1
|
Tataruch M, Illeová V, Kluza A, Cabadaj P, Polakovič M. Catalytic Stability of S-1-(4-Hydroxyphenyl)-Ethanol Dehydrogenase from Aromatoleum aromaticum. Int J Mol Sci 2024; 25:7385. [PMID: 39000491 PMCID: PMC11242144 DOI: 10.3390/ijms25137385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Derived from the denitrifying bacterium Aromatoleum aromaticum EbN1 (Azoarcus sp.), the enzyme S-1-(4-hydroxyphenyl)-ethanol dehydrogenase (S-HPED) belongs to the short-chain dehydrogenase/reductase family. Using research techniques like UV-Vis spectroscopy, dynamic light scattering, thermal-shift assay and HPLC, we investigated the catalytic and structural stability of S-HPED over a wide temperature range and within the pH range of 5.5 to 9.0 under storage and reaction conditions. The relationship between aggregation and inactivation of the enzyme in various pH environments was also examined and interpreted. At pH 9.0, where the enzyme exhibited no aggregation, we characterized thermally induced enzyme inactivation. Through isothermal and multitemperature analysis of inactivation data, we identified and confirmed the first-order inactivation mechanism under these pH conditions and determined the kinetic parameters of the inactivation process. Additionally, we report the positive impact of glucose as an enzyme stabilizer, which slows down the dynamics of S-HPED inactivation over a wide range of pH and temperature and limits enzyme aggregation. Besides characterizing the stability of S-HPED, the enzyme's catalytic activity and high stereospecificity for 10 prochiral carbonyl compounds were positively verified, thus expanding the spectrum of substrates reduced by S-HPED. Our research contributes to advancing knowledge about the biocatalytic potential of this catalyst.
Collapse
Affiliation(s)
- Mateusz Tataruch
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.T.); (A.K.)
| | - Viera Illeová
- Institute of Chemical and Environmental Engineering, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia; (V.I.); (P.C.)
| | - Anna Kluza
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.T.); (A.K.)
| | - Patrik Cabadaj
- Institute of Chemical and Environmental Engineering, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia; (V.I.); (P.C.)
| | - Milan Polakovič
- Institute of Chemical and Environmental Engineering, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia; (V.I.); (P.C.)
| |
Collapse
|
2
|
Tataruch M, Illeová V, Miłaczewska A, Borowski T, Mihal' M, Polakovič M. Inactivation and aggregation of R-specific 1-(4-hydroxyphenyl)-ethanol dehydrogenase from Aromatoleum aromaticum. Int J Biol Macromol 2023; 234:123772. [PMID: 36812967 DOI: 10.1016/j.ijbiomac.2023.123772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/11/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
R-specific 1-(4-hydroxyphenyl)-ethanol dehydrogenase (R-HPED) is a promising biotool for stereoselective synthesis of chiral aromatic alcohols. This work focused on the evaluation of its stability under storage and in-process conditions in the pH range from 5.5 to 8.5. The relationship between the dynamics of aggregation and activity loss under various pH conditions and in the presence of glucose, serving as a stabilizer, was analysed using spectrophotometric techniques and dynamic light scattering. pH 8.5 was indicated as a representative environment in which the enzyme, despite relatively low activity, shows high stability and the highest total product yield. Based on a series of inactivation experiments, the mechanism of thermal inactivation at pH 8.5 was modelled. The irreversible first-order mechanism of R-HPED inactivation in the temperature range of 47.5-60 °C was verified by isothermal and multi-temperature evaluation of data, confirming that in the alkaline pH 8.5, R-HPED aggregation is the secondary process occurring at already inactivated protein molecules. The rate constants were from 0.029 min-1 to 0.380 min-1 for a buffer solution but they decreased to 0.011 min-1 and 0.161 min-1, respectively, when 1.5 M glucose was added as a stabilizer. The activation energy was however about 200 kJ mol-1 in both cases.
Collapse
Affiliation(s)
- Mateusz Tataruch
- Institute of Chemical and Environmental Engineering, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia; Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, PL-30-239 Krakow, Poland
| | - Viera Illeová
- Institute of Chemical and Environmental Engineering, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Anna Miłaczewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, PL-30-239 Krakow, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, PL-30-239 Krakow, Poland
| | - Mario Mihal'
- Institute of Chemical and Environmental Engineering, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Milan Polakovič
- Institute of Chemical and Environmental Engineering, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
3
|
Liu Y, Lu B, Ning H, Zhang L, Luo Q, Ban H, Mao S. Oxygen Vacancy Promoted O 2 Activation over Mesoporous Ni-Co Mixed Oxides for Aromatic Hydrocarbon Oxidation. Inorg Chem 2023; 62:3195-3201. [PMID: 36760173 DOI: 10.1021/acs.inorgchem.2c04150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Whether the oxygen vacancies of heterogeneous catalysts improve their catalytic activity or not has recently been the topic of intense debate in the oxidation of hydrocarbons. We designed an effective strategy to construct mesoporous Ni-Co mixed oxides via a ligand-assisted self-assembly approach. The surface oxygen vacancy concentrations of the mesoporous Ni-Co mixed oxide catalysts were regulated by changing the doping amount of Ni or the reduction method, and the relationship between oxygen vacancies and catalytic activity was studied. Controlled experiments and DFT calculations revealed that oxygen molecules were more favorably adsorbed and activated on oxygen vacancies to form active oxygen species. Increasing the oxygen vacancy concentration within a certain range can effectively enrich the active oxygen species, therefore improving the oxidation rate of ethylbenzene. The optimized mCo3O4-0.1NiO catalyst exhibited a remarkable catalytic activity for the solvent-free oxidation of ethylbenzene to acetophenone, typically including 68.0% conversion and 95.4% selectivity (20 mg mCo3O4-0.1NiO, 10 mL ethylbenzene, and 0.6 MPa O2).
Collapse
Affiliation(s)
- Yali Liu
- Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bing Lu
- Advanced Materials and Catalysis Group, State Key Laboratory of Clean Energy Utilization, Center of Chemistry for Frontier Technologies, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Honghui Ning
- Advanced Materials and Catalysis Group, State Key Laboratory of Clean Energy Utilization, Center of Chemistry for Frontier Technologies, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Liwei Zhang
- Advanced Materials and Catalysis Group, State Key Laboratory of Clean Energy Utilization, Center of Chemistry for Frontier Technologies, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Qian Luo
- Advanced Materials and Catalysis Group, State Key Laboratory of Clean Energy Utilization, Center of Chemistry for Frontier Technologies, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Heng Ban
- Advanced Materials and Catalysis Group, State Key Laboratory of Clean Energy Utilization, Center of Chemistry for Frontier Technologies, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, State Key Laboratory of Clean Energy Utilization, Center of Chemistry for Frontier Technologies, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| |
Collapse
|
4
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Habib U. Insight in the methylene C-H bond cleavage of ethylbenzene during ethylbenzene hydroxylation using EBDH as a catalyst, a DFT studies. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydroxylation of ethylbenzene to (S)-1-phenylethanol with the help of Ethylbenzene dehydrogenase (EBDH) is a stereospecific catalytic reaction. This hydroxylation process involves the C-H bond cleavage of methylene part of ethylbenzene and transfer of its hydrogen to the oxygen atom attached with the metal at the active site of EBDH as a first step which leads to the formation of an intermediate. The second step involves the transfer of OH from the active site metal back to the carbon of intermediate resulting in the formation of (S)-1-phenylethanol. This C-H bond cleavage could be homolytic or heterolytic and directly affect the reaction mechanism of ethylbenzene hydroxylation. In this article, Density Functional Theory (DFT) studies were performed on the ethylbenzene bound EBDH active site model complexes to investigate the impact of C-H bond cleavage of methylene part of ethylbenzene on the reaction mechanism of ethylbenzene hydroxylation. For this, different protonation states and participation of amino acid residues near the Mo center of EBDH were considered. Models with protonation of His192, Lys450, Asp223, and model without protonation were investigated for comparison. Computed relative energies indicate that the overall lowest energy barrier pathway results when ionic (heterolytic) and radical (homolytic) pathways are combined.
Collapse
Affiliation(s)
- Uzma Habib
- National University of Sciences and Technology, 66959, SINES, Islamabad, Pakistan
| |
Collapse
|
6
|
Le CC, Bae M, Kiamehr S, Balskus EP. Emerging Chemical Diversity and Potential Applications of Enzymes in the DMSO Reductase Superfamily. Annu Rev Biochem 2022; 91:475-504. [PMID: 35320685 DOI: 10.1146/annurev-biochem-032620-110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molybdenum- and tungsten-dependent proteins catalyze essential processes in living organisms and biogeochemical cycles. Among these enzymes, members of the dimethyl sulfoxide (DMSO) reductase superfamily are considered the most diverse, facilitating a wide range of chemical transformations that can be categorized as oxygen atom installation, removal, and transfer. Importantly, DMSO reductase enzymes provide high efficiency and excellent selectivity while operating under mild conditions without conventional oxidants such as oxygen or peroxides. Despite the potential utility of these enzymes as biocatalysts, such applications have not been fully explored. In addition, the vast majority of DMSO reductase enzymes still remain uncharacterized. In this review, we describe the reactivities, proposed mechanisms, and potential synthetic applications of selected enzymes in the DMSO reductase superfamily. We also highlight emerging opportunities to discover new chemical activity and current challenges in studying and engineering proteins in the DMSO reductase superfamily. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Chi Chip Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
7
|
Hagel C, Blaum B, Friedrich T, Heider J. Characterisation of the redox centers of ethylbenzene dehydrogenase. J Biol Inorg Chem 2021; 27:143-154. [PMID: 34843002 PMCID: PMC8840923 DOI: 10.1007/s00775-021-01917-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
Ethylbenzene dehydrogenase (EbDH), the initial enzyme of anaerobic ethylbenzene degradation from the beta-proteobacterium Aromatoleum aromaticum, is a soluble periplasmic molybdenum enzyme consisting of three subunits. It contains a Mo-bis-molybdopterin guanine dinucleotide (Mo-bis-MGD) cofactor and an 4Fe-4S cluster (FS0) in the α-subunit, three 4Fe-4S clusters (FS1 to FS3) and a 3Fe-4S cluster (FS4) in the β-subunit and a heme b cofactor in the γ-subunit. Ethylbenzene is hydroxylated by a water molecule in an oxygen-independent manner at the Mo-bis-MGD cofactor, which is reduced from the MoVI to the MoIV state in two subsequent one-electron steps. The electrons are then transferred via the Fe-S clusters to the heme b cofactor. In this report, we determine the midpoint redox potentials of the Mo-bis-MGD cofactor and FS1-FS4 by EPR spectroscopy, and that of the heme b cofactor by electrochemically induced redox difference spectroscopy. We obtained relatively high values of > 250 mV both for the MoVI-MoV redox couple and the heme b cofactor, whereas FS2 is only reduced at a very low redox potential, causing magnetic coupling with the neighboring FS1 and FS3. We compare the results with the data on related enzymes and interpret their significance for the function of EbDH.
Collapse
Affiliation(s)
- Corina Hagel
- Labor für Mikrobielle Biochemie and Synmikro Zentrum für Synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg, Germany
| | - Bärbel Blaum
- Institut für Biochemie, Albert-Ludwigs Universität, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs Universität, Albertstr. 21, 79104, Freiburg im Breisgau, Germany.
| | - Johann Heider
- Labor für Mikrobielle Biochemie and Synmikro Zentrum für Synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg, Germany.
| |
Collapse
|
8
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Perna canaliculus as an Ecological Material in the Removal of o-Cresol Pollutants from Soil. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6685. [PMID: 34772211 PMCID: PMC8588315 DOI: 10.3390/ma14216685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Soil contamination with cresol is a problem of the 21st century and poses a threat to soil microorganisms, humans, animals, and plants. The lack of precise data on the potential toxicity of o-cresol in soil microbiome and biochemical activity, as well as the search for effective remediation methods, inspired the aim of this study. Soil is subjected to four levels of contamination with o-cresol: 0, 0.1, 1, 10, and 50 mg o-cresol kg-1 dry matter (DM) of soil and the following are determined: the count of eight groups of microorganisms, colony development index (CD) and ecophysiological diversity index (EP) for organotrophic bacteria, actinobacteria and fungi, and the bacterial genetic diversity. Moreover, the responses of seven soil enzymes are investigated. Perna canaliculus is a recognized biosorbent of organic pollutants. Therefore, microbial biostimulation with Perna canaliculus shells is used to eliminate the negative effect of the phenolic compound on the soil microbiome. Fungi appears to be the microorganisms most sensitive to o-cresol, while Pseudomonas sp. is the least sensitive. In o-cresol-contaminated soils, the microbiome is represented mainly by the bacteria of the Proteobacteria and Firmicutes phyla. Acid phosphatase, alkaline phosphatase and urease can be regarded as sensitive indicators of soil disturbance. Perna canaliculus shells prove to be an effective biostimulator of soil under pressure with o-cresol.
Collapse
Affiliation(s)
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10727 Olsztyn, Poland; (M.Z.); (A.B.); (J.K.)
| | | | | |
Collapse
|
9
|
Zaborowska M, Wyszkowska J, Borowik A. Soil Microbiome Response to Contamination with Bisphenol A, Bisphenol F and Bisphenol S. Int J Mol Sci 2020; 21:ijms21103529. [PMID: 32429402 PMCID: PMC7278947 DOI: 10.3390/ijms21103529] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 01/13/2023] Open
Abstract
The choice of the study objective was affected by numerous controversies and concerns around bisphenol F (BPF) and bisphenol S (BPS)—analogues of bisphenol A (BPA). The study focused on the determination and comparison of the scale of the BPA, BPF, and BPS impact on the soil microbiome and its enzymatic activity. The following parameters were determined in soil uncontaminated and contaminated with BPA, BPF, and BPS: the count of eleven groups of microorganisms, colony development (CD) index, microorganism ecophysiological diversity (EP) index, genetic diversity of bacteria and activity of dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), arylsulphatase (Aryl) and β-glucosidase (Glu). Bisphenols A, S and F significantly disrupted the soil homeostasis. BPF is regarded as the most toxic, followed by BPS and BPA. BPF and BPS reduced the abundance of Proteobacteria and Acidobacteria and increased that of Actinobacteria. Unique types of bacteria were identified as well as the characteristics of each bisphenol: Lysobacter, Steroidobacter, Variovorax, Mycoplana, for BPA, Caldilinea, Arthrobacter, Cellulosimicrobium and Promicromonospora for BPF and Dactylosporangium Geodermatophilus, Sphingopyxis for BPS. Considering the strength of a negative impact of bisphenols on the soil biochemical activity, they can be arranged as follows: BPS > BPF > BPA. Urease and arylsulphatase proved to be the most susceptible and dehydrogenases the least susceptible to bisphenols pressure, regardless of the study duration.
Collapse
|
10
|
Anderson ME, Braïda B, Hiberty PC, Cundari TR. Revealing a Decisive Role for Secondary Coordination Sphere Nucleophiles on Methane Activation. J Am Chem Soc 2020; 142:3125-3131. [PMID: 31951407 DOI: 10.1021/jacs.9b12644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Density functional theory and ab initio calculations indicate that nucleophiles can significantly reduce enthalpic barriers to methane C-H bond activation. Valence bond analysis suggests the formation of a two-center three-electron bond as the origin for the catalytic nucleophile effect. A predictive model for methane activation catalysis follows, which suggests that strongly electron-attracting and electron-rich radicals, together with both a negatively charged and strongly electron-donating outer sphere nucleophile, result in the lowest reaction barriers. It is corroborated by the sensitivity of the calculated C-H activation barriers to the external nucleophile and to continuum solvent polarity. More generally, from the present studies, one may propose proteins with hydrophobic active sites, available strong nucleophiles, and hydrogen bond donors as attractive targets for engineering novel methane functionalizing enzymes.
Collapse
Affiliation(s)
- Mary E Anderson
- Department of Chemistry and Biochemistry , Texas Woman's University , Denton , Texas 76204 , United States
| | - Benoît Braïda
- Laboratoire de Chimie Théorique , Sorbonne Université , UMR7616 CNRS, Paris 75252 , France
| | - Philippe C Hiberty
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000 , Orsay 91405 , France
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM) , University of North Texas , Denton , Texas 76203 , United States
| |
Collapse
|
11
|
Zaborowska M, Wyszkowska J, Kucharski J. Soil enzyme response to bisphenol F contamination in the soil bioaugmented using bacterial and mould fungal consortium. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 192:20. [PMID: 31820108 DOI: 10.1007/s10661-019-7999-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
The concept of the study resulted from the lack of accurate data on the toxicity of bisphenol F (BPF) coinciding with the need for immediate changes in the global economic policy eliminating the effects of environmental contamination with bisphenol A (BPA). The aim of the experiment was to determine the scale of the previously unstudied inhibitory effect of BPF on soil biochemical activity. To this end, in a soil subjected to increasing BPF pressure at three contamination levels of 0, 5, 50 and 500 mg BPF kg-1 DM, responses of soil enzymes, dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulphatase and β-glucosidase, were examined. Moreover, the study suggested a potentially effective way of biostimulating the soil by means of bioaugmentation with a consortium of four bacterial species: Pseudomonas umsongensis, Bacillus mycoides, Bacillus weihenstephanensis and Bacillus subtilis, and the following fungal species: Mucor circinelloides, Penicillium daleae, Penicillium chrysogenum and Aspergillus niger. It was found that BPF was a controversial BPA analogue due to the fact that it contributed to the inhibition of all the enzyme activities. Dehydrogenases proved to be the most sensitive to bisphenol contamination of the soil. The addition of 5 mg BPF kg-1 DM of soil triggered an escalation of the inhibition comparable to that for the other enzymes only after exposing them to the effects of 50 and 500 mg BPF kg-1 DM of soil. Moreover, BPF generated low activity of urease, acid phosphatase, alkaline phosphatase and β-glucosidase. Bacterial inoculum increased the activity of urease, β-glucosidase, catalase and alkaline phosphatase. Seventy-six percent of BPF underwent biodegradation during the 5 days of the study.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland.
| | - Jan Kucharski
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| |
Collapse
|
12
|
Daudzai Z, Treesubsuntorn C, Thiravetyan P. Inoculated Clitoria ternatea with Bacillus cereus ERBP for enhancing gaseous ethylbenzene phytoremediation: Plant metabolites and expression of ethylbenzene degradation genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:50-60. [PMID: 30096603 DOI: 10.1016/j.ecoenv.2018.07.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 05/22/2023]
Abstract
Air pollutants especially polyaromatic hydrocarbons pose countless threats to the environment. This issue demands for an effective phytoremediation technology. In this study we report the beneficial interactions of Clitoria ternatea and its plant growth promoting endophytic bacteria Bacillus cereus ERBP by inoculating it for the remediation of 5 ppm airborne ethylbenzene (EB). The percentage efficiency for ethylbenzene removal among B. cereus ERBP inoculated and non-inoculated sterile and natural C. ternatea has also been determined. The inoculation of B. cereus ERBP has significantly increased EB removal efficiency of both sterile and natural C. ternatea. The inoculated natural C. ternatea seedlings showed 100% removal efficiency within 84 h for the aforementioned pollutant compared with the sterile inoculated C. ternatea seedlings (108 h). The degradation of EB by C. ternatea seedlings with and without B. cereus ERBP was assessed by measuring the intermediates of EB including 1-phenylethanol, acetophenon, benzaldehyde and benzoic acid. In addition, cytochrome P450s monooxygenase (CYP83D1) and dehydrogenases (LOC100783159) involved in the oxidation of hydrocarbons are well reported for their bio catalytic activities under xenobiotic stress conditions. Hence, the co-effect of the native endophyte B. cereus ERBP inoculation and EB exposure on the expression level of CYP83D1 and dehydrogenase were also determined. The targeted genes CYP83D1and dehydrogenases have shown an increased expression level under the 5 ppm of EB exposure enabling C. ternatea to withstand and remediate the pollutant.
Collapse
Affiliation(s)
- Zubaida Daudzai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
13
|
Szaleniec M, Wojtkiewicz AM, Bernhardt R, Borowski T, Donova M. Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms. Appl Microbiol Biotechnol 2018; 102:8153-8171. [PMID: 30032434 PMCID: PMC6153880 DOI: 10.1007/s00253-018-9239-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
Abstract
The steroid superfamily includes a wide range of compounds that are essential for living organisms of the animal and plant kingdoms. Structural modifications of steroids highly affect their biological activity. In this review, we focus on hydroxylation of steroids by bacterial hydroxylases, which take part in steroid catabolic pathways and play an important role in steroid degradation. We compare three distinct classes of metalloenzymes responsible for aerobic or anaerobic hydroxylation of steroids, namely: cytochrome P450, Rieske-type monooxygenase 3-ketosteroid 9α-hydroxylase, and molybdenum-containing steroid C25 dehydrogenases. We analyze the available literature data on reactivity, regioselectivity, and potential application of these enzymes in organic synthesis of hydroxysteroids. Moreover, we describe mechanistic hypotheses proposed for all three classes of enzymes along with experimental and theoretical evidences, which have provided grounds for their formulation. In case of the 3-ketosteroid 9α-hydroxylase, such a mechanistic hypothesis is formulated for the first time in the literature based on studies conducted for other Rieske monooxygenases. Finally, we provide comparative analysis of similarities and differences in the reaction mechanisms utilized by bacterial steroid hydroxylases.
Collapse
Affiliation(s)
- Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Rita Bernhardt
- Lehrstuhl für Biochemie, Universität des Saarlandes, Campus B2 2, 66123, Saarbrücken, Germany
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Oblast, 142290, Russia
| |
Collapse
|
14
|
Jimenez-Halla JOC, Nazemi A, Cundari TR. DFT study of substituent effects in the hydroxylation of methane and toluene mediated by an ethylbenzene dehydrogenase active site model. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Rugor A, Wójcik-Augustyn A, Niedzialkowska E, Mordalski S, Staroń J, Bojarski A, Szaleniec M. Reaction mechanism of sterol hydroxylation by steroid C25 dehydrogenase - Homology model, reactivity and isoenzymatic diversity. J Inorg Biochem 2017; 173:28-43. [PMID: 28482186 DOI: 10.1016/j.jinorgbio.2017.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/29/2022]
Abstract
Steroid C25 dehydrogenase (S25DH) is a molybdenum-containing oxidoreductase isolated from the anaerobic Sterolibacterium denitrificans Chol-1S. S25DH is classified as 'EBDH-like' enzyme (EBDH, ethylbenzene dehydrogenase) and catalyzes the introduction of an OH group to the C25 atom of a sterol aliphatic side-chain. Due to its regioselectivity, S25DH is proposed as a catalyst in production of pharmaceuticals: calcifediol or 25-hydroxycholesterol. The aim of presented research was to obtain structural model of catalytic subunit α and investigate the reaction mechanism of the O2-independent tertiary carbon atom activation. Based on homology modeling and theoretical calculations, a S25DH α subunit model was for the first time characterized and compared to other S25DH-like isoforms. The molecular dynamics simulations of the enzyme-substrate complexes revealed two stable binding modes of a substrate, which are stabilized predominantly by van der Waals forces in the hydrophobic substrate channel. However, H-bond interactions involving polar residues with C3=O/C3-OH in the steroid ring appear to be responsible for positioning the substrate. These results may explain the experimental kinetic results which showed that 3-ketosterols are hydroxylated 5-10-fold faster than 3-hydroxysterols. The reaction mechanism was studied using QM:MM and QM-only cluster models. The postulated mechanism involves homolytic CH cleavage by the MoO ligand, giving rise to a radical intermediate with product obtained in an OH rebound process. The hypothesis was supported by kinetic isotopic effect (KIE) experiments involving 25,26,26,26-[2H]-cholesterol (4.5) and the theoretically predicted intrinsic KIE (7.0-7.2). Finally, we have demonstrated that the recombinant S25DH-like isoform catalyzes the same reaction as S25DH.
Collapse
Affiliation(s)
- Agnieszka Rugor
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Anna Wójcik-Augustyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, JU, Krakow, Poland
| | - Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Stefan Mordalski
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Jakub Staroń
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrzej Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
16
|
Okamura T, Yamada T, Hasenaka Y, Yamashita S, Onitsuka K. Unexpected Reaction Promoted by NH+···O=Mo Hydrogen Bonds in Nonpolar Solvents. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taka‐aki Okamura
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Takayoshi Yamada
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Yuki Hasenaka
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Satoshi Yamashita
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| |
Collapse
|
17
|
Heider J, Szaleniec M, Sünwoldt K, Boll M. Ethylbenzene Dehydrogenase and Related Molybdenum Enzymes Involved in Oxygen-Independent Alkyl Chain Hydroxylation. J Mol Microbiol Biotechnol 2016; 26:45-62. [PMID: 26960184 DOI: 10.1159/000441357] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ethylbenzene dehydrogenase initiates the anaerobic bacterial degradation of ethylbenzene and propylbenzene. Although the enzyme is currently only known from a few closely related denitrifying bacterial strains affiliated to the Rhodocyclaceae, it clearly marks a universally occurring mechanism used for attacking recalcitrant substrates in the absence of oxygen. Ethylbenzene dehydrogenase belongs to subfamily 2 of the DMSO reductase-type molybdenum enzymes together with paralogous enzymes involved in the oxygen-independent hydroxylation of p-cymene, the isoprenoid side chains of sterols and even possibly n-alkanes; the subfamily also extends to dimethylsulfide dehydrogenases, selenite, chlorate and perchlorate reductases and, most significantly, dissimilatory nitrate reductases. The biochemical, spectroscopic and structural properties of the oxygen-independent hydroxylases among these enzymes are summarized and compared. All of them consist of three subunits, contain a molybdenum-bis-molybdopterin guanine dinucleotide cofactor, five Fe-S clusters and a heme b cofactor of unusual ligation, and are localized in the periplasmic space as soluble enzymes. In the case of ethylbenzene dehydrogenase, it has been determined that the heme b cofactor has a rather high redox potential, which may also be inferred for the paralogous hydroxylases. The known structure of ethylbenzene dehydrogenase allowed the calculation of detailed models of the reaction mechanism based on the density function theory as well as QM-MM (quantum mechanics - molecular mechanics) methods, which yield predictions of mechanistic properties such as kinetic isotope effects that appeared consistent with experimental data.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory of Microbial Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
18
|
Rabus R, Boll M, Golding B, Wilkes H. Anaerobic Degradation of p-Alkylated Benzoates and Toluenes. J Mol Microbiol Biotechnol 2016; 26:63-75. [PMID: 26960059 DOI: 10.1159/000441144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The anaerobic degradation of 4-alkylbenzoates and 4-alkyltoluenes is to date a rarely reported microbial capacity. The newly isolated Alphaproteobacterium Magnetospirillum sp. strain pMbN1 represents the first pure culture demonstrated to degrade 4-methylbenzoate completely to CO2 in a process coupled to denitrification. Differential proteogenomic studies in conjunction with targeted metabolite analyses and enzyme activity measurements elucidated a specific 4-methylbenzoyl-coenzyme A (CoA) pathway in this bacterium alongside the classical central benzoyl-CoA pathway. Whilst these two pathways are analogous, in the former the p-methyl group is retained and its 4-methylbenzoyl-CoA reductase (MbrCBAD) is phylogenetically distinct from the archetypical class I benzoyl-CoA reductase (BcrCBAD). Subsequent global regulatory studies on strain pMbN1 grown with binary or ternary substrate mixtures revealed benzoate to repress the anaerobic utilization of 4-methylbenzoate and succinate. The shared nutritional property of betaproteobacterial 'Aromatoleum aromaticum' pCyN1 and Thauera sp. strain pCyN2 is the anaerobic degradation of the plant-derived hydrocarbon p-cymene (4-isopropyltoluene) coupled to denitrification. Notably, the two strains employ two different peripheral pathways for the conversion of p-cymene to 4-isopropylbenzoyl-CoA as the possible first common intermediate. In 'A. aromaticum' pCyN1 a putative p-cymene dehydrogenase (CmdABC) is proposed to hydroxylate the benzylic methyl group, which is subsequently further oxidized to the CoA-thioester. In contrast, Thauera sp. strain pCyN2 employs a reaction sequence analogous to the known anaerobic toluene pathway, involving a distinct branching (4-isopropylbenzyl)succinate synthase (IbsABCDEF).
Collapse
Affiliation(s)
- Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | |
Collapse
|
19
|
Kalimuthu P, Heider J, Knack D, Bernhardt PV. Electrocatalytic Hydrocarbon Hydroxylation by Ethylbenzene Dehydrogenase from Aromatoleum aromaticum. J Phys Chem B 2015; 119:3456-63. [DOI: 10.1021/jp512562k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry
and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Johann Heider
- Laboratory for
Microbial Biochemistry and Synmikro Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Daniel Knack
- Laboratory for
Microbial Biochemistry and Synmikro Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Paul V. Bernhardt
- School of Chemistry
and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
20
|
Tataruch M, Heider J, Bryjak J, Nowak P, Knack D, Czerniak A, Liesiene J, Szaleniec M. Suitability of the hydrocarbon-hydroxylating molybdenum-enzyme ethylbenzene dehydrogenase for industrial chiral alcohol production. J Biotechnol 2014; 192 Pt B:400-9. [DOI: 10.1016/j.jbiotec.2014.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/23/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
21
|
Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol 2014; 80:7592-603. [PMID: 25261521 DOI: 10.1128/aem.02385-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The betaproteobacteria "Aromatoleum aromaticum" pCyN1 and "Thauera" sp. strain pCyN2 anaerobically degrade the plant-derived aromatic hydrocarbon p-cymene (4-isopropyltoluene) under nitrate-reducing conditions. Metabolite analysis of p-cymene-adapted "A. aromaticum" pCyN1 cells demonstrated the specific formation of 4-isopropylbenzyl alcohol and 4-isopropylbenzaldehyde, whereas with "Thauera" sp. pCyN2, exclusively 4-isopropylbenzylsuccinate and tentatively identified (4-isopropylphenyl)itaconate were observed. 4-Isopropylbenzoate in contrast was detected with both strains. Proteogenomic investigation of p-cymene- versus succinate-adapted cells of the two strains revealed distinct protein profiles agreeing with the different metabolites formed from p-cymene. "A. aromaticum" pCyN1 specifically produced (i) a putative p-cymene dehydrogenase (CmdABC) expected to hydroxylate the benzylic methyl group of p-cymene, (ii) two dehydrogenases putatively oxidizing 4-isopropylbenzyl alcohol (Iod) and 4-isopropylbenzaldehyde (Iad), and (iii) the putative 4-isopropylbenzoate-coenzyme A (CoA) ligase (Ibl). The p-cymene-specific protein profile of "Thauera" sp. pCyN2, on the other hand, encompassed proteins homologous to subunits of toluene-activating benzylsuccinate synthase (termed [4-isopropylbenzyl]succinate synthase IbsABCDEF; identified subunits, IbsAE) and protein homologs of the benzylsuccinate β-oxidation (Bbs) pathway (termed BisABCDEFGH; all identified except for BisEF). This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA.
Collapse
|
22
|
Dorer C, Vogt C, Kleinsteuber S, Stams AJM, Richnow HH. Compound-specific isotope analysis as a tool to characterize biodegradation of ethylbenzene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9122-32. [PMID: 24971724 DOI: 10.1021/es500282t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study applied one- and two-dimensional compound-specific isotope analysis (CSIA) for the elements carbon and hydrogen to assess different means of microbial ethylbenzene activation. Cultures incubated under nitrate-reducing conditions showed significant carbon and highly pronounced hydrogen isotope fractionation of comparable magnitudes, leading to nearly identical slopes in dual-isotope plots. The results imply that Georgfuchsia toluolica G5G6 and an enrichment culture dominated by an Azoarcus species activate ethylbenzene by anaerobic hydroxylation catalyzed by ethylbenzene dehydrogenase, similar to Aromatoleum aromaticum EbN1. The isotope enrichment pattern in dual plots from two strictly anaerobic enrichment cultures differed considerably from those for benzylic hydroxylation, indicating an alternative anaerobic activation step, most likely fumarate addition. Large hydrogen fractionation was quantified using a recently developed Rayleigh-based approach considering hydrogen atoms at reactive sites. Data from nine investigated microbial cultures clearly suggest that two-dimensional CSIA in combination with the magnitude of hydrogen isotope fractionation is a valuable tool to distinguish ethylbenzene degradation and may be of practical use for monitoring natural or technological remediation processes at field sites.
Collapse
Affiliation(s)
- Conrad Dorer
- Department of Isotope Biogeochemistry and §Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research , Permoserstrasse 15, D-04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
23
|
Szaleniec M, Dudzik A, Kozik B, Borowski T, Heider J, Witko M. Mechanistic basis for the enantioselectivity of the anaerobic hydroxylation of alkylaromatic compounds by ethylbenzene dehydrogenase. J Inorg Biochem 2014; 139:9-20. [PMID: 24950385 DOI: 10.1016/j.jinorgbio.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 11/26/2022]
Abstract
The enantioselectivity of reactions catalyzed by ethylbenzene dehydrogenase, a molybdenum enzyme that catalyzes the oxygen-independent hydroxylation of many alkylaromatic and alkylheterocyclic compounds to secondary alcohols, was studied by chiral chromatography and theoretical modeling. Chromatographic analyses of 22 substrates revealed that this enzyme exhibits remarkably high reaction enantioselectivity toward (S)-secondary alcohols (18 substrates converted with >99% ee). Theoretical QM:MM modeling was used to elucidate the structure of the catalytically active form of the enzyme and to study the reaction mechanism and factors determining its high degree of enantioselectivity. This analysis showed that the enzyme imposes strong stereoselectivity on the reaction by discriminating the hydrogen atom abstracted from the substrate. Activation of the pro(S) hydrogen atom was calculated to be 500 times faster than of the pro(R) hydrogen atom. The actual hydroxylation step (i.e., hydroxyl group rebound reaction to a carbocation intermediate) does not appear to be enantioselective enough to explain the experimental data (the calculated rate ratios were in the range of only 2-50 for pro(S): pro(R)-oriented OH rebound).
Collapse
Affiliation(s)
- Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland.
| | - Agnieszka Dudzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| | - Bartłomiej Kozik
- Department of Organic Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| | - Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
| | - Małgorzata Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| |
Collapse
|
24
|
Dorer C, Höhener P, Hedwig N, Richnow HH, Vogt C. Rayleigh-based concept to tackle strong hydrogen fractionation in dual isotope analysis-the example of ethylbenzene degradation by Aromatoleum aromaticum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5788-5797. [PMID: 24738781 DOI: 10.1021/es404837g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Compound-specific isotope analysis (CSIA) is a state-of-the-art analytical tool that can be used to establish and quantify biodegradation of pollutants such as BTEX compounds at contaminated field sites. Using isotopes of two elements and characteristic Lambda values (Λ) in dual-isotope-plots can provide insight into reaction mechanisms because kinetic isotope effects (KIEs) of both elements are reflected. However, the concept's validity in the case of reactions that show strong isotope fractionation needs to be examined. The anaerobic ethylbenzene degradation pathway of Aromatoleum aromaticum is initiated by the ethylbenzene dehydrogenase-catalyzed monohydroxylation of the benzylic carbon atom. Measurements of stable isotope ratios revealed highly pronounced hydrogen fractionation, which could not be adequately described by the classical Rayleigh approach. This study demonstrates the nonlinear behavior of hydrogen isotope ratios caused by anaerobic ethylbenzene hydroxylation both mathematically and experimentally, develops alternative dual plots to enable the comparison of reactions by considering the reacting atoms, and illustrates the importance of the stereochemical aspects of substrate and product for the quantification of hydrogen fractionation in an enzymatic reaction. With regard to field application, proposals for an improved CSIA evaluation procedure with respect to pronounced hydrogen enrichment are given.
Collapse
Affiliation(s)
- Conrad Dorer
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ , D-04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
26
|
Xie H, Yang L, Ye X, Cao Z. Mechanism of Carbon Monoxide Induced N–N Bond Cleavage of Nitrous Oxide Mediated by Molybdenum Complexes: A DFT Study. Organometallics 2014. [DOI: 10.1021/om400935f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310035, People’s Republic of China
| | - Liu Yang
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310035, People’s Republic of China
| | - Xinchen Ye
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310035, People’s Republic of China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry
of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical
and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
27
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 441] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
28
|
Boll M, Löffler C, Morris BEL, Kung JW. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 2013; 16:612-27. [PMID: 24238333 DOI: 10.1111/1462-2920.12328] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/03/2013] [Indexed: 11/28/2022]
Abstract
Next to carbohydrates, aromatic compounds are the second most abundant class of natural organic molecules in living organic matter but also make up a significant proportion of fossil carbon sources. Only microorganisms are capable of fully mineralizing aromatic compounds. While aerobic microbes use well-studied oxygenases for the activation and cleavage of aromatic rings, anaerobic bacteria follow completely different strategies to initiate catabolism. The key enzymes related to aromatic compound degradation in anaerobic bacteria are comprised of metal- and/or flavin-containing cofactors, of which many use unprecedented radical mechanisms for C-H bond cleavage or dearomatization. Over the past decade, the increasing number of completed genomes has helped to reveal a large variety of anaerobic degradation pathways in Proteobacteria, Gram-positive microbes and in one archaeon. This review aims to update our understanding of the occurrence of aromatic degradation capabilities in anaerobic microorganisms and serves to highlight characteristic enzymatic reactions involved in (i) the anoxic oxidation of alkyl side chains attached to aromatic rings, (ii) the carboxylation of aromatic rings and (iii) the reductive dearomatization of central arylcarboxyl-coenzyme A intermediates. Depending on the redox potential of the electron acceptors used and the metabolic efficiency of the cell, different strategies may be employed for identical overall reactions.
Collapse
Affiliation(s)
- Matthias Boll
- Institute for Biology II, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
29
|
Dudzik A, Kozik B, Tataruch M, Wójcik A, Knack D, Borowski T, Heider J, Witko M, Szaleniec M. The reaction mechanism of chiral hydroxylation of p-OH and p-NH2 substituted compounds by ethylbenzene dehydrogenase. CAN J CHEM 2013. [DOI: 10.1139/cjc-2012-0504] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethylbenzene dehydrogenase (EbDH; enzyme commission (EC) number: 1.17.99.2) is a unique biocatalyst that hydroxylates alkylaromatic and alkylheterocyclic compounds to (S)-secondary alcohols under anaerobic conditions. The enzyme exhibits a high promiscuity catalyzing oxidation of over 30 substrates, inter alia, para-substituted alkylphenols and alkylanilines. Secondary alcohols with OH and NH2 substituents in the aromatic ring are highly valuable synthons for many biologically active compounds in the fine chemical industry. EbDH hydroxylates most of the studied compounds highly enantioselectively, except for five substrates that harbour OH and NH2 groups in the para position, which exhibit a significant decrease in the percent enantiomeric excess (% ee). This phenomenon is inconsistent with the previously suggested enzyme mechanism, but it may be linked to a stabilization of the carbocation intermediate by deprotonation of the OH or NH2 substituent in the active site that yields a transient quinone (imine) ethide species. This would initiate an alternative reaction pathway involving the addition of a water molecule to a C=C double bond. This hypothesis was cross-validated by density functional theory (DFT) cluster modelling of the alternative reaction pathway with 4-ethylphenol, as well as by experimental assessment of the pH dependency of enantiomeric excesses. The results reported herein suggest that the alternative reaction pathway may significantly contribute to the overall reaction if the carbocation intermediates are stabilized by deprotonation.
Collapse
Affiliation(s)
- Agnieszka Dudzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Niezapominajek 8, 30-239 Kraków, Poland
| | - Bartłomiej Kozik
- Department of Organic Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| | - Mateusz Tataruch
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Niezapominajek 8, 30-239 Kraków, Poland
| | - Anna Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Niezapominajek 8, 30-239 Kraków, Poland
| | - Daniel Knack
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Niezapominajek 8, 30-239 Kraków, Poland
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Niezapominajek 8, 30-239 Kraków, Poland
| | - Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
| | - Małgorzata Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Niezapominajek 8, 30-239 Kraków, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Niezapominajek 8, 30-239 Kraków, Poland
| |
Collapse
|
30
|
Knack DH, Marshall JL, Harlow GP, Dudzik A, Szaleniec M, Liu SY, Heider J. BN/CC isosteric compounds as enzyme inhibitors: N- and B-ethyl-1,2-azaborine inhibit ethylbenzene hydroxylation as nonconvertible substrate analogues. Angew Chem Int Ed Engl 2013; 52:2599-601. [PMID: 23355270 PMCID: PMC3748812 DOI: 10.1002/anie.201208351] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/27/2012] [Indexed: 11/05/2022]
Abstract
Good substrate gone bad! BN/CC isosterism of ethylbenzene leads to N-ethyl-1,2-azaborine and B-ethyl-1,2-azaborine. In contrast to ethylbenzene, which is the substrate for ethylbenzene dehydrogenase (EbDH), N-ethyl-1,2-azaborine (see scheme; Fc=Ferricenium tetrafluoroborate) and B-ethyl-1,2-azaborine are strong inhibitors of EbDH. Thus, the changes provided by BN/CC isosterism can lead to new biochemical reactivity.
Collapse
Affiliation(s)
- Daniel H. Knack
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043 Marburg (Germany)
| | | | - Gregory P. Harlow
- Department of Chemistry, University of Oregon, Eugene, OR, 97403-1253 (USA)
| | - Agnieszka Dudzik
- Jerzy Haber Institute for Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Kraków (Poland)
| | - Maciej Szaleniec
- Jerzy Haber Institute for Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Kraków (Poland)
| | - Shih-Yuan Liu
- Department of Chemistry, University of Oregon, Eugene, OR, 97403-1253 (USA)
| | - Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043 Marburg (Germany)
| |
Collapse
|
31
|
Why is the molybdenum-substituted tungsten-dependent formaldehyde ferredoxin oxidoreductase not active? A quantum chemical study. J Biol Inorg Chem 2013; 18:175-181. [PMID: 23183892 DOI: 10.1007/s00775-012-0961-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/13/2012] [Indexed: 01/12/2023]
Abstract
Formaldehyde ferredoxin oxidoreductase is a tungsten-dependent enzyme that catalyzes the oxidative degradation of formaldehyde to formic acid. The molybdenum ion can be incorporated into the active site to displace the tungsten ion, but is without activity. Density functional calculations have been employed to understand the incapacitation of the enzyme caused by molybdenum substitution. The calculations show that the enzyme with molybdenum (Mo-FOR) has higher redox potential than that with tungsten, which makes the formation of the Mo(VI)=O complex endothermic by 14 kcal/mol. Following our previously suggested mechanism for this enzyme, the formaldehyde substrate oxidation was also investigated for Mo-FOR using the same quantum-mechanics-only model, except for the displacement of tungsten by molybdenum. The calculations demonstrate that formaldehyde oxidation occurs via a sequential two-step mechanism. Similarly to the tungsten-catalyzed reaction, the Mo(VI)=O species performs the nucleophilic attack on the formaldehyde carbon, followed by proton transfer in concert with two-electron reduction of the metal center. The first step is rate-limiting, with a total barrier of 28.2 kcal/mol. The higher barrier is mainly due to the large energy penalty for the formation of the Mo(VI)=O species.
Collapse
|
32
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
33
|
Knack DH, Marshall JL, Harlow GP, Dudzik A, Szaleniec M, Liu SY, Heider J. BN/CC-isosterische Verbindungen als Enzyminhibitoren: Hemmung der Hydroxylierung von Ethylbenzol durchN- undB-Ethyl-1,2-azaborin als nichtkonvertierbare Substratanaloga. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208351] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Guan Y, Yang B. Kinetic modeling for hydrogen-abstraction reaction of methylcyclohexane with the CH3 radical. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2012.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Substrate and inhibitor spectra of ethylbenzene dehydrogenase: perspectives on application potential and catalytic mechanism. Appl Environ Microbiol 2012; 78:6475-82. [PMID: 22773630 DOI: 10.1128/aem.01551-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ethylbenzene dehydrogenase (EbDH) catalyzes the initial step in anaerobic degradation of ethylbenzene in denitrifying bacteria, namely, the oxygen-independent hydroxylation of ethylbenzene to (S)-1-phenylethanol. In our study we investigate the kinetic properties of 46 substrate analogs acting as substrates or inhibitors of the enzyme. The apparent kinetic parameters of these compounds give important insights into the function of the enzyme and are consistent with the predicted catalytic mechanism based on a quantum chemical calculation model. In particular, the existence of the proposed substrate-derived radical and carbocation intermediates is substantiated by the formation of alternative dehydrogenated and hydroxylated products from some substrates, which can be regarded as mechanistic models. In addition, these results also show the surprisingly high diversity of EbDH in hydroxylating different kinds of alkylaromatic and heterocyclic compounds to the respective alcohols. This may lead to attractive industrial applications of ethylbenzene dehydrogenase for a new process of producing alcohols via hydroxylation of the corresponding aromatic hydrocarbons rather than the customary procedure of reducing the corresponding ketones.
Collapse
|
36
|
Szaleniec M. Prediction of enzyme activity with neural network models based on electronic and geometrical features of substrates. Pharmacol Rep 2012; 64:761-81. [DOI: 10.1016/s1734-1140(12)70873-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/16/2012] [Indexed: 11/26/2022]
|
37
|
Abstract
Aromatic compounds are both common growth substrates for microorganisms and prominent environmental pollutants. The crucial step in their degradation is overcoming the resonance energy that stabilizes the ring structure. The classical strategy for degradation comprises an attack by oxygenases that hydroxylate and finally cleave the ring with the help of activated molecular oxygen. Here, we describe three alternative strategies used by microorganisms to degrade aromatic compounds. All three of these methods involve the use of CoA thioesters and ring cleavage by hydrolysis. However, these strategies are based on different ring activation mechanisms that consist of either formation of a non-aromatic ring-epoxide under oxic conditions, or reduction of the aromatic ring under anoxic conditions using one of two completely different systems.
Collapse
|
38
|
Guan Y, Yang B, Qi S, Yi C. Kinetic Modeling of the Free-Radical Process during the Initiated Thermal Cracking of Normal Alkanes with 1-Nitropropane as an Initiator. Ind Eng Chem Res 2011. [DOI: 10.1021/ie200515g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yulei Guan
- Department of Chemical Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Bolun Yang
- Department of Chemical Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Suitao Qi
- Department of Chemical Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Chunhai Yi
- Department of Chemical Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| |
Collapse
|
39
|
Ni Z, Zhou P, Jin X, Lin XF. Integrating In Silico and In vitro Approaches to Dissect the Stereoselectivity of Bacillus subtilis Lipase A toward Ketoprofen Vinyl Ester. Chem Biol Drug Des 2011; 78:301-8. [PMID: 21477088 DOI: 10.1111/j.1747-0285.2011.01097.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhong Ni
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | | | | |
Collapse
|
40
|
|
41
|
|
42
|
Theoretical investigation of the first-shell mechanism of acetylene hydration catalyzed by a biomimetic tungsten complex. J Biol Inorg Chem 2011; 16:745-52. [DOI: 10.1007/s00775-011-0775-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 03/17/2011] [Indexed: 11/25/2022]
|