1
|
Vilkaitis G, Masevičius V, Kriukienė E, Klimašauskas S. Chemical Expansion of the Methyltransferase Reaction: Tools for DNA Labeling and Epigenome Analysis. Acc Chem Res 2023; 56:3188-3197. [PMID: 37904501 PMCID: PMC10666283 DOI: 10.1021/acs.accounts.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023]
Abstract
DNA is the genetic matter of life composed of four major nucleotides which can be further furnished with biologically important covalent modifications. Among the variety of enzymes involved in DNA metabolism, AdoMet-dependent methyltransferases (MTases) combine the recognition of specific sequences and covalent methylation of a target nucleotide. The naturally transferred methyl groups play important roles in biological signaling, but they are poor physical reporters and largely resistant to chemical derivatization. Therefore, an obvious strategy to unlock the practical utility of the methyltransferase reactions is to enable the transfer of "prederivatized" (extended) versions of the methyl group.However, previous enzymatic studies of extended AdoMet analogs indicated that the transalkylation reactions are drastically impaired as the size of the carbon chain increases. In collaborative efforts, we proposed that, akin to enhanced SN2 reactivity of allylic and propargylic systems, addition of a π orbital next to the transferable carbon atom might confer the needed activation of the reaction. Indeed, we found that MTase-catalyzed transalkylations of DNA with cofactors containing a double or a triple C-C bond in the β position occurred in a robust and sequence-specific manner. Altogether, this breakthrough approach named mTAG (methyltransferase-directed transfer of activated groups) has proven instrumental for targeted labeling of DNA and other types of biomolecules (using appropriate MTases) including RNA and proteins.Our further work focused on the propargylic cofactors and their reactions with DNA cytosine-5 MTases, a class of MTases common for both prokaryotes and eukaryotes. Here, we learned that the 4-X-but-2-yn-1-yl (X = polar group) cofactors suffered from a rapid loss of activity in aqueous buffers due to susceptibility of the triple bond to hydration. This problem was remedied by synthetically increasing the separation between X and the triple bond from one to three carbon units (6-X-hex-2-ynyl cofactors). To further optimize the transfer of the bulkier groups, we performed structure-guided engineering of the MTase cofactor pocket. Alanine replacements of two conserved residues conferred substantial improvements of the transalkylation activity with M.HhaI and three other engineered bacterial C5-MTases. Of particular interest were CpG-specific DNA MTases (M.SssI), which proved valuable tools for studies of mammalian methylomes and chemical probing of DNA function.Inspired by the successful repurposing of bacterial enzymes, we turned to more complex mammalian C5-MTases (Dnmt1, Dnmt3A, and Dnmt3B) and asked if they could ultimately lead to mTAG labeling inside mammalian cells. Our efforts to engineer mouse Dnmt1 produced a variant (Dnmt1*) that enabled efficient Dnmt1-directed deposition of 6-azide-hexynyl groups on DNA in vitro. CRISPR-Cas9 editing of the corresponding codons in the genomic Dnmt1 alleles established endogenous expression of Dnmt1* in mouse embryonic stem cells. To circumvent the poor cellular uptake of AdoMet and its analogs, we elaborated their efficient internalization by electroporation, which has finally enabled selective catalysis-dependent azide tagging of natural Dnmt1 targets in live mammalian cells. The deposited chemical groups were then exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. These findings offer unprecedented inroads into studies of DNA methylation in a wide range of eukaryotic model systems.
Collapse
Affiliation(s)
- Giedrius Vilkaitis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute
of Chemistry, Department of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Edita Kriukienė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
2
|
Ding W, Zhou M, Li H, Li M, Qiu Y, Yin Y, Pan L, Yang W, Du Y, Zhang X, Tang Z, Liu W. Biocatalytic Fluoroalkylation Using Fluorinated S-Adenosyl-l-methionine Cofactors. Org Lett 2023; 25:5650-5655. [PMID: 37490590 DOI: 10.1021/acs.orglett.3c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Modification of organic molecules with fluorine functionalities offers a critical approach to develop new pharmaceuticals. Here, we report a multienzyme strategy for biocatalytic fluoroalkylation using S-adenosyl-l-methionine (SAM)-dependent methyltransferases (MTs) and fluorinated SAM cofactors prepared from ATP and fluorinated l-methionine analogues by an engineered human methionine adenosyltransferase hMAT2AI322A. This work introduces the first example of biocatalytic 3,3-difluoroallylation. Importantly, this strategy can be applied to late-stage site-selective fluoroalkylation of complex molecule vancomycin with conversions up to 99%.
Collapse
Affiliation(s)
- Wenping Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Minqi Zhou
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Huayu Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Miao Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yanping Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu Yin
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wenchao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanan Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
3
|
Zhao F, Lauder K, Liu S, Finnigan JD, Charnock SBR, Charnock SJ, Castagnolo D. Chemoenzymatic Cascades for the Enantioselective Synthesis of β-Hydroxysulfides Bearing a Stereocentre at the C-O or C-S Bond by Ketoreductases. Angew Chem Int Ed Engl 2022; 61:e202202363. [PMID: 35576553 DOI: 10.1002/anie.202202363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 12/17/2022]
Abstract
Chiral β-hydroxysulfides are an important class of organic compounds which find broad application in organic and pharmaceutical chemistry. Herein we describe the development of novel biocatalytic and chemoenzymatic methods for the enantioselective synthesis of β-hydroxysulfides by exploiting ketoreductase (KRED) enzymes. Four KREDs were discovered from a pool of 384 enzymes identified and isolated through a metagenomic approach. KRED311 and KRED349 catalysed the synthesis of β-hydroxysulfides bearing a stereocentre at the C-O bond with opposite absolute configurations and excellent ee values by novel chemoenzymatic and biocatalytic-chemical-biocatalytic (bio-chem-bio) cascades starting from commercially available thiophenols/thiols and α-haloketones/alcohols. KRED253 and KRED384 catalysed the enantioselective synthesis of β-hydroxysulfides bearing a stereocentre at the C-S bond with opposite enantioselectivities by dynamic kinetic resolution (DKR) of racemic α-thioaldehydes.
Collapse
Affiliation(s)
- Fei Zhao
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.,Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Kate Lauder
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Siyu Liu
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - James D Finnigan
- Prozomix Limited, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HA, UK
| | - Simon B R Charnock
- Prozomix Limited, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HA, UK
| | - Simon J Charnock
- Prozomix Limited, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HA, UK
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.,Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
4
|
Gabrieli T, Michaeli Y, Avraham S, Torchinsky D, Margalit S, Schütz L, Juhasz M, Coruh C, Arbib N, Zhou ZS, Law JA, Weinhold E, Ebenstein Y. Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping. Nucleic Acids Res 2022; 50:e92. [PMID: 35657088 PMCID: PMC9458417 DOI: 10.1093/nar/gkac460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
DNA methylation, specifically, methylation of cytosine (C) nucleotides at the 5-carbon position (5-mC), is the most studied and significant epigenetic modification. Here we developed a chemoenzymatic procedure to fluorescently label non-methylated cytosines in CpG context, allowing epigenetic profiling of single DNA molecules spanning hundreds of thousands of base pairs. We used a CpG methyltransferase with a synthetic S-adenosyl-l-methionine cofactor analog to transfer an azide to cytosines instead of the natural methyl group. A fluorophore was then clicked onto the DNA, reporting on the amount and position of non-methylated CpGs. We found that labeling efficiency was increased up to 2-fold by the addition of a nucleosidase, presumably by degrading the inactive by-product of the cofactor after labeling, preventing its inhibitory effect. We used the method to determine the decline in global DNA methylation in a chronic lymphocytic leukemia patient and then performed whole-genome methylation mapping of the model plant Arabidopsis thaliana. Our genome maps show high concordance with published bisulfite sequencing methylation maps. Although mapping resolution is limited by optical detection to 500–1000 bp, the labeled DNA molecules produced by this approach are hundreds of thousands of base pairs long, allowing access to long repetitive and structurally variable genomic regions.
Collapse
Affiliation(s)
- Tslil Gabrieli
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Michaeli
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Avraham
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dmitry Torchinsky
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sapir Margalit
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Leonie Schütz
- Institute of Organic Chemistry, RWTH Aachen University, D-52056Aachen, Germany
| | - Matyas Juhasz
- Institute of Organic Chemistry, RWTH Aachen University, D-52056Aachen, Germany
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nissim Arbib
- Department of Obstetrics and Gynecology, Meir Hospital, Kfar Saba, Israel & Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts02115, USA
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, D-52056Aachen, Germany
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Zhao F, Lauder K, Liu S, Finnigan JD, Charnock SBR, Charnock SJ, Castagnolo D. Chemoenzymatic Cascades for the Enantioselective Synthesis of β‐Hydroxysulfides Bearing a Stereocentre at C− O or C − S Bonds by Ketoreductases (KREDs). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fei Zhao
- University College London Chemistry UNITED KINGDOM
| | - Kate Lauder
- King's College London Cancer and Pharmaceutical Sciences UNITED KINGDOM
| | - Siyu Liu
- King's College London Cancer and Pharmaceutical Sciences UNITED KINGDOM
| | | | | | | | - Daniele Castagnolo
- University College London Chemistry 20 Gordon Street WC1H 0AJ London UNITED KINGDOM
| |
Collapse
|
6
|
Rudenko AY, Mariasina SS, Sergiev PV, Polshakov VI. Analogs of S-Adenosyl- L-Methionine in Studies of Methyltransferases. Mol Biol 2022; 56:229-250. [PMID: 35440827 PMCID: PMC9009987 DOI: 10.1134/s002689332202011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023]
Abstract
Methyltransferases (MTases) play an important role in the functioning of living systems, catalyzing the methylation reactions of DNA, RNA, proteins, and small molecules, including endogenous compounds and drugs. Many human diseases are associated with disturbances in the functioning of these enzymes; therefore, the study of MTases is an urgent and important task. Most MTases use the cofactor S‑adenosyl‑L‑methionine (SAM) as a methyl group donor. SAM analogs are widely applicable in the study of MTases: they are used in studies of the catalytic activity of these enzymes, in identification of substrates of new MTases, and for modification of the substrates or substrate linking to MTases. In this review, new synthetic analogs of SAM and the problems that can be solved with their usage are discussed.
Collapse
Affiliation(s)
- A. Yu. Rudenko
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - S. S. Mariasina
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
- Institute of Functional Genomics, Moscow State University, 119991 Moscow, Russia
| | - P. V. Sergiev
- Institute of Functional Genomics, Moscow State University, 119991 Moscow, Russia
| | - V. I. Polshakov
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
7
|
DNA Labeling Using DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:535-562. [DOI: 10.1007/978-3-031-11454-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Shang J, Ma S, Zang C, Bao X, Wang Y, Zhang D. Gut microbiota mediates the absorption of FLZ, a new drug for Parkinson's disease treatment. Acta Pharm Sin B 2021; 11:1213-1226. [PMID: 34094829 PMCID: PMC8148066 DOI: 10.1016/j.apsb.2021.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/04/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
The gut microbiota plays an important role in regulating the pharmacokinetics and pharmacodynamics of many drugs. FLZ, a novel squamosamide derivative, has been shown to have neuroprotective effects on experimental Parkinson's disease (PD) models. FLZ is under phase Ⅰ clinical trial now, while the underlying mechanisms contributing to the absorption of FLZ are still not fully elucidated. Due to the main metabolite of FLZ was abundant in feces but rare in urine and bile of mice, we focused on the gut microbiota to address how FLZ was metabolized and absorbed. In vitro studies revealed that FLZ could be exclusively metabolized to its major metabolite M1 by the lanosterol 14 alpha-demethylase (CYP51) in the gut microbiota, but was almost not metabolized by any other metabolism-related organs, such as liver, kidney, and small intestine. M1 was quickly absorbed into the blood and then remethylated to FLZ by catechol O-methyltransferase (COMT). Notably, dysbacteriosis reduced the therapeutic efficacy of FLZ on the PD mouse model by inhibiting its absorption. The results show that the gut microbiota mediate the absorption of FLZ through a FLZ-M1-FLZ circulation. Our research elucidates the vital role of the gut microbiota in the absorption of FLZ and provides a theoretical basis for clinical pharmacokinetic studies and clinical application of FLZ in the treatment of PD.
Collapse
Affiliation(s)
| | | | | | - Xiuqi Bao
- Corresponding authors. Tel./fax: +86 10 63165203.
| | - Yan Wang
- Corresponding authors. Tel./fax: +86 10 63165203.
| | - Dan Zhang
- Corresponding authors. Tel./fax: +86 10 63165203.
| |
Collapse
|
9
|
Sadiki A, Vaidya SR, Abdollahi M, Bhardwaj G, Dolan ME, Turna H, Arora V, Sanjeev A, Robinson TD, Koid A, Amin A, Zhou ZS. Site-specific conjugation of native antibody. Antib Ther 2020; 3:271-284. [PMID: 33644685 PMCID: PMC7906296 DOI: 10.1093/abt/tbaa027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditionally, non-specific chemical conjugations, such as acylation of amines on lysine or alkylation of thiols on cysteines, are widely used; however, they have several shortcomings. First, the lack of site-specificity results in heterogeneous products and irreproducible processes. Second, potential modifications near the complementarity-determining region may reduce binding affinity and specificity. Conversely, site-specific methods produce well-defined and more homogenous antibody conjugates, ensuring developability and clinical applications. Moreover, several recent side-by-side comparisons of site-specific and stochastic methods have demonstrated that site-specific approaches are more likely to achieve their desired properties and functions, such as increased plasma stability, less variability in dose-dependent studies (particularly at low concentrations), enhanced binding efficiency, as well as increased tumor uptake. Herein, we review several standard and practical site-specific bioconjugation methods for native antibodies, i.e., those without recombinant engineering. First, chemo-enzymatic techniques, namely transglutaminase (TGase)-mediated transamidation of a conserved glutamine residue and glycan remodeling of a conserved asparagine N-glycan (GlyCLICK), both in the Fc region. Second, chemical approaches such as selective reduction of disulfides (ThioBridge) and N-terminal amine modifications. Furthermore, we list site-specific antibody–drug conjugates in clinical trials along with the future perspectives of these site-specific methods.
Collapse
Affiliation(s)
- Amissi Sadiki
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Shefali R Vaidya
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Mina Abdollahi
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Gunjan Bhardwaj
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Michael E Dolan
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA.,Downstream Development, Biologics Process Development, Millennium Pharmaceuticals, Inc., (a wholly-owned subsidiary of Takeda Pharmaceuticals Company Limited), Cambridge, Massachusetts 02139, USA
| | - Harpreet Turna
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Varnika Arora
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Athul Sanjeev
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Timothy D Robinson
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Andrea Koid
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Aashka Amin
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| |
Collapse
|
10
|
Huber TD, Clinger JA, Liu Y, Xu W, Miller MD, Phillips GN, Thorson JS. Methionine Adenosyltransferase Engineering to Enable Bioorthogonal Platforms for AdoMet-Utilizing Enzymes. ACS Chem Biol 2020; 15:695-705. [PMID: 32091873 DOI: 10.1021/acschembio.9b00943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The structural conservation among methyltransferases (MTs) and MT functional redundancy is a major challenge to the cellular study of individual MTs. As a first step toward the development of an alternative biorthogonal platform for MTs and other AdoMet-utilizing enzymes, we describe the evaluation of 38 human methionine adenosyltransferase II-α (hMAT2A) mutants in combination with 14 non-native methionine analogues to identify suitable bioorthogonal mutant/analogue pairings. Enabled by the development and implementation of a hMAT2A high-throughput (HT) assay, this study revealed hMAT2A K289L to afford a 160-fold inversion of the hMAT2A selectivity index for a non-native methionine analogue over the native substrate l-Met. Structure elucidation of K289L revealed the mutant to be folded normally with minor observed repacking within the modified substrate pocket. This study highlights the first example of exchanging l-Met terminal carboxylate/amine recognition elements within the hMAT2A active-site to enable non-native bioorthgonal substrate utilization. Additionally, several hMAT2A mutants and l-Met substrate analogues produced AdoMet analogue products with increased stability. As many AdoMet-producing (e.g., hMAT2A) and AdoMet-utlizing (e.g., MTs) enzymes adopt similar active-site strategies for substrate recognition, the proof of concept first generation hMAT2A engineering highlighted herein is expected to translate to a range of AdoMet-utilizing target enzymes.
Collapse
Affiliation(s)
- Tyler D. Huber
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | - Yang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | | | | | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
11
|
Goyvaerts V, Van Snick S, D'Huys L, Vitale R, Helmer Lauer M, Wang S, Leen V, Dehaen W, Hofkens J. Fluorescent SAM analogues for methyltransferase based DNA labeling. Chem Commun (Camb) 2020; 56:3317-3320. [DOI: 10.1039/c9cc08938a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, the preparation of new S-adenosyl-l-methionine (SAM) analogues for sequence specific DNA labeling is evaluated. Fluorescent cofactors were synthesized and their applicability in methyltransferase based optical mapping is demonstrated.
Collapse
Affiliation(s)
- Vince Goyvaerts
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Sven Van Snick
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Laurens D'Huys
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Raffaele Vitale
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Milena Helmer Lauer
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Su Wang
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Volker Leen
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Wim Dehaen
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Johan Hofkens
- Laboratory of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| |
Collapse
|
12
|
Tang Q, Bornscheuer UT, Pavlidis IV. Specific Residues Expand the Substrate Scope and Enhance the Regioselectivity of a Plant
O
‐Methyltransferase. ChemCatChem 2019. [DOI: 10.1002/cctc.201900606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingyun Tang
- Dept. of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Ioannis V. Pavlidis
- Dept. of ChemistryUniversity of Crete Voutes University Campus 70013 Heraklion Greece
| |
Collapse
|
13
|
Moulton KR, Sadiki A, Koleva BN, Ombelets LJ, Tran TH, Liu S, Wang B, Chen H, Micheloni E, Beuning PJ, O’Doherty GA, Zhou ZS. Site-Specific Reversible Protein and Peptide Modification: Transglutaminase-Catalyzed Glutamine Conjugation and Bioorthogonal Light-Mediated Removal. Bioconjug Chem 2019; 30:1617-1621. [DOI: 10.1021/acs.bioconjchem.9b00145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Winkler M, Geier M, Hanlon SP, Nidetzky B, Glieder A. Human Enzymes for Organic Synthesis. Angew Chem Int Ed Engl 2018; 57:13406-13423. [PMID: 29600541 PMCID: PMC6334177 DOI: 10.1002/anie.201800678] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 02/06/2023]
Abstract
Human enzymes have been widely studied in various disciplines. The number of reactions taking place in the human body is vast, and so is the number of potential catalysts for synthesis. Herein, we focus on the application of human enzymes that catalyze chemical reactions in course of the metabolism of drugs and xenobiotics. Some of these reactions have been explored on the preparative scale. The major field of application of human enzymes is currently drug development, where they are applied for the synthesis of drug metabolites.
Collapse
Affiliation(s)
- Margit Winkler
- Institute for Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
- acib GmbHPetersgasse 148010GrazAustria
| | | | | | - Bernd Nidetzky
- acib GmbHPetersgasse 148010GrazAustria
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 128010GrazAustria
| | - Anton Glieder
- Institute for Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| |
Collapse
|
15
|
Winkler M, Geier M, Hanlon SP, Nidetzky B, Glieder A. Humane Enzyme für die organische Synthese. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Margit Winkler
- Institut für Molekulare Biotechnologie; Technische Universität Graz; Petersgasse 14 8010 Graz Österreich
- acib GmbH; Petersgasse 14 8010 Graz Österreich
| | | | | | - Bernd Nidetzky
- acib GmbH; Petersgasse 14 8010 Graz Österreich
- Institut für Biotechnologie und Bioprozesstechnik; Technische Universität Graz; Petersgasse 12 8010 Graz Österreich
| | - Anton Glieder
- Institut für Molekulare Biotechnologie; Technische Universität Graz; Petersgasse 14 8010 Graz Österreich
| |
Collapse
|
16
|
Davis TD, Kunakom S, Burkart MD, Eustaquio AS. Preparation, Assay, and Application of Chlorinase SalL for the Chemoenzymatic Synthesis of S-Adenosyl-l-Methionine and Analogs. Methods Enzymol 2018; 604:367-388. [PMID: 29779659 DOI: 10.1016/bs.mie.2018.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
S-adenosyl-l-methionine (SAM) is universal in biology, serving as the second most common cofactor in a variety of enzymatic reactions. One of the main roles of SAM is the methylation of nucleic acids, proteins, and metabolites. Methylation often imparts regulatory control to DNA and proteins, and leads to an increase in the activity of specialized metabolites such as those developed as pharmaceuticals. There has been increased interest in using SAM analogs in methyltransferase-catalyzed modification of biomolecules. However, SAM and its analogs are expensive and unstable, degrading rapidly under physiological conditions. Thus, the availability of methods to prepare SAM in situ is desirable. In addition, synthetic methods to generate SAM analogs suffer from low yields and poor diastereoselectivity. The chlorinase SalL from the marine bacterium Salinispora tropica catalyzes the reversible, nucleophilic attack of chloride at the C5' ribosyl carbon of SAM leading to the formation of 5'-chloro-5'-deoxyadenosine (ClDA) with concomitant displacement of l-methionine. It has been demonstrated that the in vitro equilibrium of the SalL-catalyzed reaction favors the synthesis of SAM. In this chapter, we describe methods for the preparation of SalL, and the chemoenzymatic synthesis of SAM and SAM analogs from ClDA and l-methionine congeners using SalL. In addition, we describe procedures for the in situ chemoenzymatic synthesis of SAM coupled to DNA, peptide, and metabolite methylation, and to the incorporation of isotopes into alkylated products.
Collapse
Affiliation(s)
- Tony D Davis
- University of California San Diego, San Diego, CA, United States
| | - Sylvia Kunakom
- University of Illinois at Chicago, College of Pharmacy, and Center for Biomolecular Sciences, Chicago, IL, United States
| | | | - Alessandra S Eustaquio
- University of Illinois at Chicago, College of Pharmacy, and Center for Biomolecular Sciences, Chicago, IL, United States.
| |
Collapse
|
17
|
Deen J, Vranken C, Leen V, Neely RK, Janssen KPF, Hofkens J. Methyltransferase-Directed Labeling of Biomolecules and its Applications. Angew Chem Int Ed Engl 2017; 56:5182-5200. [PMID: 27943567 PMCID: PMC5502580 DOI: 10.1002/anie.201608625] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Indexed: 01/01/2023]
Abstract
Methyltransferases (MTases) form a large family of enzymes that methylate a diverse set of targets, ranging from the three major biopolymers to small molecules. Most of these MTases use the cofactor S-adenosyl-l-Methionine (AdoMet) as a methyl source. In recent years, there have been significant efforts toward the development of AdoMet analogues with the aim of transferring moieties other than simple methyl groups. Two major classes of AdoMet analogues currently exist: doubly-activated molecules and aziridine based molecules, each of which employs a different approach to achieve transalkylation rather than transmethylation. In this review, we discuss the various strategies for labelling and functionalizing biomolecules using AdoMet-dependent MTases and AdoMet analogues. We cover the synthetic routes to AdoMet analogues, their stability in biological environments and their application in transalkylation reactions. Finally, some perspectives are presented for the potential use of AdoMet analogues in biology research, (epi)genetics and nanotechnology.
Collapse
Affiliation(s)
- Jochem Deen
- Laboratory of Nanoscale BiologySchool of Engineering, EPFL, STI IBI-STI LBEN BM 5134 (Bâtiment BM)Station 17CH-1015LausanneSwitzerland
| | - Charlotte Vranken
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| | - Volker Leen
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| | - Robert K. Neely
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Kris P. F. Janssen
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| | - Johan Hofkens
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| |
Collapse
|
18
|
Deen J, Vranken C, Leen V, Neely RK, Janssen KPF, Hofkens J. Die Methyltransferase-gesteuerte Markierung von Biomolekülen und ihre Anwendungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jochem Deen
- Laboratory of Nanoscale Biology; School of Engineering, EPFL, STI IBI-STI LBEN BM 5134 (Bâtiment BM); Station 17 CH-1015 Lausanne Schweiz
| | - Charlotte Vranken
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| | - Volker Leen
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| | - Robert K. Neely
- School of Chemistry; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Kris P. F. Janssen
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| | - Johan Hofkens
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| |
Collapse
|
19
|
Catcott KC, Yan J, Qu W, Wysocki VH, Zhou ZS. Identifying Unknown Enzyme-Substrate Pairs from the Cellular Milieu with Native Mass Spectrometry. Chembiochem 2017; 18:613-617. [PMID: 28140508 DOI: 10.1002/cbic.201600634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 01/22/2023]
Abstract
The enzyme-substrate complex is inherently transient, rendering its detection difficult. In our framework designed for bisubstrate systems-isotope-labeled, activity-based identification and tracking (IsoLAIT)-the common substrate, such as S-adenosyl-l-methionine (AdoMet) for methyltransferases, is replaced by an analogue (e.g., S-adenosyl-l-vinthionine) that, as a probe, creates a tightly bound [enzyme⋅substrate⋅probe] complex upon catalysis by thiopurine-S-methyltransferase (TPMT, EC 2.1.1.67). This persistent complex is then identified by native mass spectrometry from the cellular milieu without separation. Furthermore, the probe's isotope pattern flags even unknown substrates and enzymes. IsoLAIT is broadly applicable for other enzyme systems, particularly those catalyzing group transfer and with multiple substrates, such as glycosyltransferases and kinases.
Collapse
Affiliation(s)
- Kalli C Catcott
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Jing Yan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Wanlu Qu
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Howe CG, Liu X, Hall MN, Ilievski V, Caudill MA, Malysheva O, Lomax-Luu AM, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Costa M, Gamble MV. Sex-Specific Associations between One-Carbon Metabolism Indices and Posttranslational Histone Modifications in Arsenic-Exposed Bangladeshi Adults. Cancer Epidemiol Biomarkers Prev 2016; 26:261-269. [PMID: 27765800 DOI: 10.1158/1055-9965.epi-16-0202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/09/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Posttranslational histone modifications (PTHMs) are altered by arsenic, an environmental carcinogen. PTHMs are also influenced by nutritional methyl donors involved in one-carbon metabolism (OCM), which may protect against epigenetic dysregulation. METHODS We measured global levels of three PTHMs, which are dysregulated in cancers (H3K36me2, H3K36me3, H3K79me2), in peripheral blood mononuclear cells (PBMC) from 324 participants enrolled in the Folic Acid and Creatine Trial, a randomized trial in arsenic-exposed Bangladeshi adults. Sex-specific associations between several blood OCM indices (folate, vitamin B12, choline, betaine, homocysteine) and PTHMs were examined at baseline using regression models, adjusted for multiple tests by controlling for the false discovery rate (PFDR). We also evaluated the effects of folic acid supplementation (400 μg/d for 12 weeks), compared with placebo, on PTHMs. RESULTS Associations between choline and H3K36me2 and between vitamin B12 and H3K79me2 differed significantly by sex (Pdiff < 0.01 and <0.05, respectively). Among men, plasma choline was positively associated with H3K36me2 (PFDR < 0.05), and among women, plasma vitamin B12 was positively associated with H3K79me2 (PFDR < 0.01). Folic acid supplementation did not alter any of the PTHMs examined (PFDR = 0.80). CONCLUSIONS OCM indices may influence PTHMs in a sex-dependent manner, and folic acid supplementation, at this dose and duration, does not alter PTHMs in PBMCs. IMPACT This is the first study to examine the influences of OCM indices on PTHMs in a population that may have increased susceptibility to cancer development due to widespread exposure to arsenic-contaminated drinking water and a high prevalence of hyperhomocysteinemia. Cancer Epidemiol Biomarkers Prev; 26(2); 261-9. ©2016 AACR.
Collapse
Affiliation(s)
- Caitlin G Howe
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, New York
| | - Megan N Hall
- Department of Epidemiology, Mailman School of Public Health, New York
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Olga Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Angela M Lomax-Luu
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| | - Max Costa
- Department of Environmental Medicine, NYU Langone Medical Center, New York University, New York
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| |
Collapse
|
21
|
Huber TD, Wang F, Singh S, Johnson BR, Zhang J, Sunkara M, Van Lanen SG, Morris AJ, Phillips GN, Thorson JS. Functional AdoMet Isosteres Resistant to Classical AdoMet Degradation Pathways. ACS Chem Biol 2016; 11:2484-91. [PMID: 27351335 DOI: 10.1021/acschembio.6b00348] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
S-adenosyl-l-methionine (AdoMet) is an essential enzyme cosubstrate in fundamental biology with an expanding range of biocatalytic and therapeutic applications. We report the design, synthesis, and evaluation of stable, functional AdoMet isosteres that are resistant to the primary contributors to AdoMet degradation (depurination, intramolecular cyclization, and sulfonium epimerization). Corresponding biochemical and structural studies demonstrate the AdoMet surrogates to serve as competent enzyme cosubstrates and to bind a prototypical class I model methyltransferase (DnrK) in a manner nearly identical to AdoMet. Given this conservation in function and molecular recognition, the isosteres presented are anticipated to serve as useful surrogates in other AdoMet-dependent processes and may also be resistant to, and/or potentially even inhibit, other therapeutically relevant AdoMet-dependent metabolic transformations (such as the validated drug target AdoMet decarboxylase). This work also highlights the ability of the prototypical class I model methyltransferase DnrK to accept non-native surrogate acceptors as an enabling feature of a new high-throughput methyltransferase assay.
Collapse
Affiliation(s)
- Tyler D. Huber
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Fengbin Wang
- Department
of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77251-1892, United States
| | - Shanteri Singh
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Brooke R. Johnson
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Jianjun Zhang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Manjula Sunkara
- Division
of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, 1000 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Steven G. Van Lanen
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Andrew J. Morris
- Division
of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, 1000 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - George N. Phillips
- Department
of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77251-1892, United States
- Department
of Chemistry, Rice University, Space Science 201, Houston, Texas 77251-1892, United States
| | - Jon S. Thorson
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
22
|
Huber TD, Johnson BR, Zhang J, Thorson JS. AdoMet analog synthesis and utilization: current state of the art. Curr Opin Biotechnol 2016; 42:189-197. [PMID: 27506965 DOI: 10.1016/j.copbio.2016.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/25/2022]
Abstract
S-Adenosyl-l-methionine (AdoMet) is an essential enzyme cosubstrate in fundamental biology with an expanding range of biocatalytic and therapeutic applications. In recent years, technologies enabling the synthesis and utilization of novel functional AdoMet surrogates have rapidly advanced. Developments highlighted within this brief review include improved syntheses of AdoMet analogs, unique S-adenosyl-l-methionine isosteres with enhanced stability, and corresponding applications in epigenetics, proteomics and natural product/small molecule diversification ('alkylrandomization').
Collapse
Affiliation(s)
- Tyler D Huber
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, United States
| | - Brooke R Johnson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, United States
| | - Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, United States
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, United States.
| |
Collapse
|
23
|
Abstract
Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.
Collapse
Affiliation(s)
- Wolfgang Fischle
- King Abdullah University of Science and Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
- Max Planck Institute for Biophysical Chemistry, Laboratory of Chromatin Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Interfaculty
Institute of Biochemistry (IFIB), University of Tübingen, Hoppe-Seyler-Str.
4, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Abstract
S-Adenosyl-L-methionine (SAM) is a sulfonium molecule with a structural hybrid of methionine and adenosine. As the second largest cofactor in the human body, its major function is to serve as methyl donor for SAM-dependent methyltransferases (MTases). The resultant transmethylation of biomolecules constitutes a significant biochemical mechanism in epigenetic regulation, cellular signaling, and metabolite degradation. Recently, numerous SAM analogs have been developed as synthetic cofactors to transfer the activated groups on MTase substrates for downstream ligation and identification. Meanwhile, new compounds built upon or derived from the SAM scaffold have been designed and tested as selective inhibitors for important MTase targets. Here, we summarized the recent development and application of SAM analogs as chemical biology tools for MTases.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia 30602, United States
| | - Yujun George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
25
|
Qu W, Catcott KC, Zhang K, Liu S, Guo JJ, Ma J, Pablo M, Glick J, Xiu Y, Kenton N, Ma X, Duclos RI, Zhou ZS. Capturing Unknown Substrates via in Situ Formation of Tightly Bound Bisubstrate Adducts: S-Adenosyl-vinthionine as a Functional Probe for AdoMet-Dependent Methyltransferases. J Am Chem Soc 2016; 138:2877-80. [DOI: 10.1021/jacs.5b05950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Kun Zhang
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | | | | | - Jisheng Ma
- School
of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Struck AW, Bennett MR, Shepherd SA, Law BJC, Zhuo Y, Wong LS, Micklefield J. An Enzyme Cascade for Selective Modification of Tyrosine Residues in Structurally Diverse Peptides and Proteins. J Am Chem Soc 2016; 138:3038-45. [DOI: 10.1021/jacs.5b10928] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anna-Winona Struck
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Matthew R. Bennett
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Sarah A. Shepherd
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Brian J. C. Law
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Ying Zhuo
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Lu Shin Wong
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
27
|
Tengg M, Stecher H, Offner L, Plasch K, Anderl F, Weber H, Schwab H, Gruber-Khadjawi M. Methyltransferases: Green Catalysts for Friedel-Crafts Alkylations. ChemCatChem 2016. [DOI: 10.1002/cctc.201501306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Tengg
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Molecular Biotechnology; Graz University of Technology; Petersgasse 14 8010 Graz Austria
| | - Harald Stecher
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Lisa Offner
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Katharina Plasch
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Felix Anderl
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Helmut Schwab
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Molecular Biotechnology; Graz University of Technology; Petersgasse 14 8010 Graz Austria
| | - Mandana Gruber-Khadjawi
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| |
Collapse
|
28
|
Tomkuvienė M, Kriukienė E, Klimašauskas S. DNA Labeling Using DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:511-535. [PMID: 27826850 PMCID: PMC11032744 DOI: 10.1007/978-3-319-43624-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA methyltransferases (MTases) uniquely combine the ability to recognize and covalently modify specific target sequences in DNA using the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet). Although DNA methylation plays important roles in biological signaling, the transferred methyl group is a poor reporter and is highly inert to further biocompatible derivatization. To unlock the biotechnological power of these enzymes, two major types of cofactor AdoMet analogs were developed that permit targeted MTase-directed attachment of larger moieties containing functional or reporter groups onto DNA. One such approach (named sequence-specific methyltransferase-induced labeling, SMILing) uses reactive aziridine or N-mustard mimics of the cofactor AdoMet, which render targeted coupling of a whole cofactor molecule to the target DNA. The second approach (methyltransferase-directed transfer of activated groups, mTAG) uses AdoMet analogs with a sulfonium-bound extended side chain replacing the methyl group, which permits MTase-directed covalent transfer of the activated side chain alone. As the enlarged cofactors are not always compatible with the active sites of native MTases, steric engineering of the active site has been employed to optimize their alkyltransferase activity. In addition to the described cofactor analogs, recently discovered atypical reactions of DNA cytosine-5 MTases involving non-cofactor-like compounds can also be exploited for targeted derivatization and labeling of DNA. Altogether, these approaches offer new powerful tools for sequence-specific covalent DNA labeling, which not only pave the way to developing a variety of useful techniques in DNA research, diagnostics, and nanotechnologies but have already proven practical utility for optical DNA mapping and epigenome studies.
Collapse
Affiliation(s)
- Miglė Tomkuvienė
- Institute of Biotechnology, Vilnius University, Vilnius, LT-10222, Lithuania
| | - Edita Kriukienė
- Institute of Biotechnology, Vilnius University, Vilnius, LT-10222, Lithuania
| | | |
Collapse
|
29
|
Affiliation(s)
- Yixin Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics
- University of Chinese Academy of Sciences
| | - Wujun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics
| | - Muhammad Sohail
- Division of Biotechnology, Dalian Institute of Chemical Physics
| | - Xueying Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics
- University of Chinese Academy of Sciences
| | - Yuxue Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics
- University of Chinese Academy of Sciences
| | - Zongbao K. Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics
| |
Collapse
|
30
|
Blum G, Islam K, Luo M. Bioorthogonal profiling of protein methylation (BPPM) using an azido analog of S-adenosyl-L-methionine. ACTA ACUST UNITED AC 2015; 5:45-66. [PMID: 23667794 DOI: 10.1002/9780470559277.ch120240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein methyltransferases (PMTs) utilize S-adenosyl-L-methionine (SAM) as a cofactor and transfer its sulfonium methyl moiety to diverse substrates. These methylation events can lead to meaningful biological outcomes, from transcriptional activation/silencing to cell cycle regulation. This article describes recently developed technology based on protein engineering in tandem with SAM analog cofactors and bioorthogonal click chemistry to unambiguously profile the substrates of a specific PMT. The protocols encapsulate the logic and methods of selectively profiling the substrates of a candidate PMT by (1) engineering the selected PMT to accommodate a bulky SAM analog; (2) generating a proteome containing the engineered PMT; (3) visualizing the proteome-wide substrates of the designated PMT via bioorthogonal labeling with a fluorescent tag; and finally (4) pulling down the proteome-wide substrates for mass spectrometric analysis.
Collapse
Affiliation(s)
- Gil Blum
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|
31
|
Thiopurines induce oxidative stress in T-lymphocytes: a proteomic approach. Mediators Inflamm 2015; 2015:434825. [PMID: 25873760 PMCID: PMC4385670 DOI: 10.1155/2015/434825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 01/24/2023] Open
Abstract
Thiopurines are extensively used immunosuppressants for the treatment of inflammatory bowel disease (IBD). The polymorphism of thiopurine S-methyltransferase (TPMT) influences thiopurine metabolism and therapy outcome. We used a TPMT knockdown (kd) model of human Jurkat T-lymphocytes cells to study the effects of treatment with 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) on proteome and phosphoproteome. We identified thirteen proteins with altered expression and nine proteins with altered phosphorylation signals. Three proteins (THIO, TXD17, and GSTM3) with putative functions in cellular oxidative stress responses were altered by 6-TG treatment and another protein PRDX3 was differentially phosphorylated in TPMT kd cells. Furthermore, reactive oxygen species (ROS) assay results were consistent with a significant induction of oxidative stress by both TPMT knockdown and thiopurine treatments. Immunoblot analyses showed treatment altered expression of key antioxidant enzymes (i.e., SOD2 and catalase) in both wt and kd groups, while SOD1 was downregulated by 6-TG treatment and TPMT knockdown. Collectively, increased oxidative stress might be a mechanism involved in thiopurine induced cytotoxicity and adverse effects (i.e., hepatotoxicity) and an antioxidant cotherapy might help to combat this. Results highlight the significance of oxidative stress in thiopurines' actions and could have important implications for the treatment of IBD patients.
Collapse
|
32
|
Islam K. Allele-specific chemical genetics: concept, strategies, and applications. ACS Chem Biol 2015; 10:343-63. [PMID: 25436868 DOI: 10.1021/cb500651d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relationship between DNA and protein sequences is well understood, yet because the members of a protein family/subfamily often carry out the same biochemical reaction, elucidating their individual role in cellular processes presents a challenge. Forward and reverse genetics have traditionally been employed to understand protein functions with considerable success. A fundamentally different approach that has gained widespread application is the use of small organic molecules, known as chemical genetics. However, the slow time-scale of genetics and inherent lack of specificity of small molecules used in chemical genetics have limited the applicability of these methods in deconvoluting the role of individual proteins involved in fast, dynamic biological events. Combining the advantages of both the techniques, the specificity achieved with genetics along with the reversibility and tunability of chemical genetics, has led to the development of a powerful approach to uncover protein functions in complex biological processes. This technique is known as allele-specific chemical genetics and is rapidly becoming an essential toolkit to shed light on proteins and their mechanism of action. The current review attempts to provide a comprehensive description of this approach by discussing the underlying principles, strategies, and successful case studies. Potential future implications of this technology in expanding the frontiers of modern biology are discussed.
Collapse
Affiliation(s)
- Kabirul Islam
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
33
|
Hanz GM, Jung B, Giesbertz A, Juhasz M, Weinhold E. Sequence-specific labeling of nucleic acids and proteins with methyltransferases and cofactor analogues. J Vis Exp 2014:e52014. [PMID: 25490674 DOI: 10.3791/52014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
S-Adenosyl-l-methionine (AdoMet or SAM)-dependent methyltransferases (MTase) catalyze the transfer of the activated methyl group from AdoMet to specific positions in DNA, RNA, proteins and small biomolecules. This natural methylation reaction can be expanded to a wide variety of alkylation reactions using synthetic cofactor analogues. Replacement of the reactive sulfonium center of AdoMet with an aziridine ring leads to cofactors which can be coupled with DNA by various DNA MTases. These aziridine cofactors can be equipped with reporter groups at different positions of the adenine moiety and used for Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). As a typical example we give a protocol for biotinylation of pBR322 plasmid DNA at the 5'-ATCGAT-3' sequence with the DNA MTase M.BseCI and the aziridine cofactor 6BAz in one step. Extension of the activated methyl group with unsaturated alkyl groups results in another class of AdoMet analogues which are used for methyltransferase-directed Transfer of Activated Groups (mTAG). Since the extended side chains are activated by the sulfonium center and the unsaturated bond, these cofactors are called double-activated AdoMet analogues. These analogues not only function as cofactors for DNA MTases, like the aziridine cofactors, but also for RNA, protein and small molecule MTases. They are typically used for enzymatic modification of MTase substrates with unique functional groups which are labeled with reporter groups in a second chemical step. This is exemplified in a protocol for fluorescence labeling of histone H3 protein. A small propargyl group is transferred from the cofactor analogue SeAdoYn to the protein by the histone H3 lysine 4 (H3K4) MTase Set7/9 followed by click labeling of the alkynylated histone H3 with TAMRA azide. MTase-mediated labeling with cofactor analogues is an enabling technology for many exciting applications including identification and functional study of MTase substrates as well as DNA genotyping and methylation detection.
Collapse
Affiliation(s)
- Gisela Maria Hanz
- Institute of Organic Chemistry, Department of Chemistry, RWTH Aachen University
| | - Britta Jung
- Institute of Organic Chemistry, Department of Chemistry, RWTH Aachen University
| | - Anna Giesbertz
- Institute of Organic Chemistry, Department of Chemistry, RWTH Aachen University
| | - Matyas Juhasz
- Institute of Organic Chemistry, Department of Chemistry, RWTH Aachen University
| | - Elmar Weinhold
- Institute of Organic Chemistry, Department of Chemistry, RWTH Aachen University;
| |
Collapse
|
34
|
Thomsen M, Vogensen SB, Buchardt J, Burkart MD, Clausen RP. Chemoenzymatic synthesis and in situ application of S-adenosyl-L-methionine analogs. Org Biomol Chem 2014; 11:7606-10. [PMID: 24100405 DOI: 10.1039/c3ob41702f] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Analogs of S-adenosyl-L-methionine (SAM) are increasingly applied to the methyltransferase (MT) catalysed modification of biomolecules including proteins, nucleic acids, and small molecules. However, SAM and its analogs suffer from an inherent instability, and their chemical synthesis is challenged by low yields and difficulties in stereoisomer isolation and inhibition. Here we report the chemoenzymatic synthesis of a series of SAM analogs using wild-type (wt) and point mutants of two recently identified halogenases, SalL and FDAS. Molecular modelling studies are used to guide the rational design of mutants, and the enzymatic conversion of L-Met and other analogs into SAM analogs is demonstrated. We also apply this in situ enzymatic synthesis to the modification of a small peptide substrate by protein arginine methyltransferase 1 (PRMT1). This technique offers an attractive alternative to chemical synthesis and can be applied in situ to overcome stability and activity issues.
Collapse
Affiliation(s)
- Marie Thomsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
35
|
Bothwell IR, Luo M. Large-scale, protection-free synthesis of Se-adenosyl-L-selenomethionine analogues and their application as cofactor surrogates of methyltransferases. Org Lett 2014; 16:3056-9. [PMID: 24852128 PMCID: PMC4059250 DOI: 10.1021/ol501169y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Indexed: 12/26/2022]
Abstract
S-adenosyl-L-methionine (SAM) analogues have previously demonstrated their utility as chemical reporters of methyltransferases. Here we describe the facile, large-scale synthesis of Se-alkyl Se-adenosyl-L-selenomethionine (SeAM) analogues and their precursor, Se-adenosyl-L-selenohomocysteine (SeAH). Comparison of SeAM analogues with their equivalent SAM analogues suggests that sulfonium-to-selenonium substitution can enhance their compatibility with certain protein methyltransferases, favoring otherwise less reactive SAM analogues. Ready access to SeAH therefore enables further application of SeAM analogues as chemical reporters of diverse methyltransferases.
Collapse
Affiliation(s)
- Ian R. Bothwell
- Molecular Pharmacology
and Chemistry Program and Tri-Institutional Training Program
in Chemical Biology, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United
States
| | - Minkui Luo
- Molecular Pharmacology
and Chemistry Program and Tri-Institutional Training Program
in Chemical Biology, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United
States
| |
Collapse
|
36
|
Moore KE, Gozani O. An unexpected journey: lysine methylation across the proteome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1395-403. [PMID: 24561874 DOI: 10.1016/j.bbagrm.2014.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022]
Abstract
The dynamic modification of histone proteins by lysine methylation has emerged over the last decade as a key regulator of chromatin functions. In contrast, our understanding of the biological roles for lysine methylation of non-histone proteins has progressed more slowly. Though recently it has attracted less attention, ε-methyl-lysine in non-histone proteins was first observed over 50 years ago. In that time, it has become clear that, like the case for histones, non-histone methylation represents a key and common signaling process within the cell. Recent work suggests that non-histone methylation occurs on hundreds of proteins found in both the nucleus and the cytoplasm, and with important biomedical implications. Technological advances that allow us to identify lysine methylation on a proteomic scale are opening new avenues in the non-histone methylation field, which is poised for dramatic growth. Here, we review historical and recent findings in non-histone lysine methylation signaling, highlight new methods that are expanding opportunities in the field, and discuss outstanding questions and future challenges about the role of this fundamental post-translational modification (PTM).
Collapse
Affiliation(s)
- Kaitlyn E Moore
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Recent trends and novel concepts in cofactor-dependent biotransformations. Appl Microbiol Biotechnol 2013; 98:1517-29. [PMID: 24362856 DOI: 10.1007/s00253-013-5441-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Cofactor-dependent enzymes catalyze a broad range of synthetically useful transformations. However, the cofactor requirement also poses economic and practical challenges for the application of these biocatalysts. For three decades, considerable research effort has been devoted to the development of reliable in situ regeneration methods for the most commonly employed cofactors, particularly NADH and NADPH. Today, researchers can choose from a plethora of options, and oxidoreductases are routinely employed even on industrial scale. Nevertheless, more efficient cofactor regeneration methods are still being developed, with the aim of achieving better atom economy, simpler reaction setups, and higher productivities. Besides, cofactor dependence has been recognized as an opportunity to confer novel reactivity upon enzymes by engineering their cofactors, and to couple (redox) biotransformations in multi-enzyme cascade systems. These novel concepts will help to further establish cofactor-dependent biotransformations as an attractive option for the synthesis of biologically active compounds, chiral building blocks, and bio-based platform molecules.
Collapse
|
38
|
Horowitz S, Dirk LMA, Yesselman JD, Nimtz JS, Adhikari U, Mehl RA, Scheiner S, Houtz RL, Al-Hashimi HM, Trievel RC. Conservation and functional importance of carbon-oxygen hydrogen bonding in AdoMet-dependent methyltransferases. J Am Chem Soc 2013; 135:15536-48. [PMID: 24093804 DOI: 10.1021/ja407140k] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
S-adenosylmethionine (AdoMet)-based methylation is integral to metabolism and signaling. AdoMet-dependent methyltransferases belong to multiple distinct classes and share a catalytic mechanism that arose through convergent evolution; however, fundamental determinants underlying this shared methyl transfer mechanism remain undefined. A survey of high-resolution crystal structures reveals that unconventional carbon-oxygen (CH···O) hydrogen bonds coordinate the AdoMet methyl group in different methyltransferases irrespective of their class, active site structure, or cofactor binding conformation. Corroborating these observations, quantum chemistry calculations demonstrate that these charged interactions formed by the AdoMet sulfonium cation are stronger than typical CH···O hydrogen bonds. Biochemical and structural studies using a model lysine methyltransferase and an active site mutant that abolishes CH···O hydrogen bonding to AdoMet illustrate that these interactions are important for high-affinity AdoMet binding and transition-state stabilization. Further, crystallographic and NMR dynamics experiments of the wild-type enzyme demonstrate that the CH···O hydrogen bonds constrain the motion of the AdoMet methyl group, potentially facilitating its alignment during catalysis. Collectively, the experimental findings with the model methyltransferase and structural survey imply that methyl CH···O hydrogen bonding represents a convergent evolutionary feature of AdoMet-dependent methyltransferases, mediating a universal mechanism for methyl transfer.
Collapse
Affiliation(s)
- Scott Horowitz
- Howard Hughes Medical Institute , Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang R, Luo M. A journey toward Bioorthogonal Profiling of Protein Methylation inside living cells. Curr Opin Chem Biol 2013; 17:729-37. [PMID: 24035694 DOI: 10.1016/j.cbpa.2013.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022]
Abstract
Human protein methyltransferases (PMTs) play essential roles through methylating histone and nonhistone targets. It is very challenging to profile global methylation (or methylome) in the context of relevant cellular settings. Unlike other posttranslational modifications such as lysine acetylation or Ser/Thr/Tyr/His phosphorylation, methylation of lysine or arginine does not significantly alter its physical properties (e.g. charge and size) and therefore may not be probed readily by conventional biological tools such antibodies. It is also not trivial to assign unambiguously dynamic methylation events to specific PMTs given their potential redundancy. This review focuses on the decade-long progress in developing complementary chemical tools to elucidate targets of designated PMTs. One of such efforts was to develop the Bioorthogonal Profiling of Protein Methylation (BPPM) technology in vitro and inside living cells.
Collapse
Affiliation(s)
- Rui Wang
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States; Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021, United States
| | | |
Collapse
|
40
|
Winter JM, Chiou G, Bothwell IR, Xu W, Garg NK, Luo M, Tang Y. Expanding the structural diversity of polyketides by exploring the cofactor tolerance of an inline methyltransferase domain. Org Lett 2013; 15:3774-7. [PMID: 23837609 PMCID: PMC3779521 DOI: 10.1021/ol401723h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A strategy for introducing structural diversity into polyketides by exploiting the promiscuity of an in-line methyltransferase domain in a multidomain polyketide synthase is reported. In vitro investigations using the highly-reducing fungal polyketide synthase CazF revealed that its methyltransferase domain accepts the nonnatural cofactor propargylic Se-adenosyl-l-methionine and can transfer the propargyl moiety onto its growing polyketide chain. This propargylated polyketide product can then be further chain-extended and cyclized to form propargyl-α pyrone or be processed fully into the alkyne-containing 4'-propargyl-chaetoviridin A.
Collapse
|
41
|
Lipophilic thioguanosine: An anion receptor for cesium fluoride. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Lukinavičius G, Tomkuvienė M, Masevičius V, Klimašauskas S. Enhanced chemical stability of adomet analogues for improved methyltransferase-directed labeling of DNA. ACS Chem Biol 2013; 8:1134-9. [PMID: 23557731 DOI: 10.1021/cb300669x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methyltransferases catalyze specific transfers of methyl groups from the ubiquitous cofactor S-adenosyl-l-methionine (AdoMet) to various nucleophilic positions in biopolymers like DNA, RNA, and proteins. We had previously described synthesis and application of AdoMet analogues carrying sulfonium-bound 4-substituted but-2-ynyl side chains for transfer by methyltransferases. Although useful in certain applications, these cofactor analogues exhibited short lifetimes in physiological buffers. Examination of the reaction kinetics and products showed that their fast inactivation followed a different pathway than observed for AdoMet and rather involved a pH-dependent addition of a water molecule to the side chain. This side reaction was eradicated by synthesis of a series of cofactor analogues in which the separation between an electronegative group and the triple bond was increased from one to three carbon units. The designed hex-2-ynyl moiety-based cofactor analogues with terminal amino, azide, or alkyne groups showed a markedly improved enzymatic transalkylation activity and proved well suitable for methyltransferase-directed sequence-specific labeling of DNA in vitro and in bacterial cell lysates.
Collapse
Affiliation(s)
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
- Faculty of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
| | | |
Collapse
|
43
|
Dai S, Ni W, Patananan AN, Clarke SG, Karger BL, Zhou ZS. Integrated proteomic analysis of major isoaspartyl-containing proteins in the urine of wild type and protein L-isoaspartate O-methyltransferase-deficient mice. Anal Chem 2013; 85:2423-30. [PMID: 23327623 DOI: 10.1021/ac303428h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The formation of isoaspartyl residues (isoAsp or isoD) via either aspartyl isomerization or asparaginyl deamidation alters protein structure and potentially biological function. This is a spontaneous and nonenzymatic process, ubiquitous both in vivo and in nonbiological systems, such as in protein pharmaceuticals. In almost all organisms, protein L-isoaspartate O-methyltransferase (PIMT, EC2.1.1.77) recognizes and initiates the conversion of isoAsp back to aspartic acid. Additionally, alternative proteolytic and excretion pathways to metabolize isoaspartyl-containing proteins have been proposed but not fully explored, largely due to the analytical challenges for detecting isoAsp. We report here the relative quantitation and site profiling of isoAsp in urinary proteins from wild type and PIMT-deficient mice, representing products from excretion pathways. First, using a biochemical approach, we found that the total isoaspartyl level of proteins in urine of PIMT-deficient male mice was elevated. Subsequently, the major isoaspartyl protein species in urine from these mice were identified as major urinary proteins (MUPs) by shotgun proteomics. To enhance the sensitivity of isoAsp detection, a targeted proteomic approach using electron transfer dissociation-selected reaction monitoring (ETD-SRM) was developed to investigate isoAsp sites in MUPs. A total of 38 putative isoAsp modification sites in MUPs were investigated, with five derived from the deamidation of asparagine that were confirmed to contribute to the elevated isoAsp levels. Our findings lend experimental evidence for the hypothesized excretion pathway for isoAsp proteins. Additionally, the developed method opens up the possibility to explore processing mechanisms of isoaspartyl proteins at the molecular level, such as the fate of protein pharmaceuticals in circulation.
Collapse
Affiliation(s)
- Shujia Dai
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Struck AW, Thompson ML, Wong LS, Micklefield J. S-Adenosyl-Methionine-Dependent Methyltransferases: Highly Versatile Enzymes in Biocatalysis, Biosynthesis and Other Biotechnological Applications. Chembiochem 2012. [DOI: 10.1002/cbic.201200556] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Zeng Y, Kulkarni A, Yang Z, Patil PB, Zhou W, Chi X, Van Lanen S, Chen S. Biosynthesis of albomycin δ(2) provides a template for assembling siderophore and aminoacyl-tRNA synthetase inhibitor conjugates. ACS Chem Biol 2012; 7:1565-75. [PMID: 22704654 DOI: 10.1021/cb300173x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
"Trojan horse" antibiotic albomycins are peptidyl nucleosides consisting of a highly modified 4'-thiofuranosyl cytosine moiety and a ferrichrome siderophore that are linked by a peptide bond via a serine residue. While the latter component serves to sequester iron from the environment, the seryl nucleoside portion is a potent inhibitor of bacterial seryl-tRNA synthetases, resulting in broad-spectrum antimicrobial activities of albomycin δ(2). The isolation of albomycins has revealed this biological activity is optimized only following two unusual cytosine modifications, N4-carbamoylation and N3-methylation. We identified a genetic locus (named abm) for albomycin production in Streptomyces sp. ATCC 700974. Gene deletion and complementation experiments along with bioinformatic analysis suggested 18 genes are responsible for albomycin biosynthesis and resistance, allowing us to propose a potential biosynthetic pathway for installing the novel chemical features. The gene abmI, encoding a putative methyltransferase, was functionally assigned in vitro and shown to modify the N3 of a variety of cytosine-containing nucleosides and antibiotics such as blasticidin S. Furthermore, a ΔabmI mutant was shown to produce the descarbamoyl-desmethyl albomycin analogue, supporting that the N3-methylation occurs before the N4-carbamoylation in the biosynthesis of albomycin δ(2). The combined genetic information was utilized to identify an abm-related locus (named ctj) from the draft genome of Streptomyces sp. C. Cross-complementation experiments and in vitro studies with CtjF, the AbmI homologue, suggest the production of a similar 4'-thiofuranosyl cytosine in this organism. In total, the genetic and biochemical data provide a biosynthetic template for assembling siderophore-inhibitor conjugates and modifying the albomycin scaffold to generate new derivatives.
Collapse
Affiliation(s)
- Yu Zeng
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Aditya Kulkarni
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Zhaoyong Yang
- Department of Pharmaceutical
Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536, United States
| | - Preeti B. Patil
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Wei Zhou
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Xiuling Chi
- Department of Pharmaceutical
Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536, United States
| | - Steven Van Lanen
- Department of Pharmaceutical
Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536, United States
| | - Shawn Chen
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
47
|
Bothwell IR, Islam K, Chen Y, Zheng W, Blum G, Deng H, Luo M. Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation. J Am Chem Soc 2012; 134:14905-12. [PMID: 22917021 PMCID: PMC3458307 DOI: 10.1021/ja304782r] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Posttranslational methylation by S-adenosyl-L-methionine(SAM)-dependent methyltransferases plays essential roles in modulating protein function in both normal and disease states. As such, there is a growing need to develop chemical reporters to examine the physiological and pathological roles of protein methyltransferases. Several sterically bulky SAM analogues have previously been used to label substrates of specific protein methyltransferases. However, broad application of these compounds has been limited by their general incompatibility with native enzymes. Here we report a SAM surrogate, ProSeAM (propargylic Se-adenosyl-l-selenomethionine), as a reporter of methyltransferases. ProSeAM can be processed by multiple protein methyltransferases for substrate labeling. In contrast, sulfur-based propargylic SAM undergoes rapid decomposition at physiological pH, likely via an allene intermediate. In conjunction with fluorescent/affinity-based azide probes, copper-catalyzed azide-alkyne cycloaddition chemistry, in-gel fluorescence visualization and proteomic analysis, we further demonstrated ProSeAM's utility to profile substrates of endogenous methyltransferases in diverse cellular contexts. These results thus feature ProSeAM as a convenient probe to study the activities of endogenous protein methyltransferases.
Collapse
Affiliation(s)
- Ian R. Bothwell
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Kabirul Islam
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Weihong Zheng
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Gil Blum
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Minkui Luo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
48
|
Liscombe DK, Louie GV, Noel JP. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat Prod Rep 2012; 29:1238-50. [PMID: 22850796 DOI: 10.1039/c2np20029e] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The addition of a methyl moiety to a small chemical is a common transformation in the biosynthesis of natural products across all three domains of life. These methylation reactions are most often catalysed by S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTs). MTs are categorized based on the electron-rich, methyl accepting atom, usually O, N, C, or S. SAM-dependent natural product MTs (NPMTs) are responsible for the modification of a wide array of structurally distinct substrates, including signalling and host defense compounds, pigments, prosthetic groups, cofactors, cell membrane and cell wall components, and xenobiotics. Most notably, methylation modulates the bioavailability, bioactivity, and reactivity of acceptor molecules, and thus exerts a central role on the functional output of many metabolic pathways. Our current understanding of the structural enzymology of NPMTs groups these phylogenetically diverse enzymes into two MT-superfamily fold classes (class I and class III). Structural biology has also shed light on the catalytic mechanisms and molecular bases for substrate specificity for over fifty NPMTs. These biophysical-based approaches have contributed to our understanding of NPMT evolution, demonstrating how a widespread protein fold evolved to accommodate chemically diverse methyl acceptors and to catalyse disparate mechanisms suited to the physiochemical properties of the target substrates. This evolutionary diversity suggests that NPMTs may serve as starting points for generating new biocatalysts.
Collapse
Affiliation(s)
- David K Liscombe
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
49
|
Carlson SM, White FM. Expanding applications of chemical genetics in signal transduction. Cell Cycle 2012; 11:1903-9. [PMID: 22544320 DOI: 10.4161/cc.19956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chemical genetics represents an expanding collection of techniques applied to a variety of signaling processes. These techniques use a combination of chemical reporters and protein engineering to identify targets of a signaling enzyme in a global and non-directed manner without resorting to hypothesis-driven candidate approaches. In the last year, chemical genetics has been applied to a variety of kinases, revealing a much broader spectrum of substrates than had been appreciated. Here, we discuss recent developments in chemical genetics, including insights from our own proteomic screen for substrates of the kinase ERK2. These studies have revealed that many kinases have overlapping substrate specificity, and they often target several proteins in any particular downstream pathway. It remains to be determined whether this configuration exists to provide redundant control, or whether each target contributes a fraction of the total regulatory effect. From a general perspective, chemical genetics is applicable in principle to a broad range of posttranslational modifications (PTMs), most notably methylation and acetylation, although many challenges remain in implementing this approach. Recent developments in chemical reporters and protein engineering suggest that chemical genetics will soon be a powerful tool for mapping signal transduction through these and other PTMs.
Collapse
Affiliation(s)
- Scott M Carlson
- Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge, MA, USA
| | | |
Collapse
|
50
|
Tomkuviene M, Clouet-d'Orval B, Cerniauskas I, Weinhold E, Klimasauskas S. Programmable sequence-specific click-labeling of RNA using archaeal box C/D RNP methyltransferases. Nucleic Acids Res 2012; 40:6765-73. [PMID: 22564896 PMCID: PMC3413156 DOI: 10.1093/nar/gks381] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biophysical and mechanistic investigation of RNA function requires site-specific incorporation of spectroscopic and chemical probes, which is difficult to achieve using current technologies. We have in vitro reconstituted a functional box C/D small ribonucleoprotein RNA 2′-O-methyltransferase (C/D RNP) from the thermophilic archaeon Pyrococcus abyssi and demonstrated its ability to transfer a prop-2-ynyl group from a synthetic cofactor analog to a series of preselected target sites in model tRNA and pre-mRNA molecules. Target selection of the RNP was programmed by changing a dodecanucleotide guide sequence in a 64-nt C/D guide RNA leading to efficient derivatization of three out of four new targets in each RNA substrate. We also show that the transferred terminal alkyne can be further appended with a fluorophore using a bioorthogonal azide-alkyne 1,3-cycloaddition (click) reaction. The described approach for the first time permits synthetically tunable sequence-specific labeling of RNA with single-nucleotide precision.
Collapse
Affiliation(s)
- Migle Tomkuviene
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-02241, Lithuania
| | | | | | | | | |
Collapse
|