interaction effect but also attributed to the amine (-NH2) alkaline groups grafted on SBA-15, which is beneficial to boost the split of the O-H bond of FA.
Collapse
Affiliation(s)
- Yixing Luo
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| | - Qifeng Yang
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| | - Wendan Nie
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| | - Qilu Yao
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| | - Zhujun Zhang
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| | - Zhang-Hui Lu
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| |
Collapse
|
27
|
Yao Q, Ding Y, Lu ZH. Noble-metal-free nanocatalysts for hydrogen generation from boron- and nitrogen-based hydrides. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00766h] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We focus on the recent advances in non-noble metal catalyst design, synthesis and applications in dehydrogenation of chemical hydrides (e.g. NaBH4, NH3BH3, NH3, N2H4, N2H4BH3) due to their high hydrogen contents and CO-free H2 production.
Collapse
Affiliation(s)
- Qilu Yao
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P.R. China
| | - Yiyue Ding
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P.R. China
| | - Zhang-Hui Lu
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P.R. China
| |
Collapse
|
28
|
Shi Q, Zhang DX, Yin H, Qiu YP, Zhou LL, Chen C, Wu H, Wang P. Noble-Metal-Free Ni-W-O-Derived Catalysts for High-Capacity Hydrogen Production from Hydrazine Monohydrate. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:10.1021/acssuschemeng.9b07782. [PMID: 33654580 PMCID: PMC7919750 DOI: 10.1021/acssuschemeng.9b07782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Development of active and earth-abundant catalysts is pivotal to render hydrazine monohydrate (N2H4·H2O) viable as a hydrogen carrier. Herein, we report the synthesis of noble-metal-free Ni-W-O-derived catalysts using a hydrothermal method in combination with reductive annealing treatment. Interestingly, the thus-prepared Ni-based catalysts exhibit remarkably distinct catalytic properties toward N2H4·H2O decomposition depending upon the annealing temperature. From a systematic phase/microstructure/chemical state characterization and the first-principles calculations, we found that the variation of the apparent catalytic properties of these Ni-based catalysts should stem from the formation of different Ni-W alloys with distinct intrinsic activity, selectivity, and distribution state. The thereby chosen Ni-W alloy nanocomposite catalyst prepared under an optimized condition showed high activity, nearly 100% selectivity, and excellent stability toward N2H4·H2O decomposition for hydrogen production. Furthermore, this noble-metal-free catalyst enables rapid hydrogen production from commercially available N2H4·H2O solution with an intriguingly high hydrogen capacity of 6.28 wt % and a satisfactory dynamic response property. These results are inspiring and momentous for promoting the use of the N2H4·H2O-based H2 source systems.
Collapse
Affiliation(s)
- Qing Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Deng-Xue Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Hui Yin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Yu-Ping Qiu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Liang-Liang Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Chen Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Ping Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| |
Collapse
|
29
|
Lu X, Francis S, Motta D, Dimitratos N, Roldan A. Mechanistic study of hydrazine decomposition on Ir(111). Phys Chem Chem Phys 2020; 22:3883-3896. [PMID: 32040127 DOI: 10.1039/c9cp06525c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen transport and storage technology remain one of the critical challenges of the hydrogen economy. Hydrazine (N2H4) is a carbon-free hydrogen carrier which has been widely used as fuel in the field of space exploration. We have combined experiments and computer simulations in order to gain a better understanding of the N2H4 decomposition on Ir catalyst, the most efficient catalyst for hydrazine decomposition up to date. We have identified metallic Ir rather than IrO2 as the active phase for hydrazine decomposition and carried out density functional theory (DFT) calculations to systematically investigate the changes in the electronic structure along with the catalytic decomposition mechanisms. Three catalytic mechanisms to hydrazine decomposition over Ir(111) have been found: (i) intramolecular reaction between hydrazine molecules, (ii) intramolecular reaction between co-adsorbed amino groups, and (iii) hydrazine dehydrogenation assisted by co-adsorbed amino groups. These mechanisms follow five different pathways for which transition states and intermediates have been identified. The results show that hydrazine decomposition on Ir(111) starts preferentially with an initial N-N bond scission followed by hydrazine dehydrogenation assisted by the amino group produced, eventually leading to ammonia and nitrogen production. The preference for N-N scission mechanisms was rationalized by analyzing the electronic structure. This analysis showed that upon hydrazine adsorption, the π bond between nitrogen atoms becomes weaker.
Collapse
Affiliation(s)
- Xiuyuan Lu
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Samantha Francis
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Davide Motta
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Nikolaos Dimitratos
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum-University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
30
|
Clark CA, Reddy CP, Xu H, Heck KN, Luo G, Senftle TP, Wong MS. Mechanistic Insights into pH-Controlled Nitrite Reduction to Ammonia and Hydrazine over Rhodium. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03239] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Hao Xu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | - Guohua Luo
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
31
|
Ja'o AM, Masters SL, Wann DA, Rankine CD, Nunes JPF, Guillemin JC. Direct Experimental Observation of in situ Dehydrogenation of an Amine-Borane System Using Gas Electron Diffraction. J Phys Chem A 2019; 123:7104-7112. [PMID: 31314528 DOI: 10.1021/acs.jpca.9b05522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In situ dehydrogenation of azetidine-BH3, which is a candidate for hydrogen storage, was observed with the parent and dehydrogenated analogue subjected to rigorous structural and thermochemical investigations. The structural analyses utilized gas electron diffraction supported by high-level quantum calculations, while the pathway for the unimolecular hydrogen release reaction in the absence and presence of BH3 as a bifunctional catalyst was predicted at the CBS-QB3 level. The catalyzed dehydrogenation pathway has a barrier lower than the predicted B-N bond dissociation energy, hence favoring the dehydrogenation process over the dissociation of the complex. The predicted enthalpy of dehydrogenation at the CCSD(T)/CBS level indicates that mild reaction conditions would be required for hydrogen release and that the compound is closer to thermoneutral than linear amine boranes. The entropy and free energy change for the dehydrogenation process show that the reaction is exergonic, energetically feasible, and will proceed spontaneously toward hydrogen release, all of which are important factors for hydrogen storage.
Collapse
Affiliation(s)
- Aliyu M Ja'o
- School of Physical and Chemical Sciences , University of Canterbury , Private Bag 4100 , Christchurch 8140 , New Zealand
| | - Sarah L Masters
- School of Physical and Chemical Sciences , University of Canterbury , Private Bag 4100 , Christchurch 8140 , New Zealand
| | - Derek A Wann
- Department of Chemistry , University of York , Heslington, York , YO10 5DD , U.K
| | - Conor D Rankine
- Department of Chemistry , University of York , Heslington, York , YO10 5DD , U.K
| | - João P F Nunes
- Department of Chemistry , University of York , Heslington, York , YO10 5DD , U.K
| | - Jean-Claude Guillemin
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226 , Rennes F-35000 , France
| |
Collapse
|
32
|
Zhao M, Hood ZD, Vara M, Gilroy KD, Chi M, Xia Y. Ruthenium Nanoframes in the Face-Centered Cubic Phase: Facile Synthesis and Their Enhanced Catalytic Performance. ACS NANO 2019; 13:7241-7251. [PMID: 31145858 DOI: 10.1021/acsnano.9b02890] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Owing to their highly open structure and a large number of low-coordination sites on the surface, noble-metal nanoframes are intriguing for catalytic applications. Here, we demonstrate the rational synthesis of Ru cuboctahedral nanoframes with enhanced catalytic performance toward hydrazine decomposition. The synthesis starts from Pd nanocubes, which quickly undergo truncation at the corners as a consequence of oxidative etching caused by Br- ions. Afterward, the galvanic replacement reaction between Pd and Ru(III) ions dominates, leading to the selective deposition of Ru atoms on the corners and edges and thereby the fabrication of Pd@Ru core-frame cuboctahedra. Significantly, the deposited Ru atoms are crystallized in a face-centered cubic (fcc) phase instead of the hexagonal close-packed (hcp) structure typical of bulk Ru. Upon the removal of Pd remaining in the core via chemical etching, we obtain Ru cuboctahedral nanoframes. By varying the amount of the Ru(III) precursor, the ridge thickness of the nanoframes can be tuned from a few atomic layers up to 10. Both the frame structure and fcc crystal phase of the Ru cuboctahedral nanoframes can be well preserved up to 300 °C. When compared with hcp-Ru nanoparticles, the fcc-Ru nanoframes displayed substantial enhancement in terms of H2 selectivity toward hydrazine decomposition. This work offers the opportunity to engineer both the morphology and crystal phase of Ru nanocrystals for catalytic applications.
Collapse
Affiliation(s)
- Ming Zhao
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary D Hood
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Madeline Vara
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Kyle D Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Younan Xia
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States
| |
Collapse
|
33
|
Hydroxyl Assisted Rhodium Catalyst Supported on Goethite Nanoflower for Chemoselective Catalytic Transfer Hydrogenation of Fully Converted Nitrostyrenes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Bakuru VR, DMello ME, Kalidindi SB. Metal-Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. Chemphyschem 2019; 20:1177-1215. [PMID: 30768752 DOI: 10.1002/cphc.201801147] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/09/2019] [Indexed: 12/19/2022]
Abstract
Hydrogen is in limelight as an environmental benign alternative to fossil fuels from few decades. To bring the concept of hydrogen economy from academic labs to real world certain challenges need to be addressed in the areas of hydrogen production, storage, and its use in fuel cells. Crystalline metal-organic frameworks (MOFs) with unprecedented surface areas are considered as potential materials for addressing the challenges in each of these three areas. MOFs combine the diverse chemistry of molecular linkers with their ability to coordinate to metal ions and clusters. The unabated flurry of research using MOFs in the context of hydrogen energy related activities in the past decade demonstrates the versatility of this class of materials. In the present review, we discuss major strategical advances that have taken place in the field of "hydrogen economy and MOFs" and point out issues requiring further attention.
Collapse
Affiliation(s)
- Vasudeva Rao Bakuru
- Materials science division, Poornaprajna Institute of Scientific Research Devanahalli, Bangalore Rural, 576164, India
| | - Marilyn Esclance DMello
- Materials science division, Poornaprajna Institute of Scientific Research Devanahalli, Bangalore Rural, 576164, India
| | - Suresh Babu Kalidindi
- Materials science division, Poornaprajna Institute of Scientific Research Devanahalli, Bangalore Rural, 576164, India
| |
Collapse
|
35
|
Liao G, Fang J, Li Q, Li S, Xu Z, Fang B. Ag-Based nanocomposites: synthesis and applications in catalysis. NANOSCALE 2019; 11:7062-7096. [PMID: 30931457 DOI: 10.1039/c9nr01408j] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ag-Based nanocomposites, including supported Ag nanocomposites and bimetallic Ag nanocomposites, have been intensively investigated as highly efficient catalysts because of their high activity and stability, easy preparation, low cost, and low toxicity. Herein, we systematically summarize and comprehensively evaluate versatile synthetic strategies for the preparation of Ag-based nanocomposites, and outline their recent advances in catalytic oxidation, catalytic reduction, photocatalysis and electrocatalysis. In addition, the challenges and prospects related to Ag-based nanocomposites for various catalytic applications are also discussed. In light of the most recent advances in Ag-based nanocomposites for catalysis applications, this review provides a comprehensive assessment on the material selection, synthesis and catalytic characteristics of these catalysts, which offers a strategic guide to build a close connection between Ag nanocomposites and catalysis applications.
Collapse
Affiliation(s)
- Guangfu Liao
- School of Environment and Civil Engineering, Dongguan University of Technology, Guangdong 523808, China.
| | | | | | | | | | | |
Collapse
|
36
|
NiPt nanoparticles supported on CeO2 nanospheres for efficient catalytic hydrogen generation from alkaline solution of hydrazine. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Two dimensional Rh/Fe3O4/g-C3N4-N enabled hydrazine mediated catalytic transfer hydrogenation of nitroaromatics: A predictable catalyst model with adjoining Rh. J Catal 2018. [DOI: 10.1016/j.jcat.2018.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Bi X, Ma H, Westerhoff P. Dry Powder Assay Rapidly Detects Metallic Nanoparticles in Water by Measuring Surface Catalytic Reactivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13289-13297. [PMID: 30351045 DOI: 10.1021/acs.est.8b03915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We designed the "catalytic reactivity to nanoparticle" assay (CRNP), which uses a dry powder containing methylene blue (MB) and sodium borohydride (NaBH4) to rapidly (2 min) detect metallic nanoparticles in water. Tested with gold (Au) NPs in water, the CRNP response was linearly and reproducibly correlated to the NP surface-area concentration and has a detection limit of 0.3 m2/m3 as the equivalent surface area of Au NPs. We described the heterogeneous catalytic mechanisms on the NP surface by treating the NPs as electrodes, which store and transfer electrons, and comprehensively simulated the kinetics of borohydride hydrolysis, MB reduction, and leuco methylene blue (LMB) oxidation. CRNP was able to assess the catalytic reactivity of multiple engineered NP species in water, including Au, silver, palladium, platinum, and copper oxide (CuO), and quantify them with pre-established calibration curves. In water samples containing known or unknown NP species, CRNP can be reported as an equivalent surface area of gold NPs per volume of solution and directly quantifies NP reactivity in response to electron mediated stimuli, which may become relevant to the environmental fate or safety of nanomaterials.
Collapse
Affiliation(s)
- Xiangyu Bi
- School of Sustainable Engineering and the Built Environment , Arizona State University , Tempe , Arizona 85287 , United States
| | - Hongfang Ma
- School of Sustainable Engineering and the Built Environment , Arizona State University , Tempe , Arizona 85287 , United States
- Department of Municipal Engineering, College of Civil Engineering , Huaqiao University , Xiamen 361021 , China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
39
|
Zhong S, Xu Q. Metal Nanoparticle-Catalyzed Hydrogen Generation from Liquid Chemical Hydrides. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shan Zhong
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
- Graduate School of Engineering, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Qiang Xu
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
- Graduate School of Engineering, Kobe University, Kobe, Hyogo 657-8501, Japan
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), Kyoto 606-8501, Japan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
40
|
Dong Y, Zhang HY, Yin G, Zhao J, Zhang Y. Hydrogen generation from hydrazine catalyzed by a Ni1-(CeO1.8)0.5/carbon-nanotubes catalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1483-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Varhade S, Bhat ZM, Thimmappa R, Devendrachari MC, Kottaichamy AR, Gautam M, Shafi SP, Kalegowda Y, Thotiyl MO. A hybrid hydrazine redox flow battery with a reversible electron acceptor. Phys Chem Chem Phys 2018; 20:21724-21731. [PMID: 30105322 DOI: 10.1039/c8cp03768j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrazine is a pollutant with high hydrogen content, offering tremendous possibilities in a direct hydrazine fuel cell (DHFC) as it can be converted into electricity via benign end products. Due to the inner sphere nature of half-cell chemistries, hydrazine cross over triggers parasitic chemistry at the Pt-based air cathode of a state-of-the-art DHFC, overly complicating the already sluggish electrode kinetics at the positive electrode. Here, we illustrate that by altering the interfacial chemistry of the catholyte from inner sphere to outer sphere, the parasitic chemistry can be dissociated from the redox chemistry of the electron acceptor and the hybrid fuel cell can be driven by simple carbon-based cathodes. The reversible nature of an outer sphere catholyte leads to a hybrid fuel cell redox flow battery with performance metrics ∼4 times higher than a Pt-based DHFC-air configuration.
Collapse
Affiliation(s)
- Swapnil Varhade
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune, 411008, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Zhao M, Xu L, Vara M, Elnabawy AO, Gilroy KD, Hood ZD, Zhou S, Figueroa-Cosme L, Chi M, Mavrikakis M, Xia Y. Synthesis of Ru Icosahedral Nanocages with a Face-Centered-Cubic Structure and Evaluation of Their Catalytic Properties. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00910] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lang Xu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Madeline Vara
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ahmed O. Elnabawy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle D. Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Zachary D. Hood
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shan Zhou
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Legna Figueroa-Cosme
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
44
|
Ruthenium Complexes for Catalytic Dehydrogenation of Hydrazine and Transfer Hydrogenation Reactions. Chem Asian J 2018; 13:1424-1431. [DOI: 10.1002/asia.201800315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/21/2018] [Indexed: 11/07/2022]
|
45
|
Liu T, Wang Q, Yuan J, Zhao X, Gao G. Highly Dispersed Bimetallic Nanoparticles Supported on Titanium Carbides for Remarkable Hydrogen Release from Hydrous Hydrazine. ChemCatChem 2018. [DOI: 10.1002/cctc.201701633] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tong Liu
- College of Materials Science and Engineering; Qingdao University of Science and Technology; 53 Zhengzhou Rd Qingdao 266000 P.R. China
| | - Qingtao Wang
- College of Materials Science and Engineering; Qingdao University of Science and Technology; 53 Zhengzhou Rd Qingdao 266000 P.R. China
| | - Jingzhi Yuan
- College of Materials Science and Engineering; Qingdao University of Science and Technology; 53 Zhengzhou Rd Qingdao 266000 P.R. China
| | - Xue Zhao
- College of Materials Science and Engineering; Qingdao University of Science and Technology; 53 Zhengzhou Rd Qingdao 266000 P.R. China
| | - Guanhui Gao
- Paul-Drude-Institut für Festkörperelektronik; Hausvogteiplatz 5-7 10117 Berlin Germany
| |
Collapse
|
46
|
Okazoe S, Yasaka Y, Kudo M, Maeno H, Murakami Y, Kimura Y. Synthesis of zero-valent iron nanoparticles via laser ablation in a formate ionic liquid under atmospheric conditions. Chem Commun (Camb) 2018; 54:7834-7837. [DOI: 10.1039/c8cc03350a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron nanoparticles prepared in a tetraoctylphosphonium formate ionic liquid via laser ablation are not oxidized under atmospheric conditions.
Collapse
Affiliation(s)
- Shinya Okazoe
- Department of Applied Chemistry
- Graduate School of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Yoshiro Yasaka
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Masaki Kudo
- The Ultramicroscopy Research Center
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Hiroshi Maeno
- The Ultramicroscopy Research Center
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yasukazu Murakami
- The Ultramicroscopy Research Center
- Kyushu University
- Fukuoka 819-0395
- Japan
- Department of Applied Quantum Physics and Nuclear Engineering
| | - Yoshifumi Kimura
- Department of Applied Chemistry
- Graduate School of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| |
Collapse
|
47
|
Yin B, Wang Q, Liu T, Gao G. Anchoring ultrafine RhNi nanoparticles on titanium carbides/manganese oxide as an efficient catalyst for hydrogen generation from hydrous hydrazine. NEW J CHEM 2018. [DOI: 10.1039/c8nj04766a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RhNi NPs of 2.8 nm are successfully monodispersed on the bi-support MnOx/MXene surface.
Collapse
Affiliation(s)
- Bing Yin
- School of civil engineering
- Qingdao University of Technology
- Qingdao 266033
- China
| | - Qingtao Wang
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- 266000 Qingdao
- China
| | - Tong Liu
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- 266000 Qingdao
- China
| | - Guanhui Gao
- Paul-Drude-Institut für Festkörperelektronik
- 10117 Berlin
- Germany
| |
Collapse
|
48
|
Zhang Z, Zhang S, Yao Q, Feng G, Zhu M, Lu ZH. Metal–organic framework immobilized RhNi alloy nanoparticles for complete H2 evolution from hydrazine borane and hydrous hydrazine. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00555e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MOF immobilized RhNi alloy NPs with size of 2.8 nm have been fabricated via a reduction rate controlled method and applied as efficient catalyst for complete H2 evolution from hydrazine borane and hydrous hydrazine.
Collapse
Affiliation(s)
- Zhujun Zhang
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Shiliang Zhang
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Qilu Yao
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Gang Feng
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Meihua Zhu
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Zhang-Hui Lu
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| |
Collapse
|
49
|
Karaca T, Sevim M, Metin Ö. Facile Synthesis of Monodisperse Copper-Platinum Alloy Nanoparticles and Their Superb Catalysis in the Hydrolytic Dehydrogenation of Ammonia Borane and Hydrazine Borane. ChemCatChem 2017. [DOI: 10.1002/cctc.201701023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tuğba Karaca
- Department of Chemistry; Faculty of Science; Atatürk University; Erzurum 25240 Turkey
| | - Melike Sevim
- Department of Chemistry; Faculty of Science; Atatürk University; Erzurum 25240 Turkey
| | - Önder Metin
- Department of Chemistry; Faculty of Science; Atatürk University; Erzurum 25240 Turkey
| |
Collapse
|
50
|
Design strategies of highly selective nickel catalysts for H2 production via hydrous hydrazine decomposition: a review. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx123] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Abstract
Hydrazine, a widely used liquid propellant, has the potential to be employed as a hydrogen source in certain instances and has therefore attracted considerable attention; consequently, the complete decomposition of hydrazine with 100% H2 selectivity under mild conditions has become the current research focus for catalyst design. In this review, the strategies for the design of efficient catalysts are summarized for complete hydrazine decomposition. The first part of this review introduces the mechanism of hydrazine decomposition, while the second part illustrates the key factors influencing the H2 selectivity of nickel catalysts, including the effects of alloying, alkali promoter addition and strong metal–support interactions. Finally, the critical elements of catalyst design employed in industrial applications are analyzed.
Collapse
|