1
|
Messina MS, Torrente L, Pezacki AT, Humpel HI, Li EL, Miller SG, Verdejo-Torres O, Padilla-Benavides T, Brady DC, Killilea DW, Killilea AN, Ralle M, Ward NP, Ohata J, DeNicola GM, Chang CJ. A histochemical approach to activity-based copper sensing reveals cuproplasia-dependent vulnerabilities in cancer. Proc Natl Acad Sci U S A 2025; 122:e2412816122. [PMID: 39813247 PMCID: PMC11761388 DOI: 10.1073/pnas.2412816122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Copper is an essential nutrient for sustaining vital cellular processes spanning respiration, metabolism, and proliferation. However, loss of copper homeostasis, particularly misregulation of loosely bound copper ions which are defined as the labile copper pool, occurs in major diseases such as cancer, where tumor growth and metastasis have a heightened requirement for this metal. To help decipher the role of copper in the etiology of cancer, we report a histochemical activity-based sensing approach that enables systematic, high-throughput profiling of labile copper status across many cell lines in parallel. Coppermycin-1 reacts selectively with Cu(I) to release puromycin, which is then incorporated into nascent peptides during protein translation, thus leaving a permanent and dose-dependent marker for labile copper that can be visualized with standard immunofluorescence assays. We showcase the utility of this platform for screening labile Cu(I) pools across the National Cancer Institute's 60 (NCI-60) human tumor cell line panel, identifying cell types with elevated basal levels of labile copper. Moreover, we use Coppermycin-1 to show that lung cancer cells with heightened activation of nuclear factor-erythroid 2-related factor 2 (NRF2) possess lower resting labile Cu(I) levels and, as a result, have reduced viability when treated with a copper chelator. This work establishes that methods for labile copper detection can be used to assess cuproplasia, an emerging form of copper-dependent cell growth and proliferation, providing a starting point for broader investigations into the roles of transition metal signaling in biology and medicine.
Collapse
Affiliation(s)
- Marco S. Messina
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Hanna I. Humpel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Erin L. Li
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Sophia G. Miller
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR97239
| | - Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT06459
| | | | - Donita C. Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David W. Killilea
- Office of Research, University of California, San Francisco, Oakland, CA94609
| | - Alison N. Killilea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR97239
| | - Nathan P. Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, NC27695
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
2
|
Zhan B, Ren LQ, Zhao J, Zhang H, He C. Catalytic asymmetric C-N cross-coupling towards boron-stereogenic 3-amino-BODIPYs. Nat Commun 2025; 16:438. [PMID: 39762224 PMCID: PMC11704012 DOI: 10.1038/s41467-024-55796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs. This approach features a broad substrate scope, excellent functional group tolerance, high efficiency, and remarkable enantioselectivities, under mild reaction conditions. Further stereospecific formation of chiral 3,5-diamino-BODIPYs, along with an investigation into the photophysical properties of the resulting optical BODIPYs are also explored. This asymmetric protocol not only enriches the chemical space of chiroptical BODIPY dyes but also contributes to the realm of chiral boron chemistry.
Collapse
Affiliation(s)
- Baoquan Zhan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, China
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Li-Qing Ren
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiayi Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, China.
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Jiang Y, El Khoury E, Pezacki AT, Qian N, Oi M, Torrente L, Miller SG, Ralle M, DeNicola GM, Min W, Chang CJ. An Activity-Based Sensing Approach to Multiplex Mapping of Labile Copper Pools by Stimulated Raman Scattering. J Am Chem Soc 2024; 146:33324-33337. [PMID: 39586074 DOI: 10.1021/jacs.4c06296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Molecular imaging with analyte-responsive probes offers a powerful chemical approach to studying biological processes. Many reagents for bioimaging employ a fluorescence readout, but the relatively broad emission bands of this modality and the need to alter the chemical structure of the fluorophore for different signal colors can potentially limit multiplex imaging. Here, we report a generalizable approach to multiplex analyte imaging by leveraging the comparably narrow spectral signatures of stimulated Raman scattering (SRS) in activity-based sensing (ABS) mode. We illustrate this concept with two copper Raman probes (CRPs), CRP2181 and CRP2153.2, that react selectively with loosely bound Cu(I/II) and Cu(II) ions, respectively, termed the labile copper pool, through copper-directed acyl imidazole (CDAI) chemistry. These reagents label proximal proteins in a copper-dependent manner using a dye scaffold bearing a 13C≡N or 13C≡15N isotopic SRS tag with nearly identical physiochemical properties in terms of shape and size. SRS imaging with the CRP reagents enables duplex monitoring of changes in intracellular labile Cu(I) and Cu(II) pools upon exogenous copper supplementation or copper depletion or genetic perturbations to copper transport proteins. Moreover, CRP imaging reveals reciprocal increases in labile Cu(II) pools upon decreases in activity of the antioxidant response nuclear factor-erythroid 2-related factor 2 (NRF2) in cellular models of lung adenocarcinoma. By showcasing the use of narrow-bandwidth ABS probes for multiplex imaging of copper pools in different oxidation states and identifying alterations in labile metal nutrient pools in cancer, this work establishes a foundation for broader SRS applications in analyte-responsive imaging in biological systems.
Collapse
Affiliation(s)
- Yishu Jiang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Elsy El Khoury
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Aidan T Pezacki
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Miku Oi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Sophia G Miller
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Christopher J Chang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Işık M, Kısaçam MA. Readily Accessible and Brightly Fluorogenic BODIPY/NBD-Tetrazines via S NAr Reactions. J Org Chem 2024; 89:6513-6519. [PMID: 38598957 PMCID: PMC11077493 DOI: 10.1021/acs.joc.3c02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
We describe SNAr reactions of some commercial amino-tetrazines and halo-dyes, which give efficiently quenched BODIPY/NBD-tetrazines (ΦFl < 0.01) in high yields and, importantly, with high purities affordable via simple silica gel chromatography only. The dyes exhibit large Stokes shifts, moderate environmental sensitivity, and emission enhancements (up to 193-fold) upon Tz ligation with BCN─a strained dienophile. They successfully serve as labels for HSA protein premodified with BCN, resulting in bright blue-green emission upon ligation.
Collapse
Affiliation(s)
- Murat Işık
- Department
of Food Engineering, Bingöl University, 12000 Bingöl, Türkiye
| | - Mehmet Ali Kısaçam
- Department
of Biochemistry, Faculty of Veterinary Medicine, Mustafa Kemal University, 31060 Hatay, Türkiye
| |
Collapse
|
6
|
Zhao Q, Ma L, Chen S, Huang L, She G, Sun Y, Shi W, Mu L. Tracking mitochondrial Cu(I) fluctuations through a ratiometric fluorescent probe in AD model cells: Towards understanding how AβOs induce mitochondrial Cu(I) dyshomeostasis. Talanta 2024; 271:125716. [PMID: 38301373 DOI: 10.1016/j.talanta.2024.125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Mitochondrial copper signaling pathway plays a role in Alzheimer's disease (AD), especially in relevant Amyloid-β oligomers (AβOs) neurotoxicity and mitochondrial dysfunction. Clarifying the relationship between mitochondrial copper homeostasis and both of mitochondrial dysfunction and AβOs neurotoxicity is important for understanding AD pathogenesis. Herein, we designed and synthesized a ratiometric fluorescent probe CHC-NS4 for Cu(I). CHC-NS4 possesses excellent ratiometric response, high selectivity to Cu(I) and specific ability to target mitochondria. Under mitochondrial dysfunction induced by oligomycin, mitochondrial Cu(I) levels gradually increased, which may be related to inhibition of ATP7A-mediated Cu(I) exportation and/or high expression of COX. On this basis, CHC-NS4 was further utilized to visualize the fluctuations of mitochondrial Cu(I) levels during progression of AD model cells induced by AβOs. It was found that mitochondrial Cu(I) levels were gradually elevated during the AD progression, which depended on not only AβOs concentration but also incubation time. Moreover, endocytosis maybe served as a prime pathway mode for mitochondrial Cu(I) dyshomeostasis induced by AβOs during AD progression. These results have provided a novel inspiration into mitochondrial copper biology in AD pathogenesis.
Collapse
Affiliation(s)
- Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyi Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siwei Chen
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
7
|
Zhang S, Mei Y, Liu J, Liu Z, Tian Y. Alkyne-tagged SERS nanoprobe for understanding Cu + and Cu 2+ conversion in cuproptosis processes. Nat Commun 2024; 15:3246. [PMID: 38622137 PMCID: PMC11018805 DOI: 10.1038/s41467-024-47549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Simultaneously quantifying mitochondrial Cu+ and Cu2+ levels is crucial for evaluating the molecular mechanisms of copper accumulation-involved pathological processes. Here, a series of molecules containing various diacetylene derivatives as Raman reporters are designed and synthesized, and the alkyne-tagged SERS probe is created for determination Cu+ and Cu2+ with high selectivity and sensitivity. The developed SERS probe generates well-separated distinguishable Raman fingerprint peaks with built-in corrections in the cellular silent region, resulting in accurate quantification of Cu+ and Cu2+. The present probe demonstrates high tempo-spatial resolution for real-time imaging and simultaneously quantifying mitochondrial Cu+ and Cu2+ with long-term stability benefiting from the probe assembly with designed Au-C≡C groups. Using this powerful tool, it is found that mitochondrial Cu+ and Cu2+ increase during ischemia are associated with breakdown of proteins containing copper as well as conversion of Cu+ and Cu2+. Meanwhile, we observe that parts of Cu+ and Cu2+ are transported out of neurons by ATPase. More importantly, cuproptosis in neurons is found including the oxidative stress process caused by the conversion of Cu+ to Cu2+, which dominates at the early stage (<9 h), and subsequent proteotoxic stress. Both oxidative and proteotoxic stresses contribute to neuronal death.
Collapse
Affiliation(s)
- Sihan Zhang
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China
| | - Yuxiao Mei
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China
| | - Jiaqi Liu
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China
| | - Zhichao Liu
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China.
| | - Yang Tian
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China.
| |
Collapse
|
8
|
Jeong E, Ha CH, Kumar A, Hur W, Seong GH, Chae PS. Chromo-Fluorogenic Rhodamine-Based Amphiphilic Probe as a Selective and Sensitive Sensor for Intracellular Cu(I) in Living Cells. ACS Sens 2024; 9:1419-1427. [PMID: 38449354 DOI: 10.1021/acssensors.3c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Fluorescent probes are widely studied for metal ion detection because of their multiple favorable properties such as high sensitivity and selectivity, quick response, naked eye detection, and in situ monitoring. However, optical probes that can effectively detect the Cu(I) level in cell interiors are rare due to the difficulty associated with selectively and sensitively detecting this metal ion in a cell environment. Therefore, we designed and synthesized three water-soluble probes (1-3) with a 1,3,5-triazine core decorated by three substituents: a hydrophobic alkyl chain, a hydrophilic maltose, and a rhodamine B hydrazine fluorophore. Among the probes, probe 1, which has an octyl chain and a branched maltose group, was the most effective at sensing Cu+ in aqueous solution. Upon addition of Cu+, this probe showed a dramatic color change from colorless to pink in daylight and displayed an intense yellow fluorescence emission under 365 nm light. The limit of detection and dissociation constant (Kd) of this probe were 20 nM and 1.1 × 10-12 M, respectively, which are the lowest values reported to date. The two metal ion-binding sites and the aggregation-induced emission enhancement effect, endowed by the branched maltose group and the octyl chain, respectively, are responsible for the high sensitivity and selectivity of this probe for Cu+ detection, as demonstrated by 1H NMR, dynamic light scattering, and transmission electron microscopy studies. Furthermore, the probe successfully differentiated the Cu(I) level of cancer cells from that of the normal cells. Thus, the probe holds potential for real-time monitoring of Cu(I) level in biological samples and bioimaging of cancer cells.
Collapse
Affiliation(s)
- Eunhye Jeong
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| | - Chang Hyeon Ha
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| | - Ashwani Kumar
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| | - Won Hur
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan 155-88, Republic of Korea
| |
Collapse
|
9
|
Zheng J, Ge H, Guo M, Zhang T, Hu Q, Yao Q, Long S, Sun W, Fan J, Du J, Peng X. Photoinduced Cuproptosis with Tumor-Specific for Metastasis-Inhibited Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304407. [PMID: 37880907 DOI: 10.1002/smll.202304407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Cuproptosis is a novel form of regulated cell death which guarantees to increase the efficacy of existing anticancer treatments that employ traditional apoptotic therapeutics. However, reducing the amount of undesirable Cu ions released in normal tissue and maximizing Cu-induced cuproptosis therapeutic effects at tumor sites are the major challenges. In this study, exploiting the chemical properties of copper ionophores and the tumor microenvironment, a novel method is developed for controlling the valence of copper ions that cause photoinduced cuproptosis in tumor cells. CJS-Cu nanoparticles (NPs) can selectively induce cuproptosis after cascade reactions through H2 O2 -triggered Cu2+ release, photoirradiation-induced superoxide radical (∙O2 - ) generation, and reduction of Cu2+ to Cu+ by ∙O2 - . The generated reactive oxygen species can result in glutathione depletion and iron-sulfur cluster protein damage and further augmented cuproptosis. CJS-Cu NPs effectively suppressed tumor growth and downregulated the expression of metastasis-related proteins, contributing to the complete inhibition of lung metastasis. Ultimately, this study suggests novel avenues for the manipulation of cellular cuproptosis through photochemical reactions.
Collapse
Affiliation(s)
- Jiazhu Zheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Da-lian, 116024, P. R. China
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Da-lian, 116024, P. R. China
| | - Mengya Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Da-lian, 116024, P. R. China
| | - Tingyu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Da-lian, 116024, P. R. China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Da-lian, 116024, P. R. China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Da-lian, 116024, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Da-lian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Da-lian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Da-lian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Da-lian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Da-lian, 116024, P. R. China
| |
Collapse
|
10
|
Ren J, Li L, Han H, Chen Y, Qin Z, Song Z. Construction of a New Probe Based on Copper Chaperone Protein for Detecting Cu 2+ in Cells. Molecules 2024; 29:1020. [PMID: 38474532 DOI: 10.3390/molecules29051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Biomacromolecular probes have been extensively employed in the detection of metal ions for their prominent biocompatibility, water solubility, high selectivity, and easy modification of fluorescent groups. In this study, a fluorescent probe FP was constructed. The probe FP exhibited high specificity recognition for Cu2+. With the combination of Cu2+, the probe was subjected to fluorescence quenching. The research suggested that the probe FP carried out the highly sensitive detection of Cu2+ with detection limits of 1.7 nM. The fluorescence quenching of fluorescamine was induced by Cu2+ perhaps due to the PET (photoinduced electron transfer) mechanism. The FP-Cu2+ complex shows weak fluorescence, which is likely due to the PET quenching effect from Cu2+ to fluorescamine fluorophore. Moreover, the probe FP can be employed for imaging Cu2+ in living cells. The new fluorescent probe developed in this study shows the advantages of good biocompatibility and low cytotoxicity. It can be adopted for the targeted detection of Cu2+ in cells, and it has promising applications in the mechanism research and diagnosis of Cu2+-associated diseases.
Collapse
Affiliation(s)
- Jing Ren
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Lin Li
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Hongfei Han
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Yi Chen
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
| | - Ziying Qin
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
| | - Zhen Song
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| |
Collapse
|
11
|
Graziotto ME, Kidman CJ, Adair LD, James SA, Harris HH, New EJ. Towards multimodal cellular imaging: optical and X-ray fluorescence. Chem Soc Rev 2023; 52:8295-8318. [PMID: 37910139 DOI: 10.1039/d3cs00509g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Imaging techniques permit the study of the molecular interactions that underlie health and disease. Each imaging technique collects unique chemical information about the cellular environment. Multimodal imaging, using a single probe that can be detected by multiple imaging modalities, can maximise the information extracted from a single cellular sample by combining the results of different imaging techniques. Of particular interest in biological imaging is the combination of the specificity and sensitivity of optical fluorescence microscopy (OFM) with the quantitative and element-specific nature of X-ray fluorescence microscopy (XFM). Together, these techniques give a greater understanding of how native elements or therapeutics affect the cellular environment. This review focuses on recent studies where both techniques were used in conjunction to study cellular systems, demonstrating the breadth of biological models to which this combination of techniques can be applied and the potential for these techniques to unlock untapped knowledge of disease states.
Collapse
Affiliation(s)
- Marcus E Graziotto
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Clinton J Kidman
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Liam D Adair
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon A James
- Australian Nuclear Science and Technology Organisation, Clayton, Victoria, 3168, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
12
|
Singh M, Kumar J. Flourescence sensors for heavy metal detection: major contaminants in soil and water bodies. ANAL SCI 2023; 39:1829-1838. [PMID: 37531068 DOI: 10.1007/s44211-023-00392-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Due to the increasing consumption of heavy metals, there is a rising need for specific and useful methods that are employed for the detection of heavy metals. Fluorescence sensing is a highly selective, rapid and biosensing technique that is employed in the determination of some heavy metals in any sample of soil or water, any other living person, the food being consumed or any other substance which are being used daily. These fluorescent methods are a type of analytical technique and they are mainly based on detection. Many types of metal conjugated molecules have been used of the detection of these heavy metals with various mechanisms. We have taken into account some specific sensor molecules as they were more suitable and easily accessible. These techniques that were employed in the detection of various heavy metals such as copper, lead and mercury have been discussed in the following review article.
Collapse
Affiliation(s)
- M Singh
- Chandigarh University, Mohali, Punjab, 140413, India
| | - J Kumar
- Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
13
|
Zhu J, You Y, Zhang W, Pu F, Ren J, Qu X. Boosting Endogenous Copper(I) for Biologically Safe and Efficient Bioorthogonal Catalysis via Self-Adaptive Metal-Organic Frameworks. J Am Chem Soc 2023; 145:1955-1963. [PMID: 36625653 DOI: 10.1021/jacs.2c12374] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As one of the most typical bioorthogonal reactions, the Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition (CuAAC) reaction has received worldwide attention in intracellular transformation of prodrugs due to its high efficiency and selectivity. However, the exogenous Cu catalysts may disturb Cu homeostasis and cause side effects to normal tissues. What is more, the intratumoral Cu(I) is insufficient to efficiently catalyze the intracellular CuAAC reaction due to oncogene-induced labile Cu(I) deficiency. Herein, in order to boost the endogenous Cu(I) level for intracellular drug synthesis through the bioorthogonal reaction, a self-adaptive bioorthogonal catalysis system was constructed by encapsulating prodrugs and sodium ascorbate within adenosine triphosphate aptamer-functionalized metal-organic framework nanoparticles. The system presents specificity to tumor cells and does not require exogenous Cu catalysts, thereby leading to high anti-tumor efficacy and minimal side effects both in vitro and in vivo. This work will open up a new opportunity for developing biosafe and high-performance bioorthogonal catalysis systems.
Collapse
Affiliation(s)
- Jiawei Zhu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yawen You
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
14
|
Oxidation state-specific fluorescent copper sensors reveal oncogene-driven redox changes that regulate labile copper(II) pools. Proc Natl Acad Sci U S A 2022; 119:e2202736119. [PMID: 36252013 PMCID: PMC9621372 DOI: 10.1073/pnas.2202736119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Copper is an essential metal nutrient for life that often relies on redox cycling between Cu(I) and Cu(II) oxidation states to fulfill its physiological roles, but alterations in cellular redox status can lead to imbalances in copper homeostasis that contribute to cancer and other metalloplasias with metal-dependent disease vulnerabilities. Copper-responsive fluorescent probes offer powerful tools to study labile copper pools, but most of these reagents target Cu(I), with limited methods for monitoring Cu(II) owing to its potent fluorescence quenching properties. Here, we report an activity-based sensing strategy for turn-on, oxidation state-specific detection of Cu(II) through metal-directed acyl imidazole chemistry. Cu(II) binding to a metal and oxidation state-specific receptor that accommodates the harder Lewis acidity of Cu(II) relative to Cu(I) activates the pendant dye for reaction with proximal biological nucleophiles and concomitant metal ion release, thus avoiding fluorescence quenching. Copper-directed acyl imidazole 649 for Cu(II) (CD649.2) provides foundational information on the existence and regulation of labile Cu(II) pools, including identifying divalent metal transporter 1 (DMT1) as a Cu(II) importer, labile Cu(II) increases in response to oxidative stress induced by depleting total glutathione levels, and reciprocal increases in labile Cu(II) accompanied by decreases in labile Cu(I) induced by oncogenic mutations that promote oxidative stress.
Collapse
|
15
|
Huang Y, Sun L, Mirica LM. Turn-on fluorescent sensors for Cu-rich amyloid β peptide aggregates. SENSORS & DIAGNOSTICS 2022; 1:709-713. [PMID: 35923774 PMCID: PMC9280444 DOI: 10.1039/d2sd00028h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023]
Abstract
Protein misfolding and metal dishomeostasis are two key pathological factors of Alzheimer's disease. Previous studies have shown that Cu-mediated amyloid β (Aβ) peptide aggregation leads to the formation of neurotoxic Aβ oligomers. Herein, we report a series of picolinic acid-based Cu-activatable sensors, which can be used for the fluorescence imaging of Cu-rich Aβ aggregates.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana IL 61801 USA
| | - Liang Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana IL 61801 USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana IL 61801 USA
| |
Collapse
|
16
|
Yin P, Ma W, Liu J, Hu T, Wei T, Chen J, Li T, Niu Q. Dual functional chemosensor for nano-level detection of Al3+ and Cu2+: Application to real samples analysis, colorimetric test strips and molecular logic gates. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Wu SY, Shen Y, Shkolnikov I, Campbell RE. Fluorescent Indicators For Biological Imaging of Monatomic Ions. Front Cell Dev Biol 2022; 10:885440. [PMID: 35573682 PMCID: PMC9093666 DOI: 10.3389/fcell.2022.885440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Monatomic ions play critical biological roles including maintaining the cellular osmotic pressure, transmitting signals, and catalyzing redox reactions as cofactors in enzymes. The ability to visualize monatomic ion concentration, and dynamic changes in the concentration, is essential to understanding their many biological functions. A growing number of genetically encodable and synthetic indicators enable the visualization and detection of monatomic ions in biological systems. With this review, we aim to provide a survey of the current landscape of reported indicators. We hope this review will be a useful guide to researchers who are interested in using indicators for biological applications and to tool developers seeking opportunities to create new and improved indicators.
Collapse
Affiliation(s)
- Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Irene Shkolnikov
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Ali M, Memon N, Ali M, Chana AS, Gaur R, Jiahai Y. Recent development in fluorescent probes for copper ion detection. Curr Top Med Chem 2022; 22:835-854. [DOI: 10.2174/1568026622666220225153703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Copper is the third most common heavy metal and an indispensable component of life. Variations of body copper levels, both structural and cellular, are related to a number of disorders; consequently, pathophysiological importance of copper ions demands the development of sensitivity and selective for detecting these organisms in biological systems. In recent years, the area of fluorescent sensors for detecting copper metal ions has seen revolutionary advances. Consequently, closely related fields have raised awareness of several diseases linked to copper fluctuations. Further developments in this field of analysis could pave the way for new and innovative treatments to combat these diseases. This review reports on recent progress in the advancement of three fields of fluorescent probes; chemodosimeters, near IR fluorescent probes, and ratiometric fluorescent probes. Methods used to develop these fluorescent probes and the mechanisms that govern their reaction to specific analytes and their applications in studying biological systems, are also given.
Collapse
Affiliation(s)
- Mukhtiar Ali
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Najma Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Manthar Ali
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Sami Chana
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Rashmi Gaur
- Natural Products Laboratory, International Joint Laboratory of tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ye Jiahai
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
| |
Collapse
|
19
|
The BODIPY-based chemosensor for the fluorometric determination of organochlorine pesticide dicofol. Food Chem 2022; 370:131033. [PMID: 34509146 DOI: 10.1016/j.foodchem.2021.131033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Dicofol is an organochlorine pesticide, which is widely used in fruits, tea and other crops, and is moderately toxic to humans. Therefore, the monitoring of organochlorine pesticide-dicofol is critical for food safety. In this work, a fluorometric chemosensor based on mercaptoethanol and boron dipyrromethene (BODIPY) was first constructed to detect the dicofol. The chemosensor displayed turn-off fluorescence behavior upon dicofol with a detection limit of 200 ppb. The nucleophilicity of the glutathione and other biological thiols was studied to evaluate the reactivity of thiols with dicofol. In practical applications, an obvious color difference was observed on a paper based microfluidic device modified by phenyltriethoxysilane (PTES). We designed an integrated device for pretreatment and paper-based detection, and successfully used for the detection of dicofol in tea. The applicability was demonstrated by detection of dicofol in real tea samples with good recovery ranging from 86% to 109%. The apparatus was convenient and could be used for on-site evaluation of dicofol.
Collapse
|
20
|
Li FZ, Wu Z, Lin C, Wang Q, Kuang GC. Photophysical properties regulation and applications of BODIPY-based derivatives with electron donor-acceptor system. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Liu X, Haiyuan W, Mengdi Y, Guangfan H, Qin L, Ruifang Y, Shan Z, Xiaoxia Z, Xiaoqing S, Tao Z. The two-steps reaction fluorescent probe for the selective detection of cysteine and its applications. Chem Biodivers 2021; 19:e202100862. [PMID: 34935289 DOI: 10.1002/cbdv.202100862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022]
Abstract
We reported the specific fluorescent probe (MC-BOD-XDS) with two-steps reaction based on monomercapto-coumarin-BODIPY for selective detection of cysteine,high activty mercapto-coumarin as the multiple reaction group instead of a group internal standard fluorophore. The reaction mechanism of MC-BOD-XDS for detecting cysteine was different from the reported probes about the nucleophilic aromatic substitution reaction (SNAr) of chlorinated BODIPY. The fluorescent color of MC-BOD-XDS changed from yellow to red, and then to orange. The linear calibration diagram showed that it can potentially be used for quantitatively detection of Cys. Its potential applications were demonstrated by employing it for detection of Cys in artificial urine and in fluorescent imaging in HeLa cells.
Collapse
Affiliation(s)
- Xueliang Liu
- Xinxiang Medical University, Analysis and Tasting Laboratory, Jinsui Road 601 Xinxiang, Henan 453003, 453003, Xin Xiang City,Henan Province, CHINA
| | - Wei Haiyuan
- Xinxiang Medical University, School of Pharmacy, Jinsui Road 601, Xin Xiang City,, CHINA
| | - Yan Mengdi
- Xinxiang Medical University, School of Pharmacy, Jinsui Road 601, Xin Xiang City,, CHINA
| | - Hai Guangfan
- Xinxiang Medical University, School of Pharmacy, Jinsui Road 601, Xin Xiang City,, CHINA
| | - Li Qin
- Xinxiang Medical University, Analysis and Testing Laboratory, Jinsui Road 601, Xin Xiang City,, CHINA
| | - Yan Ruifang
- Xinxiang Medical University, Analysis and Testing Laboratory, Jinsui Road 601, Xin Xiang City,, CHINA
| | - Zhao Shan
- Xinxiang Medical University, Analysis and Testing Laboratory, Jinsui Road 601, Xin Xiang City,, CHINA
| | - Zhao Xiaoxia
- Xinxiang Medical University, Analysis and Testing Laboratory, Jinsui Road 601, Xin Xiang City,, CHINA
| | - Sun Xiaoqing
- Xinxiang Medical University, School of Pharmacy, Jinsui Road 601, Xin Xiang City,, CHINA
| | - Zhang Tao
- Xinxiang Medical University, School of Pharmacy, Jinsui Road 601, Xin Xiang City,, CHINA
| |
Collapse
|
22
|
Xu H, Yao S, Chen Y, Zhang C, Zhang S, Yuan H, Chen Z, Bai Y, Yang T, Guo Z, He W. Tracking Labile Copper Fluctuation In Vivo/ Ex Vivo: Design and Application of a Ratiometric Near-Infrared Fluorophore Derived from 4-Aminostyrene-Conjugated Boron Dipyrromethene. Inorg Chem 2021; 60:18567-18574. [PMID: 34826221 DOI: 10.1021/acs.inorgchem.1c01779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specimen differences, tissue-dependent background fluorescence and scattering, and deviated specimen position and sensor concentration make optical imaging for labile copper fluctuation in animals questionable, and a signal comparison between specimens is infeasible. We proposed ratiometric optical imaging as an alternative to overcome these disadvantages, and a near-infrared (NIR) ratiometric sensor, BDPS1, was devised therefore by conjugating boron dipyrromethene (BODIPY) with 4-aminostyrene and modifying the 4-amino group as a Cu+ chelator. BDPS1 possessed an excitation ratiometric copper-sensing ability to show the ratio of NIR emission (710 nm) upon excitation at 600 nm to that at 660 nm, Fex600/Fex660, increasing from 2.8 to 10.7. This sensor displayed still the opposite copper response of its internal charge transfer (ICT; 670 nm) and local (581 nm) emission bands. Ratiometric imaging with this sensor disclosed a higher labile copper region near the nucleus apparatus, and HEK-293T cells were more sensitive to copper incubation than MCF-7 cells. Dual excitation ratiometric imaging with this sensor realized tracking of labile copper fluctuation in mice, and the whole-body imaging found that tail intravenous injection of CUTX-101, a therapeutical agent for Menkes disease, led to a distinct labile copper increase in the upper belly. The ex vivo imaging of the resected viscera of mice revealed that CUTX-101 injection enhanced the labile copper level in the liver, intestine, lung, and gall bladder in sequence, yet the kidney, heart, and spleen showed almost no response. This study indicated that modifying BODIPY as an extended ICT fluorophore, with its electron-donating group being derived as a metal chelator, is an effective design rationale of NIR ratiometric sensors for copper tracking in vivo/ex vivo.
Collapse
Affiliation(s)
| | | | | | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cepeda C, Denisov SA, Boturyn D, McClenaghan ND, Sénèque O. Ratiometric Luminescence Detection of Copper(I) by a Resonant System Comprising Two Antenna/Lanthanide Pairs. Inorg Chem 2021; 60:17426-17434. [PMID: 34788035 DOI: 10.1021/acs.inorgchem.1c02985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective and sensitive detection of Cu(I) is an ongoing challenge due to its important role in biological systems, for example. Herein, we describe a photoluminescent molecular chemosensor integrating two lanthanide ions (Tb3+ and Eu3+) and respective tryptophan and naphthalene antennas onto a polypeptide backbone. The latter was structurally inspired from copper-regulating biomacromolecules in Gram-negative bacteria and was found to bind Cu+ effectively under pseudobiological conditions (log KCu+ = 9.7 ± 0.2). Ion regulated modulation of lanthanide luminescence in terms of intensity and long, millisecond lifetime offers perspectives in terms of ratiometric and time-gated detection of Cu+. The role of the bound ion in determining the photophysical properties is discussed with the aid of additional model compounds.
Collapse
Affiliation(s)
- Céline Cepeda
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| | | | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250), 38000 Grenoble, France
| | | | - Olivier Sénèque
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| |
Collapse
|
24
|
Tan G, Maisuls I, Strieth‐Kalthoff F, Zhang X, Daniliuc C, Strassert CA, Glorius F. AIE-Active Difluoroboron Complexes with N,O-Bidentate Ligands: Rapid Construction by Copper-Catalyzed C-H Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101814. [PMID: 34309217 PMCID: PMC8456238 DOI: 10.1002/advs.202101814] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Indexed: 05/12/2023]
Abstract
The development of organic materials with high solid-state luminescence efficiency is highly desirable because of their fundamental importance and applicability in optoelectronics. Herein, a rapid construction of novel BF2 complexes with N,O-bidentate ligands by using Cu(BF4 )2 •6H2 O as a catalyst and BF2 source is disclosed, which avoids the need for pre-composing the N,O-bidentate ligands and features a broad substrate scope and a high tolerance level for sensitive functional groups. Moreover, molecular oxygen is employed as the terminal oxidant in this transformation. A library of 36 compounds as a new class of BF2 complexes with remarkable photophysical properties is delivered in good to excellent yields, showing a substituent-dependency on the photophysical properties, derived from the π-π* character of the photoexcited state. In addition, aggregation-induced emission (AIE) is observed and quantified for the brightest exemplars. The excited state properties are fully investigated in solids and in THF/H2 O mixtures. Hence, a new series of photofunctional materials with variable photophysical properties is reported, with potential applications for sensing, bioimaging, and optoelectronics.
Collapse
Affiliation(s)
- Guangying Tan
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische ChemieCeNTechCiMICSoNWestfälische Wilhelms‐Universität MünsterHeisenbergstraße 11Münster48149Germany
| | - Felix Strieth‐Kalthoff
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Xiaolong Zhang
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Constantin Daniliuc
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieCeNTechCiMICSoNWestfälische Wilhelms‐Universität MünsterHeisenbergstraße 11Münster48149Germany
| | - Frank Glorius
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 40Münster48149Germany
| |
Collapse
|
25
|
Sun X, Xue Y, Li J, Yang Y, Bai Y, Chen Y. Fluorescent labeling and characterization of dicarboxylic cellulose nanocrystals prepared by sequential periodate-chlorite oxidation. RSC Adv 2021; 11:24694-24701. [PMID: 35481032 PMCID: PMC9036875 DOI: 10.1039/d1ra04812k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
High-performance fluorescent composites are key to the development and improvement of fluorescent molecular probe technology. In this study, cellulose nanocrystals (CNC) with high carboxyl concentrations were prepared via sequential periodate-chlorite oxidation. Then, fluorescent cellulose nanocrystals (FCNC) were prepared by attaching 7-amino-4-methylcoumarin (AMC) onto CNC under 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) catalysis. The morphology and fluorescence properties of FCNC were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, elemental analysis, ultraviolet-visible absorbance, fluorescence spectrophotometry, and fluorescence spectroscopy. The results showed that AMC was grafted onto the CNC surface by an amidation reaction, and the absorption and emission maxima for FCNC were blue-shifted from 350 nm and 445 nm of AMC to 335 nm and 440 nm, respectively. FCNC retained the crystallinity and nano-topography size of the CNC. The fluorescence intensity, quantum yield, and fluorescence lifetime of FCNC showed the same change law; it first increased and then decreased with an increase in the graft density of AMC from 0.201 to 0.453 AMC molecules per nm2. The FCNC prepared in this study have good optical properties and can be used in the fields of fluorescent molecular probes and biological imaging.
Collapse
Affiliation(s)
- Xiaozheng Sun
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street HarBin 150030 China
| | - Yanhua Xue
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street HarBin 150030 China
| | - Jianye Li
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street HarBin 150030 China
| | - Yu Yang
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street HarBin 150030 China
| | - Yu Bai
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street HarBin 150030 China
| | - Yujia Chen
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street HarBin 150030 China
| |
Collapse
|
26
|
Thankarajan E, Jadhav S, Luboshits G, Gellerman G, Patsenker L. Quantification of Drug Release Degree In Vivo Using Antibody-Guided, Dual-NIR-Dye Ratiometric System. Anal Chem 2021; 93:8265-8272. [PMID: 34080851 DOI: 10.1021/acs.analchem.1c01104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent dyes linked to drug delivery systems provide important real-time information on the efficacy of drug delivery. However, the quantitative monitoring of drug distribution is challenging because of interferences from the biological sample and instrumental setup. To improve quantification of anticancer drug delivery followed by drug release in tumor, we equipped an antibody-drug conjugate (ADC) with a turn-on near-infrared (NIR) dye, sensitive to drug release, and a reference NIR dye. In this study, chlorambucil (CLB) was chosen as a model anticancer drug and Trastuzumab monoclonal antibody specific to Her2 receptors overexpressed in many tumors was taken as the carrier. The advantage of the obtained dual-dye ratiometric system for drug release monitoring was demonstrated in mice model.
Collapse
Affiliation(s)
- Ebaston Thankarajan
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Suchita Jadhav
- Ariel Center for Applied Cancer Research, The Faculty of Engineering, Ariel University, Ariel 40700, Israel
| | - Galia Luboshits
- Ariel Center for Applied Cancer Research, The Faculty of Engineering, Ariel University, Ariel 40700, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Leonid Patsenker
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
27
|
Kumar M, Chaudhary G, Singh AP. BODIPY-Hg 2+ Complex: A Fluorescence "Turn-ON" Sensor for Cysteine Detection. ANAL SCI 2021; 37:283-292. [PMID: 32863336 DOI: 10.2116/analsci.20p255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 08/09/2023]
Abstract
A BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) based pioneering sensing material (HLPy) having 2-amino pyridine as receptor was synthesized and used for the selective detection of Hg2+ ions. The synthesized HLPy features a high affinity towards Hg2+ (ka = 2.04 × 105 M-1), accompanied by effective quenching of fluorescence in DMF:H2O (1:9 v/v, 10 mM HEPES buffer, pH 7.4) with 54 nM limit of detection (LOD). The emission titration experiments (Job's plot) in the presence of varying mole-fraction of Hg2+ ions reveals the formation of non-fluorescent 2:1 coordination complex [Hg(LPy)2]. The resulting non-fluorescent [Hg(LPy)2] was thoroughly characterized using various spectroscopic techniques and analyses. Interestingly, the non-fluorescent complex [Hg(LPy)2] is able to specifically respond towards Cys over other biothiols and amino acids through a reversible de-complexation mechanism. As a result, the remarkable recovery of the fluorescence can be observed. The limit of detection (LOD) for Cys detection is estimated to be 29 nM in DMF:H2O (1:9 v/v, 10 mM HEPES buffer, pH 8.0). The reversibility and reusability of [Hg(LPy)2] were achieved by the sequential addition of Cys and Hg2+ ions up to five cycles. Moreover, the removal of Hg2+ ions up to 89% from aqueous samples using HLPy was successfully demonstrated.
Collapse
Affiliation(s)
- Monu Kumar
- Department of Applied Sciences, National Institute of Technology Delhi, New Delhi, 110 040, India
| | - Garima Chaudhary
- Department of Applied Sciences, National Institute of Technology Delhi, New Delhi, 110 040, India
| | - Amit Pratap Singh
- Department of Applied Sciences, National Institute of Technology Delhi, New Delhi, 110 040, India
| |
Collapse
|
28
|
An Investigation on Design and Characterization of a Highly Selective LED Optical Sensor for Copper Ions in Aqueous Solutions. SENSORS 2021; 21:s21041099. [PMID: 33562587 PMCID: PMC7915487 DOI: 10.3390/s21041099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
The optical characteristics of copper ion detection, such as the photometric absorbance of specific wavelengths, exhibit significant intensity change upon incident light into the aqueous solutions with different concentrations of metal ions due to the electron transition in the orbit. In this study, we developed a low-cost, small-size and fast-response photoelectric sensing prototype as an optic sensor for copper (Cu) ions detection by utilizing the principle of optical absorption. We quantified the change of optical absorbance from infra-red (IR) light emitting diodes (LEDs) upon different concentrations of copper ions and the transmitted optical signals were transferred to the corresponding output voltage through a phototransistor and circuit integrated in the photoelectric sensing system. The optic sensor for copper (Cu) ions demonstrated not only excellent specificity with other metal ions such as cadmium (Cd), nickel (Ni), iron (Fe) and chloride (Cl) ions in the same aqueous solution but also satisfactory linearity and reproducibility. The sensitivity of the preliminary sensing system for copper ions was 29 mV/ppm from 0 to 1000 ppm. In addition, significant ion-selective characteristics and anti-interference capability were also observed in the experiments by the proposed approach.
Collapse
|
29
|
Wang S, Wang Z, Gao H, Jiang L, Liu H, Wu F, Zhao Y, Chan KS, Shen Z. Highly regioselective palladium-catalyzed domino reaction for post-functionalization of BODIPY. Chem Commun (Camb) 2021; 57:1758-1761. [DOI: 10.1039/d0cc08163a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of benzo[a]-fused BODIPYs and the corresponding isomeric naphthyl-BODIPYs have been synthesized through a facile one-pot palladium-catalyzed domino reaction of BODIPY precursors (2-bromo-BODIPYs) with diarylethynes.
Collapse
Affiliation(s)
- Sisi Wang
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210046
| | - Zhaoli Wang
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210046
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210046
| | - Liang Jiang
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210046
| | - Hui Liu
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210046
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210046
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210046
| | - Kin Shing Chan
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210046
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210046
| |
Collapse
|
30
|
Tan G, Schrader ML, Daniliuc C, Strieth‐Kalthoff F, Glorius F. C‐H‐Aktivierungsbasierte einstufige kupferkatalysierte Synthese von N,O‐bidentaten organischen Difluorborkomplexen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Guangying Tan
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Malte L. Schrader
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Felix Strieth‐Kalthoff
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
31
|
Tan G, Schrader ML, Daniliuc C, Strieth‐Kalthoff F, Glorius F. C−H Activation Based Copper‐Catalyzed One‐Shot Synthesis of N,O‐Bidentate Organic Difluoroboron Complexes. Angew Chem Int Ed Engl 2020; 59:21541-21545. [DOI: 10.1002/anie.202008311] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Guangying Tan
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Malte L. Schrader
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Felix Strieth‐Kalthoff
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
32
|
Lee S, Chung CYS, Liu P, Craciun L, Nishikawa Y, Bruemmer KJ, Hamachi I, Saijo K, Miller EW, Chang CJ. Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper. J Am Chem Soc 2020; 142:14993-15003. [PMID: 32815370 PMCID: PMC7877313 DOI: 10.1021/jacs.0c05727] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is a required nutrient for life and particularly important to the brain and central nervous system. Indeed, copper redox activity is essential to maintaining normal physiological responses spanning neural signaling to metabolism, but at the same time copper misregulation is associated with inflammation and neurodegeneration. As such, chemical probes that can track dynamic changes in copper with spatial resolution, especially in loosely bound, labile forms, are valuable tools to identify and characterize its contributions to healthy and disease states. In this report, we present an activity-based sensing (ABS) strategy for copper detection in live cells that preserves spatial information by a copper-dependent bioconjugation reaction. Specifically, we designed copper-directed acyl imidazole dyes that operate through copper-mediated activation of acyl imidazole electrophiles for subsequent labeling of proximal proteins at sites of elevated labile copper to provide a permanent stain that resists washing and fixation. To showcase the utility of this new ABS platform, we sought to characterize labile copper pools in the three main cell types in the brain: neurons, astrocytes, and microglia. Exposure of each of these cell types to physiologically relevant stimuli shows distinct changes in labile copper pools. Neurons display translocation of labile copper from somatic cell bodies to peripheral processes upon activation, whereas astrocytes and microglia exhibit global decreases and increases in intracellular labile copper pools, respectively, after exposure to inflammatory stimuli. This work provides foundational information on cell type-dependent homeostasis of copper, an essential metal in the brain, as well as a starting point for the design of new activity-based probes for metals and other dynamic signaling and stress analytes in biology.
Collapse
Affiliation(s)
| | | | | | | | - Yuki Nishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | | | | |
Collapse
|
33
|
Oladipo SD, Mocktar C, Omondi B. In vitro biological studies of heteroleptic Ag(I) and Cu(I) unsymmetrical N,N′-diarylformamidine dithiocarbamate phosphine complexes; the effect of the metal center. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
34
|
Sompalli NK, Deivasigamani P. Structurally designed porous polymer monoliths as probe-anchoring templates as benign and fast responsive solid-state optical sensors for the sensing and recovery of copper ions. NANOTECHNOLOGY 2020; 31:414004. [PMID: 32554881 DOI: 10.1088/1361-6528/ab9e2a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, we report on the superior ion-capturing and sensing competence of a new breed of aqua-compatible solid-state ion-sensor using a structurally organized polymer monolith, for the ocular sensing of trace levels of divalent copper ions. The polymer monolithic template exhibits a single block framework with a uniform structural pattern and porous network that serves as an efficient host for the homogeneous probe anchoring, to constitute a renewable solid-state optical sensor. Here, a series of solid-state colorimetric Cu(II) sensors has been designed using three indigenously synthesized chelating probes (molecules) namely, 4-butyl-N-(2-(2,4-dinitrophenyl)hydrazine-1-carbonothioyl)benzamide (BNHCB), 2-(thiophen-2-ylmethylene)hydrazinen-1-carbothioamide (TMHCA), and 4-butylphenyl(diazenyl)-2-mercaptopyrimidine-4,6-diol (BDMPD). The polymer monoliths are characterized using various surface and structural analysis techniques such as HR-SEM, HR-TEM, XPS, XRD, FT-IR, EDAX, and BET surface area analysis. The fabricated solid-state sensors exhibit excellent selectivity and sensitivity for copper ions with unique color transitions that are reliable even at ultra-trace (ppb) levels. The impact of diverse sensing parameters such as solution pH, probe concentration, sensor quantity, target ion concentration, temperature, response kinetics, and matrix tolerances have been optimized. The fabricated sensor materials proffer maximum sensing efficiency in neutral pH conditions, with a limit of detection (LD) and quantification (LQ) values of 0.56 and 1.87μg l-1, 0.30 and 1.0μg l-1, and 0.12 and 0.42μg l-1, for BNHCB-, BDMPD-, and TMHCA-anchored polymer sensors, respectively. The proposed reusable solid-state colorimetric sensors are environmentally benign, cost-effective and data reproducible, with superior analytical performance.
Collapse
Affiliation(s)
- Naveen Kumar Sompalli
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
35
|
Song Z, Xu YT, Guo L. Phenyl doped graphitic carbon nitride nanosheets for sensing of copper ions in living cells. Analyst 2020; 145:4260-4264. [PMID: 32494796 DOI: 10.1039/d0an00795a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper (Cu) is a vital metal element for humans and animals. Monitoring and evaluating the concentration level of Cu2+ in a biological body is an effective way to prevent a variety of diseases. In this work, phenyl doped graphitic carbon nitride (PDCN) nanosheets with strong green fluorescence exhibited a sensitive and selective detection for Cu2+ with a linear range from 0.1-2.0 μmol L-1. Furthermore, fluorescent imaging was applied to semiquantitatively detect Cu2+ in HeLa cells using PDCN nanosheets as the probe, which can avoid the interference of background autofluorescence. This work provided a low-cost and biologically friendly fluorescent probe to monitor the concentration level of Cu2+ in living cells.
Collapse
Affiliation(s)
- Zhiping Song
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yuan-Teng Xu
- Department of Otorhinolaryngology, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
36
|
Yi K, Zhang L. Embedding dual fluoroprobe in metal-organic frameworks for continuous visual recognition of Pb 2+ and PO 43- via fluorescence 'turn-off-on' response: Agar test paper and fingerprint. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122141. [PMID: 32000121 DOI: 10.1016/j.jhazmat.2020.122141] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
A novel dual-emissive ratiometric fluorescence (RF) probe CDs/QDs@ZIF-8 has been successfully constructed by employing a simple and effective strategy for in situ encapsulating carbon dots (CDs) and thioglycolic acid-modified CdTe quantum dots (QDs) into porous metal-organic frameworks (MOFs) "cage". The dual responsive colorimetric fluorescence probe was developed for the ultra-high selectivity and sensitivity continuous detection of Pb2+ (turn OFF) and PO43- (turn ON) in biological samples. Blue CDs acts as a stable internal standard emission, the emission color of CDs/QDs@ZIF-8 changes from red to blue with introducing Pb2+, fluorescence of probe is quenched because of the binding of Pb2+ ions to thioglycolic acid on the surface of probe and e- transfer from the photoexcited QDs to Pb2+ ions, color can be recovered after the adding PO43- to CDs/QDs@ZIF-8-Pb2+ system, which could take away Pb2+ ions from the surface of CDs/QDs@ZIF-8. More importantly, fabricated agar test papers was also successfully applied in visual detection of Pb2+ and PO43- in real samples, which can implement without instrument-specific calibration.
Collapse
Affiliation(s)
- Kuiyu Yi
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, 110036, People's Republic of China.
| |
Collapse
|
37
|
Lei L, Li M, Wu S, Xu Z, Geng P, Tian Y, Fu Y, Zhang W. Noninvasive In Situ Ratiometric Imaging of Biometals Based on Self-Assembled Peptide Nanoribbon. Anal Chem 2020; 92:5838-5845. [PMID: 32237737 DOI: 10.1021/acs.analchem.9b05490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of probes for accurate sensing and imaging of biometals in situ is still a growing interest owing to their crucial roles in cellular metabolism, neurotransmission, and apoptosis. Among them, Zn2+ and Cu2+ are two important cooperative biometals closely related to Alzheimer's disease (AD). Herein, we developed a multifunctional probe based on self-assembling peptide nanoribbon for ratiometric sensing of Zn2+, Cu2+, or Zn2+ and Cu2+ simultaneously. Uniform peptide nanoribbon (AQZ@NR) was rationally designed by coassembling a Zn2+-specific ligand AQZ-modified peptide (AQZKL-7) with peptide KL-7. The nanoribbon further combined with Cu2+-sensitive near-infrared quantum dots (NIR QDs) and Alexa Fluor 633 as an inner reference molecule, which was endowed with the capability for ratiometric Zn2+ and Cu2+ imaging at the same time. The peptide-based probe exhibited good specificity to Zn2+ and Cu2+ without interference from other ions. Importantly, the nanoprobe was successfully applied for noninvasive Zn2+ and Cu2+ monitoring in both living cells and zebrafish via multicolor fluorescence imaging. This gives insights into the dynamic Zn2+ and Cu2+ distribution in an intracellular and in vivo mode, as well as understanding the neurotoxicity of high concentration of Zn2+ and Cu2+. Therefore, the self-assembled nanoprobe shows great promise in multiplexed detection of many other biometals and biomolecules, which will benefit the diagnosis and treatment of AD in clinical applications.
Collapse
Affiliation(s)
- Li Lei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Min Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Sufen Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ping Geng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ying Fu
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| |
Collapse
|
38
|
Choudhury N, Ruidas B, Saha B, Srikanth K, Das Mukhopadhyay C, De P. Multifunctional tryptophan-based fluorescent polymeric probes for sensing, bioimaging and removal of Cu2+ and Hg2+ ions. Polym Chem 2020. [DOI: 10.1039/c9py01892a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fluorescent polymeric probes were synthesized by amalgamating tryptophan and pyridine side-chain moieties through an imine bond with the aim of selectively sense and remove both Cu2+ and Hg2+ ions from aqueous media.
Collapse
Affiliation(s)
- Neha Choudhury
- Polymer Research Centre
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
- Department of Chemical Sciences
| | - Bhuban Ruidas
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Howrah
- India
| | - Biswajit Saha
- Polymer Research Centre
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
- Department of Chemical Sciences
| | - Kambalapalli Srikanth
- Centre for Advanced Functional Materials
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
| | | | - Priyadarsi De
- Polymer Research Centre
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
- Department of Chemical Sciences
| |
Collapse
|
39
|
Clerc M, Heinemann F, Spingler B, Gasser G. A Luminescent NOTA-Based Terbium(III) “Turn-Off” Sensor for Copper. Inorg Chem 2019; 59:669-677. [DOI: 10.1021/acs.inorgchem.9b02934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michèle Clerc
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Franz Heinemann
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, F-75005 Paris, France
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, F-75005 Paris, France
| |
Collapse
|
40
|
Bifunctional probe for Cu2+/Al3+ based on a diarylethene with a 4, 5-[bis-(5-ethylacetate-yl)-2-thienyl]-1H-imidazole unit. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Gao J, Chen X, Chen S, Meng H, Wang Y, Li C, Feng L. The BODIPY-Based Chemosensor for Fluorometric/Colorimetric Dual Channel Detection of RDX and PA. Anal Chem 2019; 91:13675-13680. [PMID: 31597427 DOI: 10.1021/acs.analchem.9b02888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A fluorometric/colorimetric dual-channel chemosensor based on a hydrazine-substituted BODIPY probe has been successfully fabricated for the detection of RDX and PA. The chemosensor displays turn-on fluorescence behavior upon RDX with a detection limit of 85.8 nM, while showing a turn-off response to PA with a detection limit of 0.44 μM. Meanwhile, an obvious color difference is observed by the naked-eye after the reaction for RDX. Thus, in application, a two-to-two logic gate is constructed for potential application in explosives detection. Additionally, portable equipment is also developed for in situ determination of RDX.
Collapse
Affiliation(s)
- Jianmei Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xiaoxiao Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Shuqin Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Hu Meng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yu Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Chunsheng Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Liang Feng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| |
Collapse
|
42
|
|
43
|
Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism. Proc Natl Acad Sci U S A 2019; 116:18285-18294. [PMID: 31451653 DOI: 10.1073/pnas.1904610116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Copper is essential for life, and beyond its well-established ability to serve as a tightly bound, redox-active active site cofactor for enzyme function, emerging data suggest that cellular copper also exists in labile pools, defined as loosely bound to low-molecular-weight ligands, which can regulate diverse transition metal signaling processes spanning neural communication and olfaction, lipolysis, rest-activity cycles, and kinase pathways critical for oncogenic signaling. To help decipher this growing biology, we report a first-generation ratiometric fluorescence resonance energy transfer (FRET) copper probe, FCP-1, for activity-based sensing of labile Cu(I) pools in live cells. FCP-1 links fluorescein and rhodamine dyes through a Tris[(2-pyridyl)methyl]amine bridge. Bioinspired Cu(I)-induced oxidative cleavage decreases FRET between fluorescein donor and rhodamine acceptor. FCP-1 responds to Cu(I) with high metal selectivity and oxidation-state specificity and facilitates ratiometric measurements that minimize potential interferences arising from variations in sample thickness, dye concentration, and light intensity. FCP-1 enables imaging of dynamic changes in labile Cu(I) pools in live cells in response to copper supplementation/depletion, differential expression of the copper importer CTR1, and redox stress induced by manipulating intracellular glutathione levels and reduced/oxidized glutathione (GSH/GSSG) ratios. FCP-1 imaging reveals a labile Cu(I) deficiency induced by oncogene-driven cellular transformation that promotes fluctuations in glutathione metabolism, where lower GSH/GSSG ratios decrease labile Cu(I) availability without affecting total copper levels. By connecting copper dysregulation and glutathione stress in cancer, this work provides a valuable starting point to study broader cross-talk between metal and redox pathways in health and disease with activity-based probes.
Collapse
|
44
|
Lee J, Yoon SA, Chun J, Kang C, Lee MH. A red-emitting styrylnaphthalimide-based fluorescent probe providing a ratiometric signal change for the precise and quantitative detection of H 2O 2. Anal Chim Acta 2019; 1080:153-161. [PMID: 31409465 DOI: 10.1016/j.aca.2019.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/06/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
A red-emitting and ratiometric fluorescence probe 1 for detecting H2O2, based on a styrylnaphthalimide-boronate ester was developed. Upon a H2O2-mediated hydrolysis of boronate ester, probe 1 was transformed to 2 with a ratiometric fluorescence change, decrease at 535 and increase at 640 nm. It was also found that the fluorescent reaction of 1 with H2O2 in solution could be completed within 10 min and the detection limit was estimated to be 0.30 μM. Moreover, this ratiometric change was highly selective for H2O2 over other redox species, metal ions, and anions. Also, this system was found to be capable of detecting H2O2 in the pH range of 6-9. Furthermore, probe 1 was preferentially accumulated into the endoplasmic reticulum (ER) in the live HeLa cells, and an increased H2O2 level in the presence of an ER stress inducer, thapsigargin was revealed.
Collapse
Affiliation(s)
- Jinju Lee
- Department of Chemistry, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Shin A Yoon
- Department of Chemistry, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Jieun Chun
- The School of East-West Medical Science, Kyung Hee University, Yongin, 17104, South Korea
| | - Chulhun Kang
- The School of East-West Medical Science, Kyung Hee University, Yongin, 17104, South Korea.
| | - Min Hee Lee
- Department of Chemistry, Sookmyung Women's University, Seoul, 04310, South Korea.
| |
Collapse
|
45
|
Xiong J, Li Z, Ji S, Pan C, Ji W, Li Q, Huo Y. Recyclable fluorescent chemodosimeters based on 8-hydroxyquinoline derivatives for highly sensitive and selective detection of mercury(II) in aqueous media and test strips. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:196-205. [PMID: 30995577 DOI: 10.1016/j.saa.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Four novel highly selective 8-hydroxyquinoline-based fluorescent chemodosimeters (1-4) were synthesized for the rapid analysis of Hg2+ in aqueous solution and on paper strips, which probably attributed to the excited state intramolecular proton transfer (ESIPT) process. Chemodosimeter 1 was evaluated as a Hg2+-ratiometric fluorescent sensor while others (2, 3 and 4) displayed fluorescence turn-on response for Hg2+ among the various survey metal ions. We demonstrated that chemodosimeters (1-4) could recognized Hg2+ ions based on a 1:1 stoichiometric binding event with fast detection time. More importantly, the detection limits for Hg2+ could reach at 10-9 M level except chemodosimeter 1 (4.05 × 10-8 M). In addition, it was found that chemodosimeters (1-4) were recycled efficiently because the Hg2+ induced emission spectra were reversed after adding NaBH4. Finally, these four sensors were successfully applied for fabrication of simple device test strips for rapid and on-site detection of Hg2+ ions.
Collapse
Affiliation(s)
- Jingwen Xiong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongzhi Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chengqiang Pan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
46
|
Zhou X, Liu Y, Liu Q, Yan L, Xue M, Yuan W, Shi M, Feng W, Xu C, Li F. Point-of-care Ratiometric Fluorescence Imaging of Tissue for the Diagnosis of Ovarian Cancer. Theranostics 2019; 9:4597-4607. [PMID: 31367243 PMCID: PMC6643432 DOI: 10.7150/thno.35322] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/08/2019] [Indexed: 02/03/2023] Open
Abstract
During a minimally invasive tumor resection procedure, it is still a challenge to rapidly and accurately trace tiny malignant tumors in real time. Fluorescent molecular imaging is considered an efficient method of localizing tumors during surgery due to its high sensitivity and biosafety. On the basis of the fact that γ-glutamyltranspeptidase (GGT) is overexpressed in ovarian cancer, we herein designed a highly sensitive ratiometric fluorescent GGT-responsive probe Py-GSH for rapid tumor detection. Methods: The GGT response probe (Py-GSH) was constructed by using GSH group as a response group and pyrionin B as a fluorescent reporter. Py-GSH was characterized for photophysical properties, response speed and selectivity of GGT and response mechanism. The anti-interference ability of ratiometric probe Py-GSH to probe concentration and excitation power was evaluated both in vitro and in tissue. The biocompatibility and toxicity of the ratiometric probe was examined using cytoxicity test. The GGT levels in different lines of cells were determined by ratiometric fluorescence imaging and cytometry analysis. Results: The obtained probe capable to rapidly monitored GGT activity in aqueous solution with 170-fold ratio change. By ratiometric fluorescence imaging, the probe Py-GSH was also successfully used to detect high GGT activity in solid tumor tissues and small peritoneal metastatic tumors (~1 mm in diameter) in a mouse model. In particular, this probe was further used to determine whether the tissue margin following clinical ovarian cancer surgery contained tumor. Conclusion: In combination of ratiometric fluorescence probes with imaging instrument, a point-of-care imaging method was developed and may be used for surgical navigation and rapid diagnosis of tumor tissue during clinical tumor resection.
Collapse
Affiliation(s)
- Xiaobo Zhou
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai 200433, China
| | - Yawei Liu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai 200433, China
| | - Qiyu Liu
- Department of Obstetrics and Gynecology of Shanghai Medical School & Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases & Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai 200011, China
| | - Luzhe Yan
- The High School Affiliated to Renmin University of China, Beijing 100080, China
| | - Meng Xue
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai 200433, China
| | - Wei Yuan
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai 200433, China
| | - Mei Shi
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai 200433, China
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai 200433, China
| | - Congjian Xu
- Department of Obstetrics and Gynecology of Shanghai Medical School & Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases & Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai 200011, China
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
47
|
Yi XQ, He YF, Cao YS, Shen WX, Lv YY. Porphyrinic Probe for Fluorescence "Turn-On" Monitoring of Cu + in Aqueous Buffer and Mitochondria. ACS Sens 2019; 4:856-864. [PMID: 30868875 DOI: 10.1021/acssensors.8b01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A zinc(II) porphyrin derivative (ZPSN) was designed and synthesized, and this probe exhibited rapid, selective and reversible binding to Cu+ for fluorescence monitoring in pure aqueous buffer. The detection mechanism is based on Cu+-activated disruption of axial coordination between the pyridyl ligand and the zinc center, which changes the molecular geometry and inhibits intramolecular electron transfer (ET), leading to fluorescence enhancement of the probe. The proposed sensing mechanism was supported by UV-vis spectroscopy/fluorescence spectral titration, NMR spectroscopy, mass spectrometry, and time-resolved fluorescence decay studies. The dissociation constant was calculated to be 6.53 × 10-11 M. CLSM analysis strongly suggested that ZPSN could penetrate live cells and successfully visualize Cu+ in mitochondria. This strategy may establish a design and offer a potential building block for construction of other metal sensors based on a similar mechanism.
Collapse
Affiliation(s)
- Xiao-Qin Yi
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
- College of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Yuan-Fan He
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yu-Sheng Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Wang-Xing Shen
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yuan-Yuan Lv
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| |
Collapse
|
48
|
Wang H, Fang B, Zhou L, Li D, Kong L, Uvdal K, Hu Z. A reversible and highly selective two-photon fluorescent "on-off-on" probe for biological Cu 2+ detection. Org Biomol Chem 2019. [PMID: 29532844 DOI: 10.1039/c8ob00257f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A two-photon active probe for physiological copper (Cu2+) detection is expected to play an important role in monitoring biological metabolism. Herein, a novel Schiff base derivative (E)-2,2'-((4-((4-(diethylamino)-2-hydroxybenzylidene)amino)phenyl)azanediyl)bis(ethan-1-ol) (L) with remarkable two-photon activity was developed and synthetically investigated. L presents high selectivity and sensitivity for Cu2+ sensing in ethanol/HEPES buffer (v/v, 1 : 1), which is accompanied by the fluorescence switching "off" and subsequently "on" with the addition of EDTA. The mechanism for the detection of Cu2+ is further analyzed using 1H NMR titration, mass spectra and theoretical calculations. Furthermore, since the probe L possesses good photophysical properties, excellent biocompatibility and low cytotoxicity, it is successfully applied to track Cu2+ in the cellular endoplasmic reticulum by two-photon fluorescence imaging, showing its potential value for practical applications in biological systems.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical college, Wuhu, 241002, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Guo J, Yuan H, Chen Y, Chen Z, Zhao M, Zou L, Liu Y, Liu Z, Zhao Q, Guo Z, He W. A ratiometric fluorescent sensor for tracking Cu(I) fluctuation in endoplasmic reticulum. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9424-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Tang Y, Li Y, Han J, Mao Y, Ni L, Wang Y. A coumarin based fluorescent probe for rapidly distinguishing of hypochlorite and copper (II) ion in organisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:299-308. [PMID: 30340210 DOI: 10.1016/j.saa.2018.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/18/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
A dual-functional fluorescent probe based on coumarin fluorophore for monitoring ClO- and Cu2+ was synthesized and characterized. The identification mechanisms for ClO- and Cu2+ induced different colorimetric and ratiometric changes. ClO- caused a colorimetric change from yellow to colorless and 120 nm blue-shifted emission spectra from red to blue. Besides, Cu2+ induced a remarkable fluorescence quenching behavior and 36 nm blue-shifted absorption spectra accompanied by the color change from yellow to luminous yellow. As expected, Probe 1 displayed excellent selectivity and sensitivity for detecting ClO- and Cu2+ over other competing ions in their respective systems. The limits of detection for ClO- and Cu2+ were 24.62 nM and 0.39 nM, respectively. The recognition mechanisms were proved by 1H NMR, mass spectrum and theoretical calculations. More importantly, the reversibility of Cu2+ could be applicable to rapid quantification for ClO-/Cu2+. Thus, the strategy for sensing ClO-/Cu2+ was carried out, which revealed broad applications of Probe 1 in multiple actual water and biology.
Collapse
Affiliation(s)
- Yong Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuanyuan Li
- Jingjiang College, Jiangsu University, Zhenjiang 212013, PR China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Liang Ni
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|