1
|
Wilmore JT, Docker A, Beer PD. Selective lithium halide ion-pair sensing by a dynamic metalloporphyrin [2]rotaxane. Dalton Trans 2024. [PMID: 39629740 DOI: 10.1039/d4dt03026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A dynamic zinc(II) metalloporphyrin axle-containing [2]rotaxane with a heteroditopic macrocycle component is shown to selectively recognise and optically sense lithium halide (LiX) ion-pair species. 1H NMR and UV-visible absorption experiments demonstrate a strong macrocycle pyridyl⋯Zn(II) metalloporphyrin axle interaction which results in a marked co-conformational bias in the free [2]rotaxane host system. Extensive 1H NMR cation, anion and ion-pair titration experiments demonstrate the binding of lithium halide ion-pairs disrupts the inter-component mechanical bond interaction, wherein dynamic macrocycle shuttling to an axle triazole station enables co-operative axle-separated LiX ion-pair recognition and the selective optical sensing of lithium halide salts.
Collapse
Affiliation(s)
- Jamie T Wilmore
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Andrew Docker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
2
|
Jamagne R, Power MJ, Zhang ZH, Zango G, Gibber B, Leigh DA. Active template synthesis. Chem Soc Rev 2024; 53:10216-10252. [PMID: 39235620 PMCID: PMC11376342 DOI: 10.1039/d4cs00430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 09/06/2024]
Abstract
The active template synthesis of mechanically interlocked molecular architectures exploits the dual ability of various structural elements (metals or, in the case of metal-free active template synthesis, particular arrangements of functional groups) to serve as both a template for the organisation of building blocks and as a catalyst to facilitate the formation of covalent bonds between them. This enables the entwined or threaded intermediate structure to be covalently captured under kinetic control. Unlike classical passive template synthesis, the intercomponent interactions transiently used to promote the assembly typically do not 'live on' in the interlocked product, meaning that active template synthesis can be traceless and used for constructing mechanically interlocked molecules that do not feature strong binding interactions between the components. Since its introduction in 2006, active template synthesis has been used to prepare a variety of rotaxanes, catenanes and knots. Amongst the metal-ion-mediated versions of the strategy, the copper(I)-catalysed alkyne-azide cycloaddition (CuAAC) remains the most extensively used transformation, although a broad range of other catalytic reactions and transition metals also provide effective manifolds. In metal-free active template synthesis, the recent discovery of the acceleration of the reaction of primary amines with electrophiles through the cavity of crown ethers has proved effective for forming an array of rotaxanes without recognition elements, including compact rotaxane superbases, dissipatively assembled rotaxanes and molecular pumps. This Review details the active template concept, outlines its advantages and limitations for the synthesis of interlocked molecules, and charts the diverse set of reactions that have been used with this strategy to date. The application of active template synthesis in various domains is discussed, including molecular machinery, mechanical chirality, catalysis, molecular recognition and various aspects of materials science.
Collapse
Affiliation(s)
- Romain Jamagne
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Martin J Power
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Germán Zango
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Benjamin Gibber
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
3
|
Barlow SR, Evans NH. Synthesis of a [2]catenane by ring closing metathesis of a [2]rotaxane prepared by crown ether active templation. Org Biomol Chem 2024; 22:7632-7636. [PMID: 39230441 DOI: 10.1039/d4ob01028k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The high yielding synthesis and spectral characterization of a [2]catenane prepared by Grubbs catalyzed ring closing metathesis of a [2]rotaxane prepared by crown ether active template synthesis is described.
Collapse
Affiliation(s)
- Sean R Barlow
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
4
|
Chen Q, Zhu K. Advancements and strategic approaches in catenane synthesis. Chem Soc Rev 2024; 53:5677-5703. [PMID: 38659402 DOI: 10.1039/d3cs00499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Catenanes, a distinctive category of mechanically interlocked molecules composed of intertwined macrocycles, have undergone significant advancements since their initial stages characterized by inefficient statistical synthesis methods. Through the aid of molecular recognition processes and principles of self-assembly, a diverse array of catenanes with intricate structures can now be readily accessed utilizing template-directed synthetic protocols. The rapid evolution and emergence of this field have catalyzed the design and construction of artificial molecular switches and machines, leading to the development of increasingly integrated functional systems and materials. This review endeavors to explore the pivotal advancements in catenane synthesis from its inception, offering a comprehensive discussion of the synthetic methodologies employed in recent years. By elucidating the progress made in synthetic approaches to catenanes, our aim is to provide a clearer understanding of the future challenges in further advancing catenane chemistry from a synthetic perspective.
Collapse
Affiliation(s)
- Qing Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
5
|
Saady A, Malcolm GK, Fitzpatrick MP, Pairault N, Tizzard GJ, Mohammed S, Tavassoli A, Goldup SM. A Platform Approach to Cleavable Macrocycles for the Controlled Disassembly of Mechanically Caged Molecules. Angew Chem Int Ed Engl 2024; 63:e202400344. [PMID: 38276911 DOI: 10.1002/anie.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inspired by interlocked oligonucleotides, peptides and knotted proteins, synthetic systems where a macrocycle cages a bioactive species that is "switched on" by breaking the mechanical bond have been reported. However, to date, each example uses a bespoke chemical design. Here we present a platform approach to mechanically caged structures wherein a single macrocycle precursor is diversified at a late stage to include a range of trigger units that control ring opening in response to enzymatic, chemical, or photochemical stimuli. We also demonstrate that our approach is applicable to other classes of macrocycles suitable for rotaxane and catenane formation.
Collapse
Affiliation(s)
- Abed Saady
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Georgia K Malcolm
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Fitzpatrick
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Noel Pairault
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Graham J Tizzard
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Soran Mohammed
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Stephen M Goldup
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
6
|
Podh MB, Ratha R, Purohit CS. Template Assisted One-Pot Synthesis of [2], Linear [3], and Radial [4]Catenane via Click Reaction. Chem Asian J 2024; 19:e202400031. [PMID: 38372572 DOI: 10.1002/asia.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Design and synthesis of higher order catenane are unexpectedly complex and involve precise cooperation among the precursors overcoming competing and opposing interactions. We achieved synthesis of [2], linear [3], radial [4] in a one-pot reaction by consecutive ring closing through click reactions. This synthesis gave three isolable products due to two, four, and six-click reactions between suitable coupling partners. Yields of the isolate templated-catenane decrease from lower to higher-ordered catenane (40 %, 12 %, and 4 %), probably due to the bite angle as well as the flexibility of the reacting partners. Removal of templating cobalt(III) ion leads to the formation of fully organic [2], linear [3], and radial [4]catenane. These synthesized catenanes were purified by column chromatography and characterized by 1H-NMR, 13C-NMR, and ESI-MS spectroscopy. The synthesized catenanes have free binding sites suitable for post-functionalization and may be used for the synthesis of higher-ordered catenane.
Collapse
Affiliation(s)
- Mana Bhanjan Podh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India -, 752050
- Homi Bhabha National Institute (HBNI), Mumbai, India -, 400094
| | - Radhakrishna Ratha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India -, 752050
- Homi Bhabha National Institute (HBNI), Mumbai, India -, 400094
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India -, 752050
- Homi Bhabha National Institute (HBNI), Mumbai, India -, 400094
| |
Collapse
|
7
|
Wilmore JT, Beer PD. Exploiting the Mechanical Bond Effect for Enhanced Molecular Recognition and Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309098. [PMID: 38174657 DOI: 10.1002/adma.202309098] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The ubiquity of charged species in biological and industrial processes has resulted in ever-increasing interest in their selective recognition, detection, and environmental remediation. Building on the established coordination chemistry principles of the chelate and macrocyclic effects, and host preorganization, supramolecular chemists seek to construct specific 3D binding cavities reminiscent of biotic systems to enhance host-guest binding affinity and selectivity. Mechanically interlocked molecules (MIMs) present a wholly unique platform for synthetic host design, wherein topologies afforded by the mechanical bond enable the decoration of 3D cavities for non-covalent interactions with a range of target guest geometries. Notably, MIM host systems exhibit mechanical bond effect augmented affinities and selectivities for a variety of charged guest species, compared to non-interlocked acyclic and macrocycle host analogs. Furthermore, the modular nature of MIM synthesis facilitates incorporation of optical and electrochemical reporter groups, enabling fabrication of highly sensitive and specific molecular sensors. This review discusses the development of recognition and sensing MIMs, from the first reports in the late 20th century through to the present day, delineating how their topologically preorganized and dynamic host cavities enhance charged guest recognition and sensing, demonstrating the mechanical bond effect as a potent tool in future chemosensing materials.
Collapse
Affiliation(s)
- Jamie T Wilmore
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| |
Collapse
|
8
|
Patrick CW, Gao Y, Gupta P, Thompson AL, Parker AW, Anderson HL. Masked alkynes for synthesis of threaded carbon chains. Nat Chem 2024; 16:193-200. [PMID: 37973943 PMCID: PMC10849957 DOI: 10.1038/s41557-023-01374-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Polyynes are chains of sp1 carbon atoms with alternating single and triple bonds. As they become longer, they evolve towards carbyne, the 1D allotrope of carbon, and they become increasingly unstable. It has been anticipated that long polyynes could be stabilized by supramolecular encapsulation, by threading them through macrocycles to form polyrotaxanes-but, until now, polyyne polyrotaxanes with many threaded macrocycles have been synthetically inaccessible. Here we show that masked alkynes, in which the C≡C triple bond is temporarily coordinated to cobalt, can be used to synthesize polyrotaxanes, up to the C68 [5]rotaxane with 34 contiguous triple bonds and four threaded macrocycles. This is the length regime at which the electronic properties of polyynes converge to those of carbyne. Cyclocarbons constitute a related family of molecular carbon allotropes, and cobalt-masked alkynes also provide a route to [3]catenanes and [5]catenanes built around cobalt complexes of cyclo[40]carbon and cyclo[80]carbon, respectively.
Collapse
Affiliation(s)
- Connor W Patrick
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Yueze Gao
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Prakhar Gupta
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Amber L Thompson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Harry L Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Wilmore JT, Cheong Tse Y, Docker A, Whitehead C, Williams CK, Beer PD. Dynamic Metalloporphyrin-Based [2]Rotaxane Molecular Shuttles Stimulated by Neutral Lewis Base and Anion Coordination. Chemistry 2023; 29:e202300608. [PMID: 36929530 PMCID: PMC10947143 DOI: 10.1002/chem.202300608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023]
Abstract
A series of dynamic metalloporphyrin [2]rotaxane molecular shuttles comprising of bis-functionalised Zn(II) porphyrin axle and pyridyl functionalised macrocycle components are prepared in high yield via active metal template synthetic methodology. Extensive variable temperature 1 H NMR and quantitative UV-Vis spectroscopic titration studies demonstrate dynamic macrocycle translocation is governed by an inter-component co-ordination interaction between the macrocycle pyridyl and axle Zn(II) metalloporphyrin, which serves to bias a 'resting state' co-conformation. The dynamic shuttling behaviour of the interlocked structures is dramatically inhibited by the addition of a neutral Lewis base such as pyridine, but can also be tuned via post-synthetic rotaxane demetallation of the porphyrin axle core to give free-base, or upon subsequent metallation, Ni(II) [2]rotaxane analogues. Importantly, the Lewis acidic Zn(II) porphyrin axle component is also capable of coordinating anions which induces mechanical bond shuttling behaviour resulting in a novel optical sensing response.
Collapse
Affiliation(s)
- Jamie T. Wilmore
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Yuen Cheong Tse
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Andrew Docker
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Caspar Whitehead
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Charlotte K. Williams
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Department of ChemistryUniversity of Oxford Chemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
10
|
Dais TN, Takano R, Ishida T, Plieger PG. Lanthanide induced variability in localised Co II geometries of four triangular L 3Co 3 IILn III complexes. RSC Adv 2022; 12:4828-4835. [PMID: 35425468 PMCID: PMC8981366 DOI: 10.1039/d1ra08797e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Four tetranuclear heterobimetallic triangle complexes [L3Co3Dy(NO3)2(H2O)(MeOH)5](NO3) (C1), [L3Co3Gd(NO3)3(MeOH)4] (C2), [L3Co3La(NO3)2(H2O)6](NO3)(H2O) (C3), and [L3Co3TbCl(NO3)2(H2O)0.5(MeOH)3.5] (C4), where H2L = 1,4-bisformylnaphthalene-2,3-diol, have been synthesised and structurally characterised. Each complex crystallises with a complete molecule in the asymmetric unit (Z' = 1) and displays near perfect octahedrality in two out of three CoII centres. The third CoII ion assumes a different coordination geometry in each complex: six-coordinate octahedral in C1, six-coordinate with a distortion towards trigonal prismatic in C2, five-coordinate trigonal bipyramidal in C3, and five-coordinate square pyramidal in C4; which has been attributed to increasing lanthanide cation size, coupled with a non-macrocyclic coordination environment. Continuous Shape Measurement (CShM) calculations and octahedral distortion parameter calculations were performed, using the SHAPE and OctaDist software packages, respectively, in order to aid in the assessment of each metal centre's local coordination geometry. The preliminary magnetic investigation of C3 found χ m T = 9.4 cm3 K mol-1 at 300 K and M = 7.1 μ B at 1.8 K, which are approximately two thirds the maximum theoretical values for three CoII ions and indicates the presence of a relatively large zero-field splitting parameter (D/k B = 65 K) operative in each CoII ion rather than exchange coupling between the CoII centres.
Collapse
Affiliation(s)
- Tyson N Dais
- School of Natural Sciences, Massey University Private Bag 11 222 Palmerston North New Zealand
| | - Rina Takano
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communication 1-5-1 Chofugaoka, Chofu Tokyo 182-8585 Japan
| | - Takayuki Ishida
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communication 1-5-1 Chofugaoka, Chofu Tokyo 182-8585 Japan
| | - Paul G Plieger
- School of Natural Sciences, Massey University Private Bag 11 222 Palmerston North New Zealand
| |
Collapse
|
11
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
12
|
Bazzoni M, Andreoni L, Silvi S, Credi A, Cera G, Secchi A, Arduini A. Selective access to constitutionally identical, orientationally isomeric calix[6]arene-based [3]rotaxanes by an active template approach. Chem Sci 2021; 12:6419-6428. [PMID: 34084442 PMCID: PMC8115267 DOI: 10.1039/d1sc00279a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Tris(phenylureido)calix[6]arene is endowed with unique properties that make it a valuable macrocyclic component for the synthesis of mechanically interlocked molecules. Its three-dimensional and intrinsically nonsymmetric structure is kinetically selective toward two processes: (i) in apolar media, the threading of bipyridinium based axle-like components takes place exclusively from the upper rim; (ii) SN2 alkylation reactions of a pyridylpyridinium precursor engulfed in the cavity occur selectively at pyridylpyridinium nitrogen atom located at the macrocycle upper rim (active template synthesis). Here we exploit such properties to prepare two series of [3]rotaxanes, each consisting of three sequence isomers that arise from the threading of two identical but nonsymmetric wheels on a symmetric thread differing only for the reciprocal orientation of the macrocycles. The features of the calix[6]arene and the active template synthetic approach, together with a careful selection of the precursors, enabled us to selectively synthesise the [3]rotaxane sequence isomers of each series with fast kinetics and high yields. Expedient access to a series of spatially controlled oriented [3]rotaxane isomers via a metal-free active template approach.![]()
Collapse
Affiliation(s)
- Margherita Bazzoni
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17/A I-43124 Parma Italy
| | - Leonardo Andreoni
- Dipartimento di Chimica "G. Ciamician", Università di Bologna Via Selmi 2 I-40126 Bologna Italy
| | - Serena Silvi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna Via Selmi 2 I-40126 Bologna Italy
| | - Alberto Credi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche Via Gobetti 101 I-40129 Bologna Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna Viale del Risorgimento 4 I-40136 Bologna Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17/A I-43124 Parma Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17/A I-43124 Parma Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17/A I-43124 Parma Italy
| |
Collapse
|
13
|
Sharma S, Ntetsikas K, Ladelta V, Bhaumik S, Hadjichristidis N. Well-defined cyclic polymer synthesis via an efficient etherification-based bimolecular ring-closure strategy. Polym Chem 2021. [DOI: 10.1039/d1py01337h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alternative method to synthesize well-defined cyclic polymers via combination of anionic polymerization high vacuum techniques and Williamson etherification reaction in moderate dilution and up to 1 g scale.
Collapse
Affiliation(s)
- Sandeep Sharma
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Konstantinos Ntetsikas
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Viko Ladelta
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Saibal Bhaumik
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
14
|
Leforestier B, Gyton MR, Chaplin AB. Oxidative Addition of a Mechanically Entrapped C(sp)-C(sp) Bond to a Rhodium(I) Pincer Complex. Angew Chem Int Ed Engl 2020; 59:23500-23504. [PMID: 32929831 PMCID: PMC7756736 DOI: 10.1002/anie.202009546] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 12/18/2022]
Abstract
By use of a macrocyclic phosphinite pincer ligand and bulky substrate substituents, we demonstrate how the mechanical bond can be leveraged to promote the oxidative addition of an interlocked 1,3-diyne to a rhodium(I) center. The resulting rhodium(III) bis(alkynyl) product can be trapped out by reaction with carbon monoxide or intercepted through irreversible reaction with dihydrogen, resulting in selective hydrogenolysis of the C-C σ-bond.
Collapse
Affiliation(s)
| | - Matthew R. Gyton
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Adrian B. Chaplin
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
15
|
Leforestier B, Gyton MR, Chaplin AB. Oxidative Addition of a Mechanically Entrapped C(sp)–C(sp) Bond to a Rhodium(I) Pincer Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baptiste Leforestier
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Matthew R. Gyton
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Adrian B. Chaplin
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
16
|
Zhu L, Li J, Yang J, Au-Yeung HY. Cross dehydrogenative C-O coupling catalysed by a catenane-coordinated copper(i). Chem Sci 2020; 11:13008-13014. [PMID: 34094485 PMCID: PMC8163234 DOI: 10.1039/d0sc05133k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Catalytic activity of copper(i) complexes supported by phenanthroline-containing catenane ligands towards a new C(sp3)–O dehydrogenative cross-coupling of phenols and bromodicarbonyls is reported. As the phenanthrolines are interlocked by the strong and flexible mechanical bond in the catenane, the active catalyst with an open copper coordination site can be revealed only transiently and the stable, coordinatively saturated Cu(i) pre-catalyst is quickly regenerated after substrate transformation. Compared with a control Cu(i) complex supported by non-interlocked phenanthrolines, the catenane-supported Cu(i) is highly efficient with a broad substrate scope, and can be applied in gram-scale transformations without a significant loss of the catalytic activity. This work demonstrates the advantages of the catenane ligands that provide a dynamic and responsive copper coordination sphere, highlighting the potential of the mechanical bond as a design element in transition metal catalyst development. The use of a catenane-supported copper(i) complex for the cross dehydrogenative C–O coupling of phenols and bromodicarbonyls is described.![]()
Collapse
Affiliation(s)
- Lihui Zhu
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jiasheng Li
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China .,State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
17
|
Gianga TM, Audibert E, Trandafir A, Kociok-Köhn G, Pantoş GD. Discovery of an all-donor aromatic [2]catenane. Chem Sci 2020; 11:9685-9690. [PMID: 34094233 PMCID: PMC8162110 DOI: 10.1039/d0sc04317f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report herein the first all-donor aromatic [2]catenane formed through dynamic combinatorial chemistry, using single component libraries. The building block is a benzo[1,2-b:4,5-b′]dithiophene derivative, a π-donor molecule, with cysteine appendages that allow for disulfide exchange. The hydrophobic effect plays an essential role in the formation of the all-donor [2]catenane. The design of the building block allows the formation of a quasi-fused pentacyclic core, which enhances the stacking interactions between the cores. The [2]catenane has chiro-optical and fluorescent properties, being also the first known DCC-disulphide-based interlocked molecule to be fluorescent. An all-donor [2]catenane has been synthesised via dynamic combinatorial chemistry. It features stacked benzodithiophenes which are quasi-pentacyclic through hydrogen bonding.![]()
Collapse
Affiliation(s)
| | | | | | - Gabriele Kociok-Köhn
- Materials and Chemical Characterisation Facility (MC2), University of Bath BA2 7AY Bath UK
| | - G Dan Pantoş
- Department of Chemistry, University of Bath BA2 7AY Bath UK
| |
Collapse
|
18
|
Colley ND, Nosiglia MA, Li L, Amir F, Chang C, Greene AF, Fisher JM, Li R, Li X, Barnes JC. One-Pot Synthesis of a Linear [4]Catenate Using Orthogonal Metal Templation and Ring-Closing Metathesis. Inorg Chem 2020; 59:10450-10460. [DOI: 10.1021/acs.inorgchem.0c00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nathan D. Colley
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Mark A. Nosiglia
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Lei Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Faheem Amir
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Christy Chang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Angelique F. Greene
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jeremy M. Fisher
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Ruihan Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Xuesong Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jonathan C. Barnes
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
19
|
Baghery S, Zarei M, Zolfigol MA, Mallakpour S, Behranvand V. Application of trityl moieties in chemical processes: part I. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01980-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Alcântara AFP, Fontana LA, Almeida MP, Rigolin VH, Ribeiro MA, Barros WP, Megiatto JD. Control over the Redox Cooperative Mechanism of Radical Carbene Transfer Reactions for the Efficient Active‐Metal‐Template Synthesis of [2]Rotaxanes. Chemistry 2020; 26:7808-7822. [DOI: 10.1002/chem.201905602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Arthur F. P. Alcântara
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
- Instituto Federal do Sertão Pernambucano Estrada do Tamboril 56200-000 Ouricuri Brazil
| | - Liniquer A. Fontana
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marlon P. Almeida
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Vitor H. Rigolin
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marcos A. Ribeiro
- Departamento de QuímicaUniversidade Federal do Espírito Santo Av. Fernando Ferrari, 514 29075-910 Vitória Brazil
| | - Wdeson P. Barros
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Jackson D. Megiatto
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| |
Collapse
|
21
|
Singh J, Kim DH, Kim EH, Kim H, Hadiputra R, Jung J, Chi KW. The First Quantitative Synthesis of a Closed Three-Link Chain (613) Using Coordination and Noncovalent Interactions-Driven Self-Assembly. J Am Chem Soc 2020; 142:9327-9336. [DOI: 10.1021/jacs.0c01406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Eun-Hee Kim
- Center for Research Equipments, Korea Basic Science Institute, Ochang, Chungbuk 28119, Republic of Korea
| | - Hyunuk Kim
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Rizky Hadiputra
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Jaehoon Jung
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| |
Collapse
|
22
|
Shan W, Gao X, Lin Y, Jin G. Template‐Free Self‐Assembly of Molecular Trefoil Knots and Double Trefoil Knots Featuring Cp*Rh Building Blocks. Chemistry 2020; 26:5093-5099. [DOI: 10.1002/chem.202000525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/15/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Long Shan
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Yue‐Jian Lin
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Guo‐Xin Jin
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| |
Collapse
|
23
|
Echavarren J, Gall MAY, Haertsch A, Leigh DA, Marcos V, Tetlow DJ. Active template rotaxane synthesis through the Ni-catalyzed cross-coupling of alkylzinc reagents with redox-active esters. Chem Sci 2019; 10:7269-7273. [PMID: 31588296 PMCID: PMC6686731 DOI: 10.1039/c9sc02457c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022] Open
Abstract
The synthesis of unsymmetrical axle [2]rotaxanes through a recently developed Ni-catalyzed C(sp3)-C(sp3) cross-coupling of redox-active esters (formed directly from carboxylic acids) and organozinc reagents (derived from alkyl bromides) is reported. The method also furnishes, as a minor product, the symmetrical axle [2]rotaxanes resulting from the homo-coupling of the organozinc half-thread. The rotaxanes are formed in up to 56% yield with the ratio of unsymmetrical rotaxane increasing with the cavity size of the macrocycle. In the absence of the redox-active ester neither rotaxane is formed, even though the homo-coupling rotaxane product does not incorporate the redox-active ester building block. A Ni(iii) intermediate is consistent with these observations, providing support for the previously postulated mechanism of the Ni-catalyzed cross-coupling reaction.
Collapse
Affiliation(s)
- Javier Echavarren
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Malcolm A Y Gall
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Adrian Haertsch
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - David A Leigh
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Vanesa Marcos
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Daniel J Tetlow
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| |
Collapse
|
24
|
Denis M, Lewis JEM, Modicom F, Goldup SM. An Auxiliary Approach for the Stereoselective Synthesis of Topologically Chiral Catenanes. Chem 2019; 5:1512-1520. [PMID: 31294128 PMCID: PMC6588264 DOI: 10.1016/j.chempr.2019.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/14/2019] [Accepted: 03/15/2019] [Indexed: 02/05/2023]
Abstract
Catenanes, molecules in which two rings are threaded through one another like links in a chain, can form as two structures related like an object and its mirror image but otherwise identical if the individual rings lack bilateral symmetry. These structures are described as “topologically chiral” because, unlike most chiral molecules, it is not possible to convert one mirror-image form to the other under the rules of mathematical topology. Although intriguing and discussed as early as 1961, to date all methods of accessing molecules containing only this topological stereogenic element require the separation of the mirror-image forms via chiral stationary phase high-performance liquid chromatography, which has limited their investigation to date. Here, we present a simple method that uses a readily available source of chiral information to allow the stereoselective synthesis of topologically chiral catenanes. First stereoselective synthesis of a topologically chiral catenane First absolute stereochemical assignment of a topologically chiral catenane First example of an auxiliary approach to topologically chiral catenanes
Chiral molecules have occupied a special place in chemistry since Pasteur reported the painstaking separation of mirror-image crystals of tartaric acid salts in 1848. In the 21st century, chiral molecules remain a major scientific focus because of their importance in biology and their emerging applications in materials science. However, topologically chiral molecules, such as the catenanes described here, have received little attention because they are hard to make; preparative chiral stationary phase high-performance liquid chromatography allows the separation of their mirror-image forms but only on a very small scale. Here, we demonstrate the synthesis of topologically chiral catenanes by using standard synthetic techniques, marking their transition from “inaccessible curiosities” to valid synthetic targets for investigation in catalysis, sensing, medicinal chemistry, and materials science. Furthermore, this work will inspire efforts to access other neglected classes of chiral interlocked molecules.
Collapse
Affiliation(s)
- Mathieu Denis
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - James E M Lewis
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.,Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Florian Modicom
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Stephen M Goldup
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
25
|
Modicom F, Jamieson EMG, Rochette E, Goldup SM. Chemical Consequences of the Mechanical Bond: A Tandem Active Template-Rearrangement Reaction. Angew Chem Int Ed Engl 2019; 58:3875-3879. [PMID: 30600892 PMCID: PMC6589916 DOI: 10.1002/anie.201813950] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 01/07/2023]
Abstract
We report the unexpected discovery of a tandem active template CuAAC-rearrangement process, in which N2 is extruded on the way to the 1,2,3-triazole product to give instead acrylamide rotaxanes. Mechanistic investigations suggest this process is dictated by the mechanical bond, which stabilizes the CuI -triazolide intermediate of the CuAAC reaction and diverts it down the rearrangement pathway; when no mechanical bond is formed, the CuAAC product is isolated.
Collapse
Affiliation(s)
- Florian Modicom
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | | - Elise Rochette
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | |
Collapse
|
26
|
Lewis JEM. Self-templated synthesis of amide catenanes and formation of a catenane coordination polymer. Org Biomol Chem 2019; 17:2442-2447. [PMID: 30742192 DOI: 10.1039/c9ob00107g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A self-templation strategy was used to synthesise isophthalamide [2]catenanes of various sizes in up to 51% yield without the need for metal ions as templates or mediators of covalent bond formation. Using this strategy a bis-monodentate catenane was prepared incorporating exohedral pyridine units. Upon complexation of this ligand with AgOTf a one-dimensional coordination polymer was obtained in the solid state in which both macrocycles of the catenane are involved in binding to the metal nodes, resulting in a rare example of a coordination assembly in which mechanical bonds are incorporated into the structure backbone.
Collapse
Affiliation(s)
- James E M Lewis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
27
|
Modicom F, Jamieson EMG, Rochette E, Goldup SM. Chemical Consequences of the Mechanical Bond: A Tandem Active Template‐Rearrangement Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Florian Modicom
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| | | | - Elise Rochette
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| | - Stephen M. Goldup
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| |
Collapse
|
28
|
Ayme JF, Beves JE, Campbell CJ, Leigh DA. Probing the Dynamics of the Imine-Based Pentafoil Knot and Pentameric Circular Helicate Assembly. J Am Chem Soc 2019; 141:3605-3612. [PMID: 30707020 PMCID: PMC6429429 DOI: 10.1021/jacs.8b12800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We investigate the self-assembly
dynamics of an imine-based pentafoil
knot and related pentameric circular helicates, each derived from
a common bis(formylpyridine)bipyridyl building block, iron(II) chloride,
and either monoamines or a diamine. The mixing of circular helicates
derived from different amines led to the complete exchange of the N-alkyl residues on the periphery of the metallo-supramolecular
scaffolds over 4 days in DMSO at 60 °C. Under similar conditions,
deuterium-labeled and nonlabeled building blocks showed full dialdehyde
building block exchange over 13 days for open circular helicates but
was much slower for the analogous closed-loop pentafoil knot (>60
days). Although both knots and open circular helicates self-assemble
under thermodynamic control given sufficiently long reaction times,
this is significantly longer than the time taken to afford the maximum
product yield (2 days). Highly effective error correction occurs during
the synthesis of imine-based pentafoil molecular knots and pentameric
circular helicates despite, in practice, the systems not operating
under full thermodynamic control.
Collapse
Affiliation(s)
- Jean-François Ayme
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom.,School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| | - Jonathon E Beves
- School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| | - Christopher J Campbell
- School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| | - David A Leigh
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom.,School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| |
Collapse
|
29
|
Jinks MA, de Juan A, Denis M, Fletcher CJ, Galli M, Jamieson EMG, Modicom F, Zhang Z, Goldup SM. Stereoselective Synthesis of Mechanically Planar Chiral Rotaxanes. Angew Chem Int Ed Engl 2018; 57:14806-14810. [PMID: 30253008 PMCID: PMC6220991 DOI: 10.1002/anie.201808990] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Indexed: 01/14/2023]
Abstract
Chiral interlocked molecules in which the mechanical bond provides the sole stereogenic unit are typically produced with no control over the mechanical stereochemistry. Here we report a stereoselective approach to mechanically planar chiral rotaxanes in up to 98:2 d.r. using a readily available α-amino acid-derived azide. Symmetrization of the covalent stereocenter yields a rotaxane in which the mechanical bond provides the only stereogenic element.
Collapse
Affiliation(s)
- Michael A. Jinks
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | - Alberto de Juan
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | - Mathieu Denis
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | | - Marzia Galli
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | | - Florian Modicom
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | - Zhihui Zhang
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | |
Collapse
|
30
|
Jinks MA, de Juan A, Denis M, Fletcher CJ, Galli M, Jamieson EMG, Modicom F, Zhang Z, Goldup SM. Stereoselective Synthesis of Mechanically Planar Chiral Rotaxanes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Michael A. Jinks
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | - Alberto de Juan
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | - Mathieu Denis
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | | | - Marzia Galli
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | | | - Florian Modicom
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | - Zhihui Zhang
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| | - Stephen M. Goldup
- Chemistry; University of Southampton, Highfield; Southampton SO17 1BJ UK
| |
Collapse
|
31
|
Alcântara AFP, Fontana LA, Rigolin VH, Andrade YFS, Ribeiro MA, Barros WP, Ornelas C, Megiatto JD. Olefin Cyclopropanation by Radical Carbene Transfer Reactions Promoted by Cobalt(II)/Porphyrinates: Active-Metal-Template Synthesis of [2]Rotaxanes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arthur F. P. Alcântara
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
- Instituto Federal do Sertão Pernambucano; Estrada do Tamboril 56200-000 Ouricuri PE Brazil
| | - Liniquer A. Fontana
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Vitor H. Rigolin
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Yuri F. S. Andrade
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Marcos A. Ribeiro
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Wdeson P. Barros
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Catia Ornelas
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Jackson D. Megiatto
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| |
Collapse
|
32
|
Alcântara AFP, Fontana LA, Rigolin VH, Andrade YFS, Ribeiro MA, Barros WP, Ornelas C, Megiatto JD. Olefin Cyclopropanation by Radical Carbene Transfer Reactions Promoted by Cobalt(II)/Porphyrinates: Active-Metal-Template Synthesis of [2]Rotaxanes. Angew Chem Int Ed Engl 2018; 57:8979-8983. [DOI: 10.1002/anie.201803934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/07/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Arthur F. P. Alcântara
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
- Instituto Federal do Sertão Pernambucano; Estrada do Tamboril 56200-000 Ouricuri PE Brazil
| | - Liniquer A. Fontana
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Vitor H. Rigolin
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Yuri F. S. Andrade
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Marcos A. Ribeiro
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Wdeson P. Barros
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Catia Ornelas
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| | - Jackson D. Megiatto
- Institute of Chemistry; University of Campinas (UNICAMP); POBox 6154 13083-970 Campinas SP Brazil
| |
Collapse
|
33
|
Denis M, Qin L, Turner P, Jolliffe KA, Goldup SM. A Fluorescent Ditopic Rotaxane Ion-Pair Host. Angew Chem Int Ed Engl 2018; 57:5315-5319. [PMID: 29393993 PMCID: PMC5947583 DOI: 10.1002/anie.201713105] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 12/21/2022]
Abstract
We report a rotaxane based on a simple urea motif that binds Cl- selectively as a separated ion pair with H+ and reports the anion binding event through a fluorescence switch-on response. The host selectively binds Cl- over more basic anions, which deprotonate the framework, and less basic anions, which bind more weakly. The mechanical bond also imparts size selectivity to the ditopic host.
Collapse
Affiliation(s)
- Mathieu Denis
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Lei Qin
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | - Peter Turner
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | | | | |
Collapse
|
34
|
Denis M, Pancholi J, Jobe K, Watkinson M, Goldup SM. Chelating Rotaxane Ligands as Fluorescent Sensors for Metal Ions. Angew Chem Int Ed Engl 2018; 57:5310-5314. [PMID: 29537728 PMCID: PMC5947674 DOI: 10.1002/anie.201712931] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 01/08/2023]
Abstract
Although metal-ion-binding interlocked molecules have been under intense investigation for over three decades, their application as scaffolds for the development of sensors for metal ions remains underexplored. In this work, we demonstrate the potential of simple rotaxanes as metal-ion-responsive ligand scaffolds through the development of a proof-of-concept selective sensor for Zn2+ .
Collapse
Affiliation(s)
- Mathieu Denis
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Jessica Pancholi
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Kajally Jobe
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Michael Watkinson
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | | |
Collapse
|
35
|
Denis M, Pancholi J, Jobe K, Watkinson M, Goldup SM. Chelating Rotaxane Ligands as Fluorescent Sensors for Metal Ions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mathieu Denis
- Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| | - Jessica Pancholi
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Kajally Jobe
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Michael Watkinson
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Stephen M. Goldup
- Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| |
Collapse
|
36
|
Lewis JEM, Modicom F, Goldup SM. Efficient Multicomponent Active Template Synthesis of Catenanes. J Am Chem Soc 2018; 140:4787-4791. [PMID: 29558129 PMCID: PMC5916464 DOI: 10.1021/jacs.8b01602] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a simple and high yielding active template synthesis of [2]catenanes. In addition to mechanical bond formation using a single premacrocycle bearing an azide and alkyne moiety, our method is also suitable for the co-macrocyclization of readily available bis-alkyne and bis-azide comonomers and even short alkyne/azide components which oligomerize prior to mechanical bond formation.
Collapse
Affiliation(s)
- James E M Lewis
- Chemistry , University of Southampton , Highfield , Southampton SO17 1BJ , United Kingdom
| | - Florian Modicom
- Chemistry , University of Southampton , Highfield , Southampton SO17 1BJ , United Kingdom
| | - Stephen M Goldup
- Chemistry , University of Southampton , Highfield , Southampton SO17 1BJ , United Kingdom
| |
Collapse
|
37
|
Marchal E, Figliola C, Thompson A. Prodigiosenes conjugated to tamoxifen and estradiol. Org Biomol Chem 2018. [PMID: 28628182 DOI: 10.1039/c7ob00943g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the synthesis of the first click-appended prodigiosene conjugates. Four prodigiosene conjugates of estradiol functionalised at the 7α-position were prepared, as were three prodigiosene conjugates of tamoxifen. The coupling between a prodigiosene and an 11-hydroxy estradiol derivative via an ether linkage was investigated, as was the 11- and 7-functionalisation of the estradiol core. The robustness of estradiol protecting groups was severely challenged by reactions typically used to equip such frameworks for 11- and 7-functionalisation. Specifically, and important to synthesis involving estradiol, TBS, TMS and THP are not useful protecting groups for the functionalisation of this core. When the chemical features of the therapeutic agent limit the choice of protecting group (in this case, prodigiosenes bearing aryl, NH, alkenyl and ester groups), click chemistry becomes an attractive synthetic strategy. The anti-cancer activity of the seven click prodigiosene conjugates was evaluated.
Collapse
Affiliation(s)
- Estelle Marchal
- Department of Chemistry, Dalhousie University, PO BOX 15000, Halifax, NS B3H 4R2, Canada.
| | | | | |
Collapse
|
38
|
Lewis JEM, Beer PD, Loeb SJ, Goldup SM. Metal ions in the synthesis of interlocked molecules and materials. Chem Soc Rev 2018; 46:2577-2591. [PMID: 28447678 DOI: 10.1039/c7cs00199a] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of metal ions to template the synthesis of catenanes by Sauvage and co-workers was a pivotal moment in the development of the field of interlocked molecules. In this Review Article we shall examine the different roles metal-ligand interactions play in modern syntheses of interlocked molecules and materials, with a particular focus on seminal contributions and the advantages and disadvantages of employing metal ligand interactions.
Collapse
Affiliation(s)
- James E M Lewis
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | | | | | | |
Collapse
|
39
|
Denis M, Qin L, Turner P, Jolliffe KA, Goldup SM. A Fluorescent Ditopic Rotaxane Ion-Pair Host. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mathieu Denis
- Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| | - Lei Qin
- School of Chemistry; The University of Sydney; Sydney NSW 2006 Australia
| | - Peter Turner
- School of Chemistry; The University of Sydney; Sydney NSW 2006 Australia
| | | | - Stephen M. Goldup
- Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| |
Collapse
|
40
|
Han X, Liu G, Liu SH, Yin J. Synthesis of rotaxanes and catenanes using an imine clipping reaction. Org Biomol Chem 2018; 14:10331-10351. [PMID: 27714207 DOI: 10.1039/c6ob01581f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supramolecular chemistry and self-assembly provide a valuable chance to understand the complicated topological structures on a molecular level. Two types of classical mechanically interlocked molecules, rotaxanes and catenanes, possess non-covalent mechanical bonds and have attracted more attention not only in supramolecular chemistry but also in the fields of materials science, nanotechnology and bioscience. In the past decades, the template-directed clipping reaction based on imine chemistry has become one of the most efficient methods for the construction of functionalized rotaxanes and catenanes. In this review, we outlined the main progress of rotaxanes and catenanes using the template-directed clipping approach of imine chemistry. The review contains the novel topological structures of rotaxanes and catenanes, functions and applications.
Collapse
Affiliation(s)
- Xie Han
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Guotao Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
41
|
Roberts DA, Pilgrim BS, Nitschke JR. Covalent post-assembly modification in metallosupramolecular chemistry. Chem Soc Rev 2018; 47:626-644. [DOI: 10.1039/c6cs00907g] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review examines the growing variety of covalent reactions used to achieve the post-assembly modification of self-assembled metallosupramolecular complexes.
Collapse
|
42
|
Liu Y, O'Keeffe M, Treacy MMJ, Yaghi OM. The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry. Chem Soc Rev 2018; 47:4642-4664. [DOI: 10.1039/c7cs00695k] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The geometry of the most regular polycatenanes and weavings, as an extended family of discrete knots and catenanes, is described in terms of sticks and corners in their optimal embeddings.
Collapse
Affiliation(s)
- Yuzhong Liu
- Department of Chemistry
- University of California-Berkeley
- Materials Sciences Division
- Lawrence Berkeley National Laboratory
- Kavli Energy NanoSciences Institute
| | | | | | - Omar M. Yaghi
- Department of Chemistry
- University of California-Berkeley
- Materials Sciences Division
- Lawrence Berkeley National Laboratory
- Kavli Energy NanoSciences Institute
| |
Collapse
|
43
|
Abstract
The first synthetic molecular trefoil knot was prepared in the late 1980s. However, it is only in the last few years that more complex small-molecule knot topologies have been realized through chemical synthesis. The steric restrictions imposed on molecular strands by knotting can impart significant physical and chemical properties, including chirality, strong and selective ion binding, and catalytic activity. As the number and complexity of accessible molecular knot topologies increases, it will become increasingly useful for chemists to adopt the knot terminology employed by other disciplines. Here we give an overview of synthetic strategies towards molecular knots and outline the principles of knot, braid, and tangle theory appropriate to chemistry and molecular structure.
Collapse
Affiliation(s)
| | - David A. Leigh
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | |
Collapse
|
44
|
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL Großbritannien
| | - David A. Leigh
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL Großbritannien
| | - Steffen L. Woltering
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL Großbritannien
| |
Collapse
|
45
|
|
46
|
Ito K, Mutoh Y, Saito S. Synthesis of [2]Catenanes by Intramolecular Sonogashira-Type Reaction. J Org Chem 2017; 82:6118-6124. [PMID: 28516772 DOI: 10.1021/acs.joc.7b00672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The catalytic activity of macrocyclic phenanthroline-CuI complexes was utilized to synthesize [2]catenanes by intramolecular Sonogashira-type reaction. The high reactivity of the acyclic starting material was critical to synthesize the [2]catenane in acceptable yields. The relationship between the yield of the [2]catenane and the structure of the starting materials was disclosed.
Collapse
Affiliation(s)
- Ken Ito
- Department of Chemistry, Faculty of Science, Tokyo University of Science , Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yuichiro Mutoh
- Department of Chemistry, Faculty of Science, Tokyo University of Science , Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Shinichi Saito
- Department of Chemistry, Faculty of Science, Tokyo University of Science , Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
47
|
Lim JYC, Bunchuay T, Beer PD. Strong and Selective Halide Anion Binding by Neutral Halogen-Bonding [2]Rotaxanes in Wet Organic Solvents. Chemistry 2017; 23:4700-4707. [DOI: 10.1002/chem.201700030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Jason Y. C. Lim
- Chemistry Research Laboratory, Department of Chemistry; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| | - Thanthapatra Bunchuay
- Chemistry Research Laboratory, Department of Chemistry; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| | - Paul D. Beer
- Chemistry Research Laboratory, Department of Chemistry; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
48
|
Abstract
![]()
Porphyrin–polyyne
[3]- and [5]rotaxanes have been synthesized
by condensing aldehyde–rotaxanes with pyrrole or dipyrromethane.
The crystal structure of a [3]rotaxane shows that the macrocycles
adopt compact conformations, holding the hexaynes near the porphyrin
core, and that the phenanthroline units form intermolecular π-stacked
dimers in the solid. Fluorescence spectra reveal singlet excited-state
energy transfer from the threaded hexayne to the porphyrin, from the
phenanthroline to the porphyrin, and from the phenanthroline to the
hexayne.
Collapse
Affiliation(s)
- Daniel R Kohn
- University of Oxford , Department of Chemistry, Chemistry Research Laboratory, Oxford OX1 3TA, United Kingdom
| | - Levon D Movsisyan
- University of Oxford , Department of Chemistry, Chemistry Research Laboratory, Oxford OX1 3TA, United Kingdom
| | - Amber L Thompson
- University of Oxford , Department of Chemistry, Chemistry Research Laboratory, Oxford OX1 3TA, United Kingdom
| | - Harry L Anderson
- University of Oxford , Department of Chemistry, Chemistry Research Laboratory, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
49
|
Brown A, Lang T, Mullen KM, Beer PD. Active metal template synthesis of a neutral indolocarbazole-containing [2]rotaxane host system for selective oxoanion recognition. Org Biomol Chem 2017; 15:4587-4594. [DOI: 10.1039/c7ob01040k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A CuAAC active metal template approach is used to prepare a new neutral indolocarbazole-containing [2]rotaxane anion host system which exhibits a rare interlocked host selectivity for oxoanions over halides.
Collapse
Affiliation(s)
- Asha Brown
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Thomas Lang
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Kathleen M. Mullen
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Paul D. Beer
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
50
|
Kumar J, Pratibha, Verma S. Crystallographic signatures of silver-purine frameworks with an azide functionality. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|