1
|
Mao C, Zeng X, Zhang C, Yang Y, Xiao X, Luan S, Zhang Y, Yuan Y. Mechanisms of Pharmaceutical Therapy and Drug Resistance in Esophageal Cancer. Front Cell Dev Biol 2021; 9:612451. [PMID: 33644048 PMCID: PMC7905099 DOI: 10.3389/fcell.2021.612451] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Pharmaceutical therapies are essential for esophageal cancer (EC). For the advanced EC, the neoadjuvant therapy regimen, including chemotherapy plus radiotherapy and/or immunotherapy, is effective to achieve clinical benefit, even pathological complete response. For the unresectable, recurrent, and metastatic EC, the pharmaceutical therapy is the limited effective regimen to alleviate the disease and prolong the progression-free survival and overall survival. In this review, we focus on the pharmaceutical applications in EC treatment including cytotoxic agents, molecular targeted antibodies, and immune checkpoint inhibitors (ICIs). The chemotherapy regimen is based on cytotoxic agents such as platinum-based complexes, fluorinated pyrimidines and taxenes. Although the cytotoxic agents have been developed in past decades, the standard chemotherapy regimen is still the cisplatin and 5-FU or paclitaxel because the derived drugs have no significant advantages of overcoming the shortcomings of side effects and drug resistance. The targeted molecular therapy is an essential supplement for chemotherapy; however, there are only a few targeted therapies available in clinical practice. Trastuzumab and ramucirumab are the only two molecular therapy drugs which are approved by the US Food and Drug Administration to treat advanced and/or metastatic EC. Although the targeted therapy usually achieves effective benefits in the early stage therapy of EC, the patients will always develop drug resistance during treatment. ICIs have had a significant impact on routine clinical practice in cancer treatment. The anti-programmed cell death-1 monoclonal antibodies pembrolizumab and nivolumab, as the ICIs, are recommended for advanced EC by several clinical trials. However, the significant issues of pharmaceutical treatment are still the dose-limiting side effects and primary or secondary drug resistance. These defects of pharmaceutical therapy restrain the clinical application and diminish the effectiveness of treatment.
Collapse
Affiliation(s)
- Chengyi Mao
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, Chengdu, China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Jia C, Deacon GB, Zhang Y, Gao C. Platinum(IV) antitumor complexes and their nano-drug delivery. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213640] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Xue K, Wang YN, Zhao X, Zhang HX, Yu D, Jin CS. Synergistic effect of meta-tetra(hydroxyphenyl)chlorin-based photodynamic therapy followed by cisplatin on malignant Hep-2 cells. Onco Targets Ther 2019; 12:5525-5536. [PMID: 31371990 PMCID: PMC6636612 DOI: 10.2147/ott.s198422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/12/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Tumor drug resistance limits the response to chemotherapy. Interestingly, sequential combination therapy enhances the anticancer efficacy of drugs like cisplatin (CDDP) via synergistic effects. We assayed the synergistic effects of combined photodynamic therapy programmed death receptor-ligand 1 (PDT) and chemotherapy in malignant Hep-2 cells. Methods In the cultured Hep-2 cells, meta-tetra(hydroxyphenyl)chlorin (m-THPC) and CDDP were administered separately or in combination. The cellular viability and apoptosis were assessed, accompanied by measurement of the expression of Bax, Bcl-2, ATG-7, and LC3 (LC3-I and LC3-II). Additionally, nuclear chromatin changes, drug retention, and PD-L1 expression were further investigated following different treatments. Results The sequential treatment significantly diminished cell viability and induced cell apoptosis, in consistency with the usage of single therapeutic strategies, as reflected by an increase in Bax expression and decrease of Bcl-2 expression. Moreover, ATG-7 and LC3-II/LC3-I ratio were reduced after administration of the sequential treatment. Synergetic effect of nuclear chromatin configuration, negative effects of cellular drug retention, and a decrease in PD-L1 expression were observed following the sequential treatment. Conclusion The application of sequential treatment of PDT in combination with chemotherapy offers a promising therapeutic option for cancer treatment, by regulating the PD-L1 expression, autophagy, and non-mitochondrial pathways.
Collapse
Affiliation(s)
- Kai Xue
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yi-Nan Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Xue Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Hong-Xin Zhang
- Changchun Institute of Optics, Fine Mechanics & Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chun-Shun Jin
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
4
|
Zeng W, Du Z, Luo Q, Zhao Y, Wang Y, Wu K, Jia F, Zhang Y, Wang F. Proteomic Strategy for Identification of Proteins Responding to Cisplatin-Damaged DNA. Anal Chem 2019; 91:6035-6042. [PMID: 30990031 DOI: 10.1021/acs.analchem.9b00554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new proteomic strategy combining functionalized magnetic nanoparticle affinity probes with mass spectrometry was developed to capture and identify proteins specifically responding to 1,2-d(GpG) intrastrand cisplatin-cross-linked DNA, the major DNA lesion caused by cisplatin and thought to induce apoptosis. A 16-mer oligodeoxynucleotide (ODN) duplex and its cisplatin-cross-linked adduct were immobilized on magnetic nanoparticles via click reaction, respectively, to fabricate negative and positive affinity probes which were very stable in cellular protein extracts due to the excellent bio-orthogonality of click chemistry and the inertness of covalent triazole linker. Quantitative mass spectrometry results unambiguously revealed the predominant binding of HMGB1 and HMGB2, the well-established specific binders of 1,2-cisplatin-cross-linked DNA, to the cisplatin-cross-linked ODN, thus validating the accuracy and reliability of our strategy. Furthermore, 5 RNA or single-stranded DNA binding proteins, namely, hnRNP A/B, RRP44, RL30, RL13, and NCL, were demonstrated to recognize specifically the cisplatinated ODN, indicating the significantly unwound ODN duplex by cisplatin cross-linking. In contrast, the binding of a transcription factor TFIIFa to DNA was retarded due to cisplatin damage, implying that the cisplatin lesion stalls DNA transcription. These findings promote understanding in the cellular responses to cisplatin-damaged DNA and inspire further precise elucidation of the action mechanism of cisplatin.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhifeng Du
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yuanyuan Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.,Basic Medical College , Shandong University of Chinese Traditional Medicine , Jinan 250355 , P. R. China
| |
Collapse
|
5
|
Ni L, Zhao H, Tao L, Li X, Zhou Z, Sun Y, Chen C, Wei D, Liu Y, Diao G. Synthesis, in vitro cytotoxicity, and structure-activity relationships (SAR) of multidentate oxidovanadium(iv) complexes as anticancer agents. Dalton Trans 2018; 47:10035-10045. [PMID: 29974097 DOI: 10.1039/c8dt01778f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multidentate oxidovanadium(iv) complexes with different geometric configurations [VO(ox)(bpy)(H2O)] 1, [VO(ox)(phen)(H2O)] 2, [VO(ida)(bpy)]·2H2O 3, (phen)[VO(ida)(phen)]·4H2O 4, and (Hphen)[VO(H2O)(nta)]·2H2O 5 [ox = oxalic acid, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, ida = iminodiacetic acid, nta = nitrilotriacetic acid] have been obtained from the reactions of oxidovanadium sulfate or vanadium pentoxide with oxalates, amino-polycarboxylates and N-heterocyclic ligands in neutral solution by the hydrothermal method, and have been fully characterized by elemental, thermogravimetric analyses and single crystal X-ray diffraction, as well as a wide range of spectroscopic techniques such as FT-IR, UV/Vis, NMR, ESI-MS. The anti-tumor properties of oxidovanadium compounds 1-5 were further evaluated in human HepG2 and SMMC-7721 hepatocellular carcinoma cell lines in vitro. The profiles of cytotoxicity, cell cycle distribution, as well as cell apoptosis upon test compound exposure, were determined by MTT and flow cytometry assays. Compound 2 exhibited a much higher anti-tumor activity than others. The IC50 values of 2 were 5.34 ± 0.034 μM and 29.07 ± 0.017 μM in SMMC-7721 and HepG2 cells after 48 h treatment, respectively. Furthermore, compound 2 could significantly arrest the cell cycle in the S and G2/M phases and further induce cell apoptosis in a dose-dependent manner. The structure-activity relationship (SAR) studies revealed that structural elements, for example, metal components, variations of coordination mode, labile water molecules, chelated ligands etc., probably exert an essential cooperative effect on the antitumor activity. In short, these findings not only provide an accessible model system to exploit V-based complexes as potential simple, safe and effective multifunctional antitumor agents, but also open up a rational approach to shed new light on the selection and optimization of ideal drug candidates.
Collapse
Affiliation(s)
- Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Choi YJ, Gibala KS, Ayele T, Deventer KV, Resendiz MJE. Biophysical properties, thermal stability and functional impact of 8-oxo-7,8-dihydroguanine on oligonucleotides of RNA-a study of duplex, hairpins and the aptamer for preQ1 as models. Nucleic Acids Res 2017; 45:2099-2111. [PMID: 28426093 PMCID: PMC5389535 DOI: 10.1093/nar/gkw885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/22/2016] [Indexed: 01/12/2023] Open
Abstract
A better understanding of the effects that oxidative lesions have on RNA is of importance to understand their role in the development/progression of disease. 8-oxo-7,8-dihydroguanine was incorporated into RNA to understand its structural and functional impact on RNA:RNA and RNA:DNA duplexes, hairpins and pseudoknots. One to three modifications were incorporated into dodecamers of RNA [AAGAGGGAUGAC] resulting in thermal destabilization (ΔTm – 10°C per lesion). Hairpins with tetraloops c-UUCG*-g* (8-10), a-ACCG-g* (11-12), c-UUG*G*-g* (13-16) and c-ACG*G*-g* (17-20) were modified and used to determine thermal stabilities, concluding that: (i) modifying the stem leads to destabilization unless adenosine is the opposing basepair of 8-oxoGua; (ii) modification at the loop is position- and sequence-dependent and varies from slight stabilization to large destabilization, in some cases leading to formation of other secondary structures (hairpin→duplex). Functional effects were established using the aptamer for preQ1 as model. Modification at G5 disrupted the stem P1 and inhibited recognition of the target molecule 7-methylamino-7-deazaguanine (preQ1). Modifying G11 results in increased thermal stability, albeit with a Kd 4-fold larger than its canonical analog. These studies show the capability of 8-oxoG to affect structure and function of RNA, resulting in distinct outcomes as a function of number and position of the lesion.
Collapse
Affiliation(s)
- Yu J Choi
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Krzysztof S Gibala
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Tewoderos Ayele
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Katherine V Deventer
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| |
Collapse
|
7
|
Geng J, Aioub M, El-Sayed MA, Barry BA. An Ultraviolet Resonance Raman Spectroscopic Study of Cisplatin and Transplatin Interactions with Genomic DNA. J Phys Chem B 2017; 121:8975-8983. [PMID: 28925698 DOI: 10.1021/acs.jpcb.7b08156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet resonance Raman (UVRR) spectroscopy is a label-free method to define biomacromolecular interactions with anticancer compounds. Using UVRR, we describe the binding interactions of two Pt(II) compounds, cisplatin (cis-diamminedichloroplatinum(II)) and its isomer, transplatin, with nucleotides and genomic DNA. Cisplatin binds to DNA and other cellular components and triggers apoptosis, whereas transplatin is clinically ineffective. Here, a 244 nm UVRR study shows that purine UVRR bands are altered in frequency and intensity when mononucleotides are treated with cisplatin. This result is consistent with previous suggestions that purine N7 provides the cisplatin-binding site. The addition of cisplatin to DNA also causes changes in the UVRR spectrum, consistent with binding of platinum to purine N7 and disruption of hydrogen-bonding interactions between base pairs. Equally important is that transplatin treatment of DNA generates similar UVRR spectral changes, when compared to cisplatin-treated samples. Kinetic analysis, performed by monitoring decreases of the 1492 cm-1 band, reveals biphasic kinetics and is consistent with a two-step binding mechanism for both platinum compounds. For cisplatin-DNA, the rate constants (6.8 × 10-5 and 6.5 × 10-6 s-1) are assigned to the formation of monofunctional adducts and to bifunctional, intrastrand cross-linking, respectively. In transplatin-DNA, there is a 3.4-fold decrease in the rate constant of the slow phase, compared with the cisplatin samples. This change is attributed to generation of interstrand, rather than intrastrand, adducts. This longer reaction time may result in increased competition in the cellular environment and account, at least in part, for the lower pharmacological efficacy of transplatin.
Collapse
Affiliation(s)
- Jiafeng Geng
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Mena Aioub
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Mostafa A El-Sayed
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Bridgette A Barry
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Xiao H, Qi R, Li T, Awuah SG, Zheng Y, Wei W, Kang X, Song H, Wang Y, Yu Y, Bird MA, Jing X, Yaffe MB, Birrer MJ, Ghoroghchian PP. Maximizing Synergistic Activity When Combining RNAi and Platinum-Based Anticancer Agents. J Am Chem Soc 2017; 139:3033-3044. [PMID: 28166401 DOI: 10.1021/jacs.6b12108] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNAi approaches have been widely combined with platinum-based anticancer agents to elucidate cellular responses and to target gene products that mediate acquired resistance. Recent work has demonstrated that platination of siRNA prior to transfection may negatively influence RNAi efficiency based on the position and sequence of its guanosine nucleosides. Here, we used detailed spectroscopic characterization to demonstrate rapid formation of Pt-guanosine adducts within 30 min after coincubation of oxaliplatin [OxaPt(II)] or cisplatin [CisPt(II)] with either guanosine monophosphate or B-cell lymphoma 2 (BCL-2) siRNA. After 3 h of exposure to these platinum(II) agents, >50% of BCL-2 siRNA transcripts were platinated and unable to effectively suppress mRNA levels. Platinum(IV) analogues [OxaPt(IV) or CisPt(IV)] did not form Pt-siRNA adducts but did display decreased in vitro uptake and reduced potency. To overcome these challenges, we utilized biodegradable methoxyl-poly(ethylene glycol)-block-poly(ε-caprolactone)-block-poly(l-lysine) (mPEG-b-PCL-b-PLL) to generate self-assembled micelles that covalently conjugated OxaPt(IV) and/or electrostatically complexed siRNA. We then compared multiple strategies by which to combine BCL-2 siRNA with either OxaPt(II) or OxaPt(IV). Overall, we determined that the concentrations of siRNA (nM) and platinum(II)-based anticancer agents (μM) that are typically used for in vitro experiments led to rapid Pt-siRNA adduct formation and ineffective RNAi. Coincorporation of BCL-2 siRNA and platinum(IV) analogues in a single micelle enabled maximal suppression of BCL-2 mRNA levels (to <10% of baseline), augmented the intracellular levels of platinum (by ∼4×) and the numbers of resultant Pt-DNA adducts (by >5×), increased the cellular fractions that underwent apoptosis (by ∼4×), and enhanced the in vitro antiproliferative activity of the corresponding platinum(II) agent (by 10-100×, depending on the cancer cell line). When combining RNAi and platinum-based anticancer agents, this generalizable strategy may be adopted to maximize synergy during screening or for therapeutic delivery.
Collapse
Affiliation(s)
- Haihua Xiao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ruogu Qi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ting Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Samuel G Awuah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yaorong Zheng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Wei Wei
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Xiang Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Haiqin Song
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yongheng Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yingjie Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Molly A Bird
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Michael J Birrer
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - P Peter Ghoroghchian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.,Dana-Farber Cancer Institute , Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Alberti E, Zampakou M, Donghi D. Covalent and non-covalent binding of metal complexes to RNA. J Inorg Biochem 2016; 163:278-291. [DOI: 10.1016/j.jinorgbio.2016.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/12/2016] [Accepted: 04/12/2016] [Indexed: 01/19/2023]
|
10
|
Nguyen JC, Dzowo YK, Wolfbrandt C, Townsend J, Kukatin S, Wang H, Resendiz MJE. Synthesis, Thermal Stability, Biophysical Properties, and Molecular Modeling of Oligonucleotides of RNA Containing 2'-O-2-Thiophenylmethyl Groups. J Org Chem 2016; 81:8947-8958. [PMID: 27584708 DOI: 10.1021/acs.joc.6b01615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dodecamers of RNA [CUACGGAAUCAU] were functionalized with C2'-O-2-thiophenylmethyl groups to obtain oligonucleotides 10-14 and 17. The modified nucleotides were incorporated into RNA strands via solid-phase synthesis. The biophysical properties of these ONs were used to quantify the effects of this modification on RNA:RNA and RNA:DNA duplexes. A combination of UV-vis and circular dichroism were used to determine thermal stabilities of all strands, which hybridized into A-form geometries. Destabilization of the double stranded RNA was measured as a function of number of consecutive modifications, reflected in decreased thermal denaturation values (ΔTm, ca. 2.5-11.5 °C). Van't Hoff plots on a duplex containing one modification (10:15) displayed a ca. ΔΔG° of +4 kcal/mol with respect to its canonical analogue. Interestingly, hybridization of two modified strands (13:17, containing a total of eight modifications) resulted in increased stability and a distinct secondary structure, reflected in its CD spectrum. Molecular modeling based on DFT calculations shed light on the nature of this stability, with induced changes in the torsional angle δ (C5'-C4'-C3'-O3) and phosphate-phosphate distances that are in agreement with a compacted structure. The described synthetic methodology and structural information will be useful in the design of thermodynamically stable structures containing chemically reactive modifications.
Collapse
Affiliation(s)
- Joseph C Nguyen
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Yannick Kokouvi Dzowo
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Carly Wolfbrandt
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Justin Townsend
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Stanislav Kukatin
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| |
Collapse
|
11
|
Chauca-Diaz AM, Choi YJ, Resendiz MJE. Biophysical properties and thermal stability of oligonucleotides of RNA containing 7,8-dihydro-8-hydroxyadenosine. Biopolymers 2016; 103:167-74. [PMID: 25363418 PMCID: PMC4302245 DOI: 10.1002/bip.22579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/14/2022]
Abstract
Circular dichroism (CD) was used to assess the stabilization/destabilization imposed by oxidative lesion 7,8-dihydro-8-hydroxyadenosine (8-oxoA) on strands of RNA with different structural motifs. RNA:RNA homoduplex destabilization was observed in a position dependent manner using 10-mers as models that displayed differences between 12.7 and 15.1°C. We found that increasing the number of modifications resulted in depressed Tm values of about 12-15°C per lesion. The same effect was observed on RNA:DNA heteroduplex samples. We also tested the effects of this lesion in short hairpins containing the tetraloop UUCX (X = A, 8-oxoA). We found that the stem was hypersensitive to substitution of A by 8-oxoA and that it destabilized the structure by >23°C. Concomitant substitution at the stem and loop prevented formation of this secondary structure or lead to other less-stable hairpins. Incorporation of this lesion at the first base of the loop had no effect on either structure. Overall, we found that the effects of 8-oxoA on RNA structure are position dependent and that its stabilization may vary from sharp decreases to small increments, in some cases, leading to the formation of other more/less stable structures. These structural changes may have larger biological implications, particularly if the oxidatively modified RNA persists, thus leading to changes in RNA reactivity and function.
Collapse
Affiliation(s)
- Ana M Chauca-Diaz
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St, Denver, CO, 80204
| | | | | |
Collapse
|
12
|
Alshiekh A, Clausén M, Elmroth SKC. Kinetics of cisplatin binding to short r(GG) containing miRNA mimics - influence of Na(+)versus K(+), temperature and hydrophobicity on reactivity. Dalton Trans 2016; 44:12623-32. [PMID: 26079627 DOI: 10.1039/c5dt00663e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleic acids are well recognized targets for platinum-based anticancer drugs, with RNA and DNA being kinetically comparable. In the case of RNA, previous studies have shown that the reaction between small duplex RNAs (dsRNAs) and monoaquated cisplatin (cis-Pt(NH3)2Cl(OH2)(+), ) can be followed by the metal induced hyperchromicity occurring directly after addition of to e.g. microRNA mimics. In the present study, we have used this approach to compare thermal stability and reactivity between intracellularly- and extracellularly relevant salt concentration (CNa(+) and CK(+)ca. 0.1 M), and also as a function of increased hydrophobicity (10% v/v EtOH). In addition, reactivity was studied as a function of temperature in the interval ca. 5-20 °C below the respective dsRNA melting temperatures (Tms). Four different 13- to 20-mer dsRNAs with two different central sequence motifs were used as targets containing either a central r(GG)·r(CC)- or r(GG)·r(UAU)-sequence. The reactions exhibited half-lives in the minute- to hour range at 38 °C in the presence of excess in the μM range. Further, a linear dependence was found between C and the observed pseudo-first-order rate constants. The resulting apparent second-order rate constants were significantly larger for the lower melting r(GG)·r(UAU)-containing sequences compared with that of the fully complementary ones; the higher and lower reactivities represented by RNA-1-3 and RNA-1-1 with k2,appca. 30 and 8 M(-1) s(-1) respectively at CNa(+) = 122 mM. For all RNAs a common small, but significant, trend was observed with increased reactivity in the presence of K(+) compared with Na(+), and decreased reactivity in the presence of EtOH. Finally, the temperature dependence of k2,app was evaluated using the Eyring equation. The retrieved activation parameters reveal positive values for both ΔH(≠) and ΔS(≠) for all dsRNAs, in the range ca. 23-34 kcal mol(-1) and 22-57 cal K(-1) mol(-1) respectively. These values indicate solvational effects to be important for the rate determining step of the reaction, and thus in support of a structural change of the dsRNA to take place in parallel with the adduct formation step.
Collapse
Affiliation(s)
- Alak Alshiekh
- Biochemistry and Structural Biology, KILU, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
| | | | | |
Collapse
|
13
|
Ni L, Wang J, Liu C, Fan J, Sun Y, Zhou Z, Diao G. An asymmetric binuclear zinc(ii) complex with mixed iminodiacetate and phenanthroline ligands: synthesis, characterization, structural conversion and anticancer properties. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00072j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water-soluble asymmetric binuclear zinc(ii) complex with mixed iminodiacetate and 1,10-phenanthroline ligands exhibited promising anticancer activity and low toxicity, suggesting potential as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Lubin Ni
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Juan Wang
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Chang Liu
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Jinhong Fan
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Yun Sun
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Zhaohui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Guowang Diao
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| |
Collapse
|
14
|
He CC, Kimutai B, Bao X, Hamlow L, Zhu Y, Strobehn SF, Gao J, Berden G, Oomens J, Chow CS, Rodgers MT. Evaluation of Hybrid Theoretical Approaches for Structural Determination of a Glycine-Linked Cisplatin Derivative via Infrared Multiple Photon Dissociation (IRMPD) Action Spectroscopy. J Phys Chem A 2015; 119:10980-7. [DOI: 10.1021/acs.jpca.5b08181] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- C. C. He
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - B. Kimutai
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - X. Bao
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - L. Hamlow
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Y. Zhu
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - S. F. Strobehn
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - J. Gao
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G. Berden
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J. Oomens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
- van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, 1090 GD Amsterdam, The Netherlands
| | - C. S. Chow
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - M. T. Rodgers
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
15
|
Moghaddam AD, White JD, Cunningham RM, Loes AN, Haley MM, DeRose VJ. Convenient detection of metal-DNA, metal-RNA, and metal-protein adducts with a click-modified Pt(II) complex. Dalton Trans 2015; 44:3536-9. [PMID: 25338004 DOI: 10.1039/c4dt02649g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
cis-[Pt(2-azido-1,3-propanediamine)Cl2] is a reagent for high-yield post-treatment fluorescent labelling of Pt(II) biomolecular targets using click chemistry and exhibits a bias in conformational isomers in the context of duplex DNA. Pt-protein adducts are detected using BSA as a model. Following in vivo treatment, long-lived Pt-RNA adducts are detected on ribosomal RNA.
Collapse
Affiliation(s)
- Alan D Moghaddam
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403-1253, USA
| | | | | | | | | | | |
Collapse
|
16
|
Dedduwa-Mudalige GNP, Chow CS. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins. Int J Mol Sci 2015; 16:21392-409. [PMID: 26370969 PMCID: PMC4613259 DOI: 10.3390/ijms160921392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/26/2015] [Accepted: 08/29/2015] [Indexed: 01/11/2023] Open
Abstract
Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA) intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA) including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.
Collapse
Affiliation(s)
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
17
|
Osborn MF, White JD, Haley MM, DeRose VJ. Platinum-RNA modifications following drug treatment in S. cerevisiae identified by click chemistry and enzymatic mapping. ACS Chem Biol 2014; 9:2404-11. [PMID: 25055168 PMCID: PMC4201330 DOI: 10.1021/cb500395z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
With
the importance of RNA-based regulatory pathways, the potential
for targeting noncoding and coding RNAs by small molecule therapeutics
is of great interest. Platinum(II) complexes including cisplatin (cis-diamminedichloroplatinum(II)) are widely prescribed
anticancer compounds that form stable adducts on nucleic acids. In
tumors, DNA damage from Pt(II) initiates apoptotic signaling, but
this activity is not necessary for cytotoxicity (e.g., Yu et al., 2008), suggesting accumulation and consequences
of Pt(II) lesions on non-DNA targets. We previously reported an azide-functionalized
compound, picazoplatin, designed for post-treatment click labeling
that enables detection of Pt complexes (White et al., 2013). Here, we report in-gel fluorescent detection of Pt-bound
rRNA and tRNA extracted from picazoplatin-treated S. cerevisiae and labeled using Cu-free click chemistry. These data provide the
first evidence that cellular tRNA is a platinum drug substrate. We
assess Pt(II) binding sites within rRNA from cisplatin-treated S. cerevisiae, in regions where damage is linked to significant
downstream consequences including the sarcin-ricin loop (SRL) Helix
95. Pt-RNA adducts occur on the nucleotide substrates of ribosome-inactivating
proteins, as well as on the bulged-G motif critical for elongation
factor recognition of the loop. At therapeutically relevant concentrations,
Pt(II) also binds robustly within conserved cation-binding pockets
in Domains V and VI rRNA at the peptidyl transferase center. Taken
together, these results demonstrate a convenient click chemistry methodology
that can be applied to identify other metal or covalent modification-based
drug targets and suggest a ribotoxic mechanism for cisplatin cytotoxicity.
Collapse
Affiliation(s)
- Maire F. Osborn
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Jonathan D. White
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael M. Haley
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Victoria J. DeRose
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
18
|
Hato SV, Khong A, de Vries IJM, Lesterhuis WJ. Molecular Pathways: The Immunogenic Effects of Platinum-Based Chemotherapeutics. Clin Cancer Res 2014; 20:2831-7. [DOI: 10.1158/1078-0432.ccr-13-3141] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Wang ZL, Wang HL, Yan JM, Ping Y, O SI, Li SJ, Jiang Q. DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation. Chem Commun (Camb) 2014; 50:2732-4. [DOI: 10.1039/c3cc49821b] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
White JD, Osborn MF, Moghaddam AD, Guzman LE, Haley MM, DeRose VJ. Picazoplatin, an azide-containing platinum(II) derivative for target analysis by click chemistry. J Am Chem Soc 2013; 135:11680-3. [PMID: 23879391 PMCID: PMC4130293 DOI: 10.1021/ja402453k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the broad use of platinum-based chemotherapeutics, identification of their full range of cellular targets remains a significant challenge. In order to identify, visualize, and isolate cellular targets of Pt(II) complexes, we have modified the chemotherapeutic drug picoplatin with an azide moiety for subsequent click reactivity. The new compound picazoplatin readily binds DNA and RNA oligonucleotides and undergoes facile post-labeling click reactions to alkyne-fluorophore conjugates. Pt-fluorophore click reactions in rRNA purified from drug-treated Saccharomyces cerevisiae demonstrate its potential for future in vivo efforts.
Collapse
Affiliation(s)
| | | | - Alan D. Moghaddam
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253 USA
| | - Lindsay E. Guzman
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253 USA
| | - Michael M. Haley
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253 USA
| | - Victoria J. DeRose
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253 USA
| |
Collapse
|
21
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
22
|
Hostetter AA, Osborn MF, DeRose VJ. RNA-Pt adducts following cisplatin treatment of Saccharomyces cerevisiae. ACS Chem Biol 2012; 7:218-25. [PMID: 22004017 DOI: 10.1021/cb200279p] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The numerous regulatory roles of cellular RNAs suggest novel potential drug targets, but establishing intracellular drug-RNA interactions is challenging. Cisplatin (cis-diamminedichloridoplatinum(II)) is a leading anticancer drug that forms exchange-inert complexes with nucleic acids, allowing its distribution on cellular RNAs to be followed ex vivo. Although Pt adduct formation on DNA is well-known, a complete characterization of cellular RNA-Pt adducts has not been performed. In this study, the action of cisplatin on S. cerevisiae in minimal media was established with growth curves, clonogenic assays, and tests for apoptotic markers. Despite high toxicity, cisplatin-induced apoptosis in S. cerevisiae was not observed under these conditions. In-cell Pt concentrations and Pt accumulation on poly(A)-mRNA, rRNA, total RNA, and DNA quantified via ICP-MS indicate ∼4- to 20-fold more Pt accumulation in total cellular RNA than in DNA. Interestingly, similar Pt accumulation is observed on rRNA and total RNA, corresponding to one Pt per (14,600 ± 1,500) and (5760 ± 580) nucleotides on total RNA following 100 and 200 μM cisplatin treatments, respectively. Specific Pt adducts mapped by primer extension analysis of a solvent-accessible 18S rRNA helix occur at terminal and internal loop regions and appear as soon as 1 h post-treatment. Pt per nucleotide accumulation on poly(A)-mRNA is 4- to 6-fold lower than on rRNA but could have consequences for low copy-number or highly regulated transcripts. Taken together, these data demonstrate significant accumulation of Pt adducts on cellular RNA species following in cellulo cisplatin treatment. These and other small molecule-RNA interactions could disrupt processes regulated by RNA.
Collapse
Affiliation(s)
- Alethia A. Hostetter
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Maire F. Osborn
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Victoria J. DeRose
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
23
|
Abstract
The function of RNA depends on its ability to adopt complex and dynamic structures, and the incorporation of site-specific cross-linking probes is a powerful method for providing distance constraints that are valuable in RNA structural biology. Here we describe a new RNA-RNA cross-linking strategy based on Pt(II) targeting of specific phosphorothioate substitutions. In this strategy cis-diammine Pt(II) complexes are kinetically recruited and anchored to a phosphorothioate substitution embedded within a structured RNA. Substitution of the remaining exchangeable Pt(II) ligand with a nucleophile supplied by a nearby RNA nucleobase results in metal-mediated cross-links that are stable during isolation. This type of cross-linking strategy was explored within the catalytic core of the Hammerhead ribozyme (HHRz). When a phosphorothioate substitution is installed at the scissile bond normally cleaved by the HHRz, Pt(II) cross-linking takes place to nucleotides G8 and G10 in the ribozyme active site. Both of these positions are predicted to be within ~8 Å of a phosphorothioate-bound Pt(II) metal center. Cross-linking depends on Mg(2+) ion concentration, reaching yields as high as 30%, with rates that indicate cation competition within the RNA three-helix junction. Cross-linking efficiency depends on accurate formation of the HHRz tertiary structure, and cross-links are not observed for RNA helices. Combined, these results show promise for using kinetically inert Pt(II) complexes as new site-specific cross-linking tools for exploring RNA structure and dynamics.
Collapse
Affiliation(s)
- Erich G. Chapman
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Victoria J. DeRose
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
24
|
Hedman HK, Kirpekar F, Elmroth SKC. Platinum Interference with siRNA Non-seed Regions Fine-Tunes Silencing Capacity. J Am Chem Soc 2011; 133:11977-84. [DOI: 10.1021/ja111082e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanna K. Hedman
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Sofi K. C. Elmroth
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
25
|
Hostetter AA, Miranda ML, DeRose VJ, McFarlane Holman KL. Ru binding to RNA following treatment with the antimetastatic prodrug NAMI-A in Saccharomyces cerevisiae and in vitro. J Biol Inorg Chem 2011; 16:1177-85. [PMID: 21739255 DOI: 10.1007/s00775-011-0806-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/11/2011] [Indexed: 11/24/2022]
Abstract
[ImH][trans-Ru(III)Cl(4)(DMSO)(Im)] (where DMSO is dimethyl sulfoxide and Im is imidazole) (NAMI-A) is an antimetastatic prodrug currently in phase II clinical trials. The mechanisms of action of this and related Ru-based anticancer agents are not well understood, but several cellular targets have been suggested. Although Ru has been observed to bind to DNA following in vitro NAMI-A exposure, little is known about Ru-DNA interactions in vivo and even less is known about how this or related metallodrugs might influence cellular RNA. In this study, Ru accumulation in cellular RNA was measured following treatment of Saccharomyces cerevisiae with NAMI-A. Drug-dependent growth and cell viability indicate relatively high tolerance, with approximately 40% cell death occurring at 6 h for 450 μM NAMI-A. Significant dose-dependent accumulation of Ru in cellular RNA was observed by inductively coupled plasma mass spectrometry measurements on RNA extracted from yeast treated with NAMI-A. In vitro, binding of Ru species to drug-treated model DNA and RNA oligonucleotides at pH 6.0 and 7.4 was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the presence and absence of the reductant ascorbate. The extent of Ru-nucleotide interactions increases slightly with lower pH and significantly in the presence of ascorbate, with differences in observed species distribution. Taken together, these studies demonstrate the accumulation of aquated and reduced derivatives of NAMI-A on RNA in vitro and in cellulo, and enhanced binding with nucleic acid targets in a tumorlike acidic, reducing environment. To our knowledge, this is also the first study to characterize NAMI-A treatment of S. cerevisiae, a genetically tractable model organism.
Collapse
|
26
|
Suntharalingam K, Vilar R. Interaction of metal complexes with nucleic acids. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1ic90027g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Chapman EG, Hostetter AA, Osborn MF, Miller AL, DeRose VJ. Binding of kinetically inert metal ions to RNA: the case of platinum(II). Met Ions Life Sci 2011; 9:347-77. [PMID: 22010278 PMCID: PMC4080900 DOI: 10.1039/9781849732512-00347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this chapter several aspects of Pt(II) are highlighted that focus on the properties of Pt(II)-RNA adducts and the possibility that they influence RNA-based processes in cells. Cellular distribution of Pt(II) complexes results in significant platination of RNA, and localization studies find Pt(II) in the nucleus, nucleolus, and a distribution of other sites in cells. Treatment with Pt(II) compounds disrupts RNA-based processes including enzymatic processing, splicing, and translation, and this disruption may be indicative of structural changes to RNA or RNA-protein complexes. Several RNA-Pt(II) adducts have been characterized in vitro by biochemical and other methods. Evidence for Pt(II) binding in non-helical regions and for Pt(II) cross-linking of internal loops has been found. Although platinated sites have been identified, there currently exists very little in the way of detailed structural characterization of RNA-Pt(II) adducts. Some insight into the details of Pt(II) coordination to RNA, especially RNA helices, can be gained from DNA model systems. Many RNA structures, however, contain complex tertiary folds and common, purine-rich structural elements that present suitable Pt(II) nucleophiles in unique arrangements which may hold the potential for novel types of platinum-RNA adducts. Future research aimed at structural characterization of platinum-RNA adducts may provide further insights into platinum-nucleic acid binding motifs, and perhaps provide a rationale for the observed inhibition by Pt(II) complexes of splicing, translation, and enzymatic processing.
Collapse
Affiliation(s)
- Erich G. Chapman
- Department of Chemistry University of Oregon Eugene OR 97403 USA
| | | | - Maire F. Osborn
- Department of Chemistry University of Oregon Eugene OR 97403 USA
| | - Amanda L. Miller
- Department of Chemistry University of Oregon Eugene OR 97403 USA
| | | |
Collapse
|
28
|
Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 2010; 39:8113-27. [PMID: 20593091 DOI: 10.1039/c0dt00292e] [Citation(s) in RCA: 1238] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since its approval in 1979 cisplatin has become an important component in chemotherapy regimes for the treatment of ovarian, testicular, lung and bladder cancers, as well as lymphomas, myelomas and melanoma. Unfortunately its continued use is greatly limited by severe dose limiting side effects and intrinsic or acquired drug resistance. Over the last 30 years, 23 other platinum-based drugs have entered clinical trials with only two (carboplatin and oxaliplatin) of these gaining international marketing approval, and another three (nedaplatin, lobaplatin and heptaplatin) gaining approval in individual nations. During this time there have been more failures than successes with the development of 14 drugs being halted during clinical trials. Currently there are four drugs in the various phases of clinical trial (satraplatin, picoplatin, Lipoplatin and ProLindac). No new small molecule platinum drug has entered clinical trials since 1999 which is representative of a shift in focus away from drug design and towards drug delivery in the last decade. In this perspective article we update the status of platinum anticancer drugs currently approved for use, those undergoing clinical trials and those discontinued during clinical trials, and discuss the results in the context of where we believe the field will develop over the next decade.
Collapse
Affiliation(s)
- Nial J Wheate
- Strathclyde Institute of Pharmacy, and Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, 27 Taylor Street, Glasgow, UK G4 0NR.
| | | | | | | |
Collapse
|