1
|
Wang S, Xu Y. RNA structure promotes liquid-to-solid phase transition of short RNAs in neuronal dysfunction. Commun Biol 2024; 7:137. [PMID: 38287096 PMCID: PMC10824717 DOI: 10.1038/s42003-024-05828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
In nucleotide expansion disorders, RNA foci are reportedly associated with neurodegenerative disease pathogeneses. Characteristically, these RNAs exhibit long poly-RNA repeats, such as 47 × CAG, 47 × CUG, or 29 × GGGGCC, usually becoming abnormal pathological aggregations above a critical number of nucleotide repeats. However, it remains unclear whether short, predominantly cellular RNA molecules can cause phase transitions to induce RNA foci. Herein, we demonstrated that short RNAs even with only two repeats can aggregate into a solid-like state via special RNA G-quadruplex structures. In human cells, these solid RNA foci could not dissolve even when using agents that disrupt RNA gelation. The aggregation of shorter RNAs can be clearly observed in vivo. Furthermore, we found that RNA foci induce colocalization of the RNA-binding protein Sam68, a protein commonly found in patients with fragile X-associated tremor/ataxia syndrome, suppressing cell clonogenicity and eventually causing cell death. Our results suggest that short RNA gelation promoted by specific RNA structures contribute to the neurological diseases, which disturb functional cellular processes.
Collapse
Affiliation(s)
- Shiyu Wang
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
2
|
Xu Y, Komiyama M. G-Quadruplexes in Human Telomere: Structures, Properties, and Applications. Molecules 2023; 29:174. [PMID: 38202757 PMCID: PMC10780218 DOI: 10.3390/molecules29010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
G-quadruplexes, intricate four-stranded structures composed of G-tetrads formed by four guanine bases, are prevalent in both DNA and RNA. Notably, these structures play pivotal roles in human telomeres, contributing to essential cellular functions. Additionally, the existence of DNA:RNA hybrid G-quadruplexes adds a layer of complexity to their structural diversity. This review provides a comprehensive overview of recent advancements in unraveling the intricacies of DNA and RNA G-quadruplexes within human telomeres. Detailed insights into their structural features are presented, encompassing the latest developments in chemical approaches designed to probe these G-quadruplex structures. Furthermore, this review explores the applications of G-quadruplex structures in targeting human telomeres. Finally, the manuscript outlines the imminent challenges in this evolving field, setting the stage for future investigations.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Escaja N, Mir B, Garavís M, González C. Non-G Base Tetrads. Molecules 2022; 27:5287. [PMID: 36014524 PMCID: PMC9414646 DOI: 10.3390/molecules27165287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Tetrads (or quartets) are arrangements of four nucleobases commonly involved in the stability of four-stranded nucleic acids structures. Four-stranded or quadruplex structures have attracted enormous attention in the last few years, being the most extensively studied guanine quadruplex (G-quadruplex). Consequently, the G-tetrad is the most common and well-known tetrad. However, this is not the only possible arrangement of four nucleobases. A number of tetrads formed by the different nucleobases have been observed in experimental structures. In most cases, these tetrads occur in the context of G-quadruplex structures, either inserted between G-quartets, or as capping elements at the sides of the G-quadruplex core. In other cases, however, non-G tetrads are found in more unusual four stranded structures, such as i-motifs, or different types of peculiar fold-back structures. In this report, we review the diversity of these non-canonical tetrads, and the structural context in which they have been found.
Collapse
Affiliation(s)
- Núria Escaja
- Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Martí i Franquès 1–11, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Bartomeu Mir
- Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Martí i Franquès 1–11, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Miguel Garavís
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
4
|
Rocca R, Scionti F, Nadai M, Moraca F, Maruca A, Costa G, Catalano R, Juli G, Di Martino MT, Ortuso F, Alcaro S, Tagliaferri P, Tassone P, Richter SN, Artese A. Chromene Derivatives as Selective TERRA G-Quadruplex RNA Binders with Antiproliferative Properties. Pharmaceuticals (Basel) 2022; 15:ph15050548. [PMID: 35631373 PMCID: PMC9147070 DOI: 10.3390/ph15050548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
In mammalian cells, telomerase transcribes telomeres in large G-rich non-coding RNA, known as telomeric repeat-containing RNA (TERRA), which folds into noncanonical nucleic acid secondary structures called G-quadruplexes (G4s). Since TERRA G4 has been shown to be involved in telomere length and translation regulation, it could provide valuable insight into fundamental biological processes, such as cancer growth, and TERRA G4 binders could represent an innovative strategy for cancer treatment. In this work, the three best candidates identified in our previous virtual screening campaign on bimolecular DNA/RNA G4s were investigated on the monomolecular Tel DNA and TERRA G4s by means of molecular modelling simulations and in vitro and in cell analysis. The results obtained in this work highlighted the stabilizing power of all the three candidates on TERRA G4. In particular, the two compounds characterized by a chromene scaffold were selective TERRA G4 binders, while the compound with a naphthyridine core acted as a dual Tel/TERRA G4-binder. A biophysical investigation by circular dichroism confirmed the relative stabilization efficiency of the compounds towards TERRA and Tel G4s. The TERRA G4 stabilizing hits showed good antiproliferative activity against colorectal and lung adenocarcinoma cell lines. Lead optimization to increase TERRA G4 stabilization may provide new powerful tools against cancer.
Collapse
Affiliation(s)
- Roberta Rocca
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
| | - Francesca Scionti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy;
| | - Federica Moraca
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Annalisa Maruca
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Raffaella Catalano
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Francesco Ortuso
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Sara N. Richter
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy;
- Correspondence: (S.N.R.); (A.A.)
| | - Anna Artese
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (S.N.R.); (A.A.)
| |
Collapse
|
5
|
Hu XX, Wang SQ, Gan SQ, Liu L, Zhong MQ, Jia MH, Jiang F, Xu Y, Xiao CD, Shen XC. A Small Ligand That Selectively Binds to the G-quadruplex at the Human Vascular Endothelial Growth Factor Internal Ribosomal Entry Site and Represses the Translation. Front Chem 2021; 9:781198. [PMID: 34858949 PMCID: PMC8630693 DOI: 10.3389/fchem.2021.781198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
G-quadruplexes are believed to have important biological functions, so many small molecules have been screened or developed for targeting G-quadruplexes. However, it is still a major challenge to find molecules that recognize specific G-quadruplexes. Here, by using a combination of surface plasmon resonance, electrospray ionization mass spectrometry, circular dichroism, Western blot, luciferase assay, and reverse transcriptase stop assay, we observed a small molecule, namely, oxymatrine (OMT) that could selectively bind to the RNA G-quadruplex in 5′-untranslated regions (UTRs) of human vascular endothelial growth factor (hVEGF), but could not bind to other G-quadruplexes. OMT could selectively repress the translation of VEGF in cervical cancer cells. Furthermore, it could recognize VEGF RNA G-quadruplexes in special conformations. The results indicate that OMT may serve as a potentially special tool for studying the VEGF RNA G-quadruplex in cells and as a valuable scaffold for the design of ligands that recognize different G-quadruplexes.
Collapse
Affiliation(s)
- Xiao-Xia Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,Department of Physiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Sheng-Quan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Shi-Quan Gan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Lei Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Ming-Qing Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Meng-Hao Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Fei Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, China
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Andrałojć W, Pasternak K, Sarzyńska J, Zielińska K, Kierzek R, Gdaniec Z. The origin of the high stability of 3'-terminal uridine tetrads: contributions of hydrogen bonding, stacking interactions, and steric factors evaluated using modified oligonucleotide analogs. RNA (NEW YORK, N.Y.) 2020; 26:2000-2016. [PMID: 32967936 PMCID: PMC7668245 DOI: 10.1261/rna.076539.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/17/2020] [Indexed: 05/09/2023]
Abstract
RNA G-quadruplexes fold almost exclusively into parallel-stranded structures and thus display much less structural diversity than their DNA counterparts. However, also among RNA G-quadruplexes peculiar structural elements can be found which are capable of reshaping the physico-chemical properties of the folded structure. A striking example is provided by a uridine tetrad (U-tetrad) placed on the 3'-terminus of the tetramolecular G-quadruplex. In this context, the U-tetrad adopts a unique conformation involving chain reversal and is responsible for a tremendous stabilization of the G-quadruplex (ΔTm up to 30°C). In this report, we attempt to rationalize the origin of this stabilizing effect by concurrent structural, thermal stability, and molecular dynamics studies of a series of G-quadruplexes with subtle chemical modifications at their 3'-termini. Our results provide detailed insights into the energetics of the "reversed" U-tetrad motif and the requirements for its formation. They point to the importance of the 2'OH to phosphate hydrogen bond and preferential stacking interactions for the formation propensity and stability of the motif.
Collapse
Affiliation(s)
- Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karolina Zielińska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
7
|
Füchtbauer AF, Wranne MS, Bood M, Weis E, Pfeiffer P, Nilsson JR, Dahlén A, Grøtli M, Wilhelmsson LM. Interbase FRET in RNA: from A to Z. Nucleic Acids Res 2019; 47:9990-9997. [PMID: 31544922 PMCID: PMC6821158 DOI: 10.1093/nar/gkz812] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 01/22/2023] Open
Abstract
Interbase FRET can reveal highly detailed information about distance, orientation and dynamics in nucleic acids, complementing the existing structure and dynamics techniques. We here report the first RNA base analogue FRET pair, consisting of the donor tCO and the non-emissive acceptor tCnitro. The acceptor ribonucleoside is here synthesised and incorporated into RNA for the first time. This FRET pair accurately reports the average structure of A-form RNA, and its utility for probing RNA structural changes is demonstrated by monitoring the transition from A- to Z-form RNA. Finally, the measured FRET data were compared with theoretical FRET patterns obtained from two previously reported Z-RNA PDB structures, to shed new light on this elusive RNA conformation.
Collapse
Affiliation(s)
- Anders F Füchtbauer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden.,Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Weis
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden.,Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pauline Pfeiffer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Anders Dahlén
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| |
Collapse
|
8
|
Brcic J, Plavec J. NMR structure of a G-quadruplex formed by four d(G4C2) repeats: insights into structural polymorphism. Nucleic Acids Res 2019; 46:11605-11617. [PMID: 30277522 PMCID: PMC6265483 DOI: 10.1093/nar/gky886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), is a largely increased number of d(G4C2)n•(G2C4)n repeats located in the non-coding region of C9orf72 gene. Non-canonical structures, including G-quadruplexes, formed within expanded repeats have been proposed to drive repeat expansion and pathogenesis of ALS and FTD. Oligonucleotide d[(G4C2)3G4], which represents the shortest oligonucleotide model of d(G4C2) repeats with the ability to form a unimolecular G-quadruplex, forms two major G-quadruplex structures in addition to several minor species which coexist in solution with K+ ions. Herein, we used solution-state NMR to determine the high-resolution structure of one of the major G-quadruplex species adopted by d[(G4C2)3G4]. Structural characterization of the G-quadruplex named AQU was facilitated by a single substitution of dG with 8Br-dG at position 21 and revealed an antiparallel fold composed of four G-quartets and three lateral C-C loops. The G-quadruplex exhibits high thermal stability and is favored kinetically and under slightly acidic conditions. An unusual structural element distinct from a C-quartet is observed in the structure. Two C•C base pairs are stacked on the nearby G-quartet and are involved in a dynamic equilibrium between symmetric N3-amino and carbonyl-amino geometries and protonated C+•C state.
Collapse
Affiliation(s)
- Jasna Brcic
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana SI-1000, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana SI-1000, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana SI-1000, Slovenia.,EN-FIST Center of Excellence, Ljubljana SI-1000, Slovenia
| |
Collapse
|
9
|
Liu H, Wang R, Yu X, Shen F, Lan W, Haruehanroengra P, Yao Q, Zhang J, Chen Y, Li S, Wu B, Zheng L, Ma J, Lin J, Cao C, Li J, Sheng J, Gan J. High-resolution DNA quadruplex structure containing all the A-, G-, C-, T-tetrads. Nucleic Acids Res 2019; 46:11627-11638. [PMID: 30285239 PMCID: PMC6265469 DOI: 10.1093/nar/gky902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
DNA can form diverse structures, which predefine their physiological functions. Besides duplexes that carry the genetic information, quadruplexes are the most well-studied DNA structures. In addition to their important roles in recombination, replication, transcription and translation, DNA quadruplexes have also been applied as diagnostic aptamers and antidisease therapeutics. Herein we further expand the sequence and structure complexity of DNA quadruplex by presenting a high-resolution crystal structure of DNA1 (5′-AGAGAGATGGGTGCGTT-3′). This is the first quadruplex structure that contains all the internal A-, G-, C-, T-tetrads, A:T:A:T tetrads and bulged nucleotides in one single structure; as revealed by site-specific mutagenesis and biophysical studies, the central ATGGG motif plays important role in the quadruplex formation. Interestingly, our structure also provides great new insights into cation recognition, including the first-time reported Pb2+, by tetrad structures.
Collapse
Affiliation(s)
- Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Wang
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Xiang Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fusheng Shen
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Qingqing Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yiqing Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Suhua Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Baixing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lina Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Andrałojć W, Małgowska M, Sarzyńska J, Pasternak K, Szpotkowski K, Kierzek R, Gdaniec Z. Unraveling the structural basis for the exceptional stability of RNA G-quadruplexes capped by a uridine tetrad at the 3' terminus. RNA (NEW YORK, N.Y.) 2019; 25:121-134. [PMID: 30341177 PMCID: PMC6298561 DOI: 10.1261/rna.068163.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/16/2018] [Indexed: 05/24/2023]
Abstract
Uridine tetrads (U-tetrads) are a structural element encountered in RNA G-quadruplexes, for example, in the structures formed by the biologically relevant human telomeric repeat RNA. For these molecules, an unexpectedly strong stabilizing influence of a U-tetrad forming at the 3' terminus of a quadruplex was reported. Here we present the high-resolution solution NMR structure of the r(UGGUGGU)4 quadruplex which, in our opinion, provides an explanation for this stabilization. Our structure features a distinctive, abrupt chain reversal just prior to the 3' uridine tetrad. Similar "reversed U-tetrads" were already observed in the crystalline phase. However, our NMR structure coupled with extensive explicit solvent molecular dynamics (MD) simulations identifies some key features of this motif that up to now remained overlooked. These include the presence of an exceptionally stable 2'OH to phosphate hydrogen bond, as well as the formation of an additional K+ binding pocket in the quadruplex groove.
Collapse
Affiliation(s)
- Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Małgowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Kamil Szpotkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
11
|
Xu Y. Recent progress in human telomere RNA structure and function. Bioorg Med Chem Lett 2018; 28:2577-2584. [DOI: 10.1016/j.bmcl.2018.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/15/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
|
12
|
Investigation of higher-order RNA G-quadruplex structures in vitro and in living cells by 19F NMR spectroscopy. Nat Protoc 2018. [PMID: 29517770 DOI: 10.1038/nprot.2017.156] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidence indicates that RNA G-quadruplexes have important roles in various processes such as transcription, translation, regulation of telomere length, and formation of telomeric heterochromatin. Investigation of RNA G-quadruplex structures associated with biological events is therefore essential to understanding the functions of these RNA molecules. We recently demonstrated that the sensitivity and simplicity of 19F NMR can be used to directly observe higher-order telomeric G-quadruplexes of labeled RNA molecules in vitro and in living cells, as well as their interactions with ligands and proteins. This protocol describes detailed procedures for preparing 19F-labeled RNA, the evaluation of 19F-labeled RNA G-quadruplexes in vitro and in living Xenopus laevis oocytes by 19F NMR spectroscopy, the quantitative characterization of thermodynamic properties of the G-quadruplexes, and monitoring of RNA G-quadruplex interactions with ligand molecules and proteins. This approach has several advantages over existing techniques. First, it is relatively easy to prepare 19F-labeled RNA molecules by introducing a 3,5-bis(trifluoromethyl) benzene moiety into its 5' terminus. Second, the absence of any natural fluorine background signal in RNA and cells results in a simple and clear 19F NMR spectrum and does not suffer from high background signals as does 1H NMR. Finally, the simplicity and sensitivity of 19F NMR can be used to easily distinguish different RNA G-quadruplex conformations under various conditions, even in living cells, and to obtain the precise thermodynamic parameters of higher-order G-quadruplexes. This protocol can be completed in 2 weeks.
Collapse
|
13
|
HnRNPA1 Specifically Recognizes the Base of Nucleotide at the Loop of RNA G-Quadruplex. Molecules 2018; 23:molecules23010237. [PMID: 29361764 PMCID: PMC6017123 DOI: 10.3390/molecules23010237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 11/23/2022] Open
Abstract
Human telomere RNA performs various cellular functions, such as telomere length regulation, heterochromatin formation, and end protection. We recently demonstrated that the loops in the RNA G-quadruplex are important in the interaction of telomere RNA with heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). Here, we report on a detailed analysis of hnRNPA1 binding to telomere RNA G-quadruplexes with a group of loop variants using an electrophoretic mobility shift assay (EMSA) and circular dichroism (CD) spectroscopy. We found that the hnRNPA1 binds to RNA G-quadruplexes with the 2’-O-methyl and DNA loops, but fails to bind with the abasic RNA and DNA loops. These results suggested that hnRNPA1 binds to the loop of the RNA G-quadruplex by recognizing the base of the loop’s nucleotides. The observation provides the first evidence that the base of the loop’s nucleotides is a key factor for hnRNPA1 specifically recognizing the RNA G-quadruplex.
Collapse
|
14
|
Ishizuka T, Yamashita A, Asada Y, Xu Y. Studying DNA G-Quadruplex Aptamer by 19F NMR. ACS OMEGA 2017; 2:8843-8848. [PMID: 30023592 PMCID: PMC6045382 DOI: 10.1021/acsomega.7b01405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
In this study, we demonstrated that 19F NMR can be used to study the thrombin-binding aptamer (TBA) DNA G-quadruplex, widely used as a model structure for studying G-quadruplex aptamers. We systematically examined the structural feature of the TBA G-quadruplex aptamer with fluorine-19 (19F) labels at all of the thymidine positions. We successfully observed the structural change between the G-quadruplex and the unstructured single strand by 19F NMR spectroscopy. The thermodynamic parameters of these DNA G-quadruplex aptamers were also determined from the 19F NMR signals. We further showed that the 19F NMR method can be used to observe the complex formed by TBA G-quadruplex and thrombin. Our results suggest that 19F NMR spectroscopy is a useful approach to study the aptamer G-quadruplex structure.
Collapse
Affiliation(s)
- Takumi Ishizuka
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Atsushi Yamashita
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yujiro Asada
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
15
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
16
|
Bao HL, Ishizuka T, Sakamoto T, Fujimoto K, Uechi T, Kenmochi N, Xu Y. Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res 2017; 45:5501-5511. [PMID: 28180296 PMCID: PMC5435947 DOI: 10.1093/nar/gkx109] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/06/2017] [Indexed: 11/12/2022] Open
Abstract
Human telomeric RNA has been identified as a key component of the telomere machinery. Recently, the growing evidence suggests that the telomeric RNA forms G-quadruplex structures to play an important role in telomere protection and regulation. In the present studies, we developed a 19F NMR spectroscopy method to investigate the telomeric RNA G-quadruplex structures in vitro and in living cells. We demonstrated that the simplicity and sensitivity of 19F NMR approach can be used to directly observe the dimeric and two-subunits stacked G-quadruplexes in vitro and in living cells and quantitatively characterize the thermodynamic properties of the G-quadruplexes. By employing the 19F NMR in living cell experiment, we confirmed for the first time that the higher-order G-quadruplex exists in cells. We further demonstrated that telomere RNA G-quadruplexes are converted to the higher-order G-quadruplex under molecular crowding condition, a cell-like environment. We also show that the higher-order G-quadruplex has high thermal stability in crowded solutions. The finding provides new insight into the structural behavior of telomere RNA G-quadruplex in living cells. These results open new avenues for the investigation of G-quadruplex structures in vitro and in living cells.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takashi Sakamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Kenzo Fujimoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
17
|
Antiparallel RNA G-quadruplex Formed by Human Telomere RNA Containing 8-Bromoguanosine. Sci Rep 2017; 7:6695. [PMID: 28751647 PMCID: PMC5532209 DOI: 10.1038/s41598-017-07050-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
In this study, by combining nuclear magnetic resonance (NMR), circular dichroism (CD), liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and gel electrophoresis, we report an unusual topological structure of the RNA G-quadruplex motif formed by human telomere RNA r(UAGGGU) containing 8-bromoguanosine. Results showed that the RNA sequence formed an antiparallel tetramolecular G-quadruplex, in which each pair of diagonal strands run in opposite directions. Furthermore, guanosines were observed both in syn- and anti-conformations. In addition, two of these G-quadruplex subunits were found to be stacking on top of each other, forming a dimeric RNA G-quadruplex. Our findings provide a new insight into the behavior of RNA G-quadruplex structures.
Collapse
|
18
|
Zhou J, Amrane S, Rosu F, Salgado GF, Bian Y, Tateishi-Karimata H, Largy E, Korkut DN, Bourdoncle A, Miyoshi D, Zhang J, Ju H, Wang W, Sugimoto N, Gabelica V, Mergny JL. Unexpected Position-Dependent Effects of Ribose G-Quartets in G-Quadruplexes. J Am Chem Soc 2017; 139:7768-7779. [PMID: 28523907 DOI: 10.1021/jacs.7b00648] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand the role of ribose G-quartets and how they affect the properties of G-quadruplex structures, we studied three systems in which one, two, three, or four deoxyribose G-quartets were substituted with ribose G-quartets. These systems were a parallel DNA intramolecular G-quadruplex, d(TTGGGTGGGTTGGGTGGGTT), and two tetramolecular G-quadruplexes, d(TGGGT) and d(TGGGGT). Thermal denaturation experiments revealed that ribose G-quartets have position-dependent and cumulative effects on G-quadruplex stability. An unexpected destabilization was observed when rG quartets were presented at the 5'-end of the G stack. This observation challenges the general belief that RNA residues stabilize G-quadruplexes. Furthermore, in contrast to past proposals, hydration is not the main factor determining the stability of our RNA/DNA chimeric G-quadruplexes. Interestingly, the presence of rG residues in a central G-quartet facilitated the formation of additional tetramolecular G-quadruplex topologies showing positive circular dichroism signals at 295 nm. 2D NMR analysis of the tetramolecular TGgGGT (lowercase letter indicates ribose) indicates that Gs in the 5'-most G-quartet adopt the syn conformation. These analyses highlight several new aspects of the role of ribose G-quartets on G-quadruplex structure and stability, and demonstrate that the positions of ribose residues are critical for tuning G-quadruplex properties.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China.,Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Samir Amrane
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Université de Bordeaux , CNRS UMS 3033, INSERM US001, IECB, F-33600 Pessac, France
| | - Gilmar F Salgado
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Yunqiang Bian
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University , Dezhou 253023, China
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Eric Largy
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Dursun Nizam Korkut
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Anne Bourdoncle
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Daisuke Miyoshi
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jian Zhang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University , Nanjing 210093, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University , Nanjing 210093, China
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Valérie Gabelica
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Jean-Louis Mergny
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
19
|
Liu X, Ishizuka T, Bao HL, Wada K, Takeda Y, Iida K, Nagasawa K, Yang D, Xu Y. Structure-Dependent Binding of hnRNPA1 to Telomere RNA. J Am Chem Soc 2017; 139:7533-7539. [PMID: 28510424 DOI: 10.1021/jacs.7b01599] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Telomeric repeat-containing RNA is a new noncoding RNA molecule that performs various biofunctions. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an RNA-binding protein involved in the telomere maintenance machinery. To date, little is known about how hnRNPA1 binds to telomeric RNA. In this study, we investigated the binding affinity and recognition mechanism of telomere RNA with the RNA recognition motif of hnRNPA1. Using the photochemical cross-linking method, we showed that the telomere RNA G-quadruplex with loops is important in the interaction of telomere RNA with hnRNPA1. Using small-molecule probes, we directly visualized the complex formed by the telomere RNA G-quadruplex and hnRNPA1 in vitro and in live cells. The results suggested that the structure-dependent binding of hnRNPA1 to telomere RNA regulates the telomere function. Therefore, our study provides new insights into the interactions between the RNA G-quadruplex and proteins at the telomere.
Collapse
Affiliation(s)
- Xiao Liu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kei Wada
- Organization for Promotion of Tenure Track, University of Miyazaki , 1-1 Gakuenkibanadai-nishi, Kiyotake, Miyazaki 889-2192, Japan
| | - Yuma Takeda
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Keisuke Iida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei City, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei City, Tokyo 184-8588, Japan
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University , 201 South University Street, West Lafayette, Indiana 47907, United States
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
20
|
Bao H, Ishizuka T, Iwanami A, Oyoshi T, Xu Y. A Simple and Sensitive
19
F NMR Approach for Studying the Interaction of RNA G‐Quadruplex with Ligand Molecule and Protein. ChemistrySelect 2017. [DOI: 10.1002/slct.201700711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hong‐Liang Bao
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Ayaka Iwanami
- Faculty of Science, Department of ChemistryShizuoka University 836 Ohya Suruga Shizuoka 422-8529 Japan
| | - Takanori Oyoshi
- Faculty of Science, Department of ChemistryShizuoka University 836 Ohya Suruga Shizuoka 422-8529 Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| |
Collapse
|
21
|
Xiao CD, Ishizuka T, Zhu XQ, Li Y, Sugiyama H, Xu Y. Unusual Topological RNA Architecture with an Eight-Stranded Helical Fragment Containing A-, G-, and U-Tetrads. J Am Chem Soc 2017; 139:2565-2568. [DOI: 10.1021/jacs.6b12274] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chao-Da Xiao
- Division
of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division
of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Xiao-Qing Zhu
- Division
of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yue Li
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Yan Xu
- Division
of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
22
|
Cao Q, Li Y, Freisinger E, Qin PZ, Sigel RKO, Mao ZW. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00300a] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes the recent development of G4 DNA targeted metal complexes and discusses their potential as anticancer drugs.
Collapse
Affiliation(s)
- Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Yi Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Eva Freisinger
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - Peter Z. Qin
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | | | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
23
|
Chen S, Le BT, Rahimizadeh K, Shaikh K, Mohal N, Veedu RN. Synthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2'-O-Methyl Mixmer Antisense Oligonucleotide. Molecules 2016; 21:molecules21111582. [PMID: 27879669 PMCID: PMC6274534 DOI: 10.3390/molecules21111582] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023] Open
Abstract
In this study, we synthesised a morpholino nucleoside-uridine (MNA-U) phosphoramidite and evaluated the potential of a MNA-modified antisense oligonucleotide (AO) sequences to induce exon 23 skipping in mdx mouse myotubes in vitro towards extending the applicability of morpholino chemistry with other nucleotide monomers. We designed, synthesised, and compared exon skipping efficiencies of 20 mer MNA-modified 2'-O-methyl RNA mixmer AO on a phosphorothioate backbone (MNA/2'-OMePS) to the corresponding fully modified 2'-O-methyl RNA AO (2'-OMePS) as a control. Our results showed that the MNA/2'-OMePS efficiently induced exon 23 skipping. As expected, the 2'-OMePS AO control yielded efficient exon 23 skipping. Under the applied conditions, both the AOs showed minor products corresponding to exon 22/23 dual exon skipping in low yield. As these are very preliminary data, more detailed studies are necessary; however, based on the preliminary results, MNA nucleotides might be useful in constructing antisense oligonucleotides.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia.
- Western Australian Neuroscience Research Institute, Perth 6150, Australia.
| | - Bao T Le
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia.
- Western Australian Neuroscience Research Institute, Perth 6150, Australia.
| | - Kamal Rahimizadeh
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia.
| | - Khalil Shaikh
- GMK Research Laboratories Pvt. Ltd., Mallapur, Hyderabad 500 076, India.
| | - Narinder Mohal
- GMK Research Laboratories Pvt. Ltd., Mallapur, Hyderabad 500 076, India.
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia.
- Western Australian Neuroscience Research Institute, Perth 6150, Australia.
| |
Collapse
|
24
|
Esposito V, Pepe A, Filosa R, Mayol L, Virgilio A, Galeone A. A novel pyrimidine tetrad contributing to stabilize tetramolecular G-quadruplex structures. Org Biomol Chem 2016; 14:2938-43. [DOI: 10.1039/c5ob02358k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Amino-2′-deoxyuridine forms an eight hydrogen-bonded tetrad stabilizing a parallel G-quadruplex structure more efficiently than tetrads formed by 5-bromo-2′-deoxyuridine and thymidine.
Collapse
Affiliation(s)
- V. Esposito
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - A. Pepe
- Department of Science
- University of Basilicata
- Potenza
- Italy
| | - R. Filosa
- Department of Experimental Medicine
- Second University of Naples
- 80138 Napoli
- Italy
| | - L. Mayol
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - A. Virgilio
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - A. Galeone
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| |
Collapse
|
25
|
Fyfe AC, Dunten PW, Martick MM, Scott WG. Structural Variations and Solvent Structure of r(UGGGGU) Quadruplexes Stabilized by Sr(2+) Ions. J Mol Biol 2015; 427:2205-19. [PMID: 25861762 DOI: 10.1016/j.jmb.2015.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 11/18/2022]
Abstract
Guanine-rich sequences can, under appropriate conditions, adopt a distinctive, four-stranded, helical fold known as a G-quadruplex. Interest in quadruplex folds has grown in recent years as evidence of their biological relevance has accumulated from both sequence analysis and function-specific assays. The folds are unusually stable and their formation appears to require close management to maintain cell health; regulatory failure correlates with genomic instability and a number of cancer phenotypes. Biologically relevant quadruplex folds are anticipated to form transiently in mRNA and in single-stranded, unwound DNA. To elucidate factors, including bound solvent, that contribute to the stability of RNA quadruplexes, we examine, by X-ray crystallography and small-angle X-ray scattering, the structure of a previously reported tetramolecular quadruplex, UGGGGU stabilized by Sr(2+) ions. Crystal forms of the octameric assembly formed by this sequence exhibit unusually strong diffraction and anomalous signal enabling the construction of reliable models to a resolution of 0.88Å. The solvent structure confirms hydration patterns reported for other nucleic acid helical conformations and provides support for the greater stability of RNA quadruplexes relative to DNA. Novel features detected in the octameric RNA assembly include a new crystal form, evidence of multiple conformations and structural variations in the 3' U tetrad, including one that leads to the formation of a hydrated internal cavity.
Collapse
Affiliation(s)
- Alastair C Fyfe
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Pete W Dunten
- Stanford Synchrotron Radiation Lightsource, CA 94025, USA
| | - Monika M Martick
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - William G Scott
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
26
|
Zhang D, Huang T, Lukeman PS, Paukstelis PJ. Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad. Nucleic Acids Res 2014; 42:13422-9. [PMID: 25389267 PMCID: PMC4245957 DOI: 10.1093/nar/gku1122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have determined the 1.50 Å crystal structure of the DNA decamer, d(CCA(CNV)KGCGTGG) ((CNV)K, 3-cyanovinylcarbazole), which forms a G-quadruplex structure in the presence of Ba(2+). The structure contains several unique features including a bulged nucleotide and the first crystal structure observation of a C-tetrad. The structure reveals that water molecules mediate contacts between the divalent cations and the C-tetrad, allowing Ba(2+) ions to occupy adjacent steps in the central ion channel. One ordered Mg(2+) facilitates 3'-3' stacking of two quadruplexes in the asymmetric unit, while the bulged nucleotide mediates crystal contacts. Despite the high diffraction limit, the first four nucleotides including the (CNV)K nucleoside are disordered though they are still involved in crystal packing. This work suggests that the bulky hydrophobic groups may locally influence the formation of non-Watson-Crick structures from otherwise complementary sequences. These observations lead to the intriguing possibility that certain types of DNA damage may act as modulators of G-quadruplex formation.
Collapse
Affiliation(s)
- Diana Zhang
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| | - Terry Huang
- Chemistry and Biochemistry Department, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Philip S. Lukeman
- Chemistry Department, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Paul J. Paukstelis
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA,To whom correspondence should be addressed. Tel: 301.405.9933; Fax: 301.314.0386;
| |
Collapse
|
27
|
Malgowska M, Gudanis D, Kierzek R, Wyszko E, Gabelica V, Gdaniec Z. Distinctive structural motifs of RNA G-quadruplexes composed of AGG, CGG and UGG trinucleotide repeats. Nucleic Acids Res 2014; 42:10196-207. [PMID: 25081212 PMCID: PMC4150804 DOI: 10.1093/nar/gku710] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trinucleotide repeats are microsatellite sequences that are polymorphic in length. Their expansion in specific genes underlies a number of neurodegenerative disorders. Using ultraviolet-visible, circular dichroism, nuclear magnetic resonance (NMR) spectroscopies and electrospray ionization mass spectrometry, the structural preferences of RNA molecules composed of two and four repeats of AGG, CGG and UGG in the presence of K+, Na+ and NH4+ were analysed. (AGG)2A, (AGG)4A, p(UGG)2U and p(UGG)4U strongly prefer folding into G-quadruplexes, whereas CGG-containing sequences can adopt different types of structure depending on the cation and on the number of repeats. In particular, the two-repeat CGG sequence folds into a G-quadruplex in potassium buffer. We also found that each G-quadruplex fold is different: A:(G:G:G:G)A hexads were found for (AGG)2A, whereas mixed G:C:G:C tetrads and U-tetrads were observed in the NMR spectra of G(CGG)2C and p(UGG)2U, respectively. Finally, our NMR study highlights the influence of the strand sequence on the structure formed, and the influence of the intracellular environment on the folding. Importantly, we highlight that although potassium ions are prevalent in cells, the structures observed in the HeLa cell extract are not always the same as those prevailing in biophysical studies in the presence of K+ ions.
Collapse
Affiliation(s)
- Magdalena Malgowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Dorota Gudanis
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Valérie Gabelica
- Laboratoire de Spectrométrie de Masse, Institut de Chimie, Bat. B6c, Université de Liège, B-4000 Liège, Belgium Inserm, U869 ARNA Laboratory, F-33000 Bordeaux, France University of Bordeaux, IECB, ARNA Laboratory, F-33600 Pessac, France
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| |
Collapse
|
28
|
Xu Y, Suzuki Y, Ishizuka T, Xiao CD, Liu X, Hayashi T, Komiyama M. Finding a human telomere DNA-RNA hybrid G-quadruplex formed by human telomeric 6-mer RNA and 16-mer DNA using click chemistry: a protective structure for telomere end. Bioorg Med Chem 2014; 22:4419-21. [PMID: 24947481 DOI: 10.1016/j.bmc.2014.05.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 01/21/2023]
Abstract
Telomeric repeat-containing RNA is a non-coding RNA molecule newly found in mammalian cells. The telomere RNA has been found to localize to the telomere DNA, but how the newly discovered RNA molecule interacts with telomere DNA is less known. In this study, using the click chemistry we successfully found that a 6-mer human telomere RNA and 16-mer human telomere DNA sequence can form a DNA-RNA hybrid type G-quadruplex structure. Detection of the click-reaction products directly probes DNA-RNA G-quadruplex structures in a complicated solution, whereas traditional methods such as NMR and crystallography may not be suitable. Importantly, we found that formation of DNA-RNA G-quadruplex induced an exonuclease resistance for telomere DNA, indicating that such structures might be important for protecting telomeric DNA from enzyme digestion to avoid telomere DNA shortening. These results provide the direct evidence for formation of DNA-RNA hybrid G-quadruplex structure by human telomere DNA and RNA sequence, suggesting DNA-RNA hybrid G-quadruplex structure associated between telomere DNA and RNA may respond to chromosome end protection and/or present a valuable target for drug design.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Yuta Suzuki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Chao-Da Xiao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Xiao Liu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tetsuya Hayashi
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan; Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
29
|
Martadinata H, Phan AT. Formation of a stacked dimeric G-quadruplex containing bulges by the 5'-terminal region of human telomerase RNA (hTERC). Biochemistry 2014; 53:1595-600. [PMID: 24601523 DOI: 10.1021/bi4015727] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the structure formed by the first 18-nt of the 5'-terminal region of the human telomerase RNA (hTERC or hTR) using gel electrophoresis and UV, CD, and NMR spectroscopy. Our data suggest that this 18-nt sequence, r(GGGUUGCGGAGGGUGGGC), can form a stacked dimeric G-quadruplex in potassium solution. The two subunits, each being a three-layer parallel-stranded G-quadruplex with a cytosine bulge, are stacked at their 5'-end. The formation of this stacked dimeric G-quadruplex containing bulges could be biologically relevant for the dimerization and other interactions of the active human telomerase.
Collapse
Affiliation(s)
- Herry Martadinata
- School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371
| | | |
Collapse
|
30
|
Hui WQB, Sherman JC. Self-assembly of a thymine quartet and quadruplex via an organic template. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Russo Krauss I, Parkinson GN, Merlino A, Mattia CA, Randazzo A, Novellino E, Mazzarella L, Sica F. A regular thymine tetrad and a peculiar supramolecular assembly in the first crystal structure of an all-LNA G-quadruplex. ACTA ACUST UNITED AC 2014; 70:362-70. [PMID: 24531470 DOI: 10.1107/s1399004713028095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/13/2013] [Indexed: 01/19/2023]
Abstract
Locked nucleic acids (LNAs) are formed by bicyclic ribonucleotides where the O2' and C4' atoms are linked through a methylene bridge and the sugar is blocked in a 3'-endo conformation. They represent a promising tool for therapeutic and diagnostic applications and are characterized by higher thermal stability and nuclease resistance with respect to their natural counterparts. However, structural descriptions of LNA-containing quadruplexes are rather limited, since few NMR models have been reported in the literature. Here, the first crystallographically derived model of an all-LNA-substituted quadruplex-forming sequence 5'-TGGGT-3' is presented refined at 1.7 Å resolution. This high-resolution crystallographic analysis reveals a regular parallel G-quadruplex arrangement terminating in a well defined thymine tetrad at the 3'-end. The detailed picture of the hydration pattern reveals LNA-specific features in the solvent distribution. Interestingly, two closely packed quadruplexes are present in the asymmetric unit. They face one another with their 3'-ends giving rise to a compact higher-order structure. This new assembly suggests a possible way in which sequential quadruplexes can be disposed in the crowded cell environment. Furthermore, as the formation of ordered structures by molecular self-assembly is an effective strategy to obtain nanostructures, this study could open the way to the design of a new class of LNA-based building blocks for nanotechnology.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Gary Nigel Parkinson
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, England
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Carlo Andrea Mattia
- Department of Pharmacy, University of Salerno, Via Ponte Don Melillo, I-84084 Fisciano, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples `Federico II', Via D. Montesano 49, I-80131 Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples `Federico II', Via D. Montesano 49, I-80131 Napoli, Italy
| | - Lelio Mazzarella
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| |
Collapse
|
32
|
Bare GAL, Sherman JC. A thymine tetrad assembly templated from thymidylic acid. J Org Chem 2013; 78:8198-202. [PMID: 23875642 DOI: 10.1021/jo401281p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A template tetra-coupled with thymidylic acid through a phosphate linkage was characterized in methanol for emergent properties of nucleobase tetrad formation. Intramolecular hydrogen bonded base pairing in the absence of a cation was indicated for the thymidylic acid species supporting a monomeric template-assembled structure. Thus, an initial report of a stabilized individual thymine tetrad assembly is presented here. Consistent with previous investigations, a deoxyguanylic acid variant templated an analogous methanolic monomeric G-tetrad in comparison to the thymine species.
Collapse
Affiliation(s)
- Grant A L Bare
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1
| | | |
Collapse
|
33
|
Abstract
Seen in human cells: A fluorochrome-labeled antibody probe selectively and efficiently binds all types of DNA G-quadruplex with similar binding affinities, but hardly binds single- or double-stranded DNA, or RNA hairpins. Thus, this antibody strictly discriminates between G-quadruplex structures and other conformations of DNA and provides evidence for G-quadruplex DNA in human cells.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | |
Collapse
|
34
|
Endoh T, Kawasaki Y, Sugimoto N. Stability of RNA quadruplex in open reading frame determines proteolysis of human estrogen receptor α. Nucleic Acids Res 2013; 41:6222-31. [PMID: 23620292 PMCID: PMC3695533 DOI: 10.1093/nar/gkt286] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
mRNAs encodes not only information that determines amino acid sequences but also additional layers of information that regulate the translational processes. Notably, translational halt at specific position caused by rare codons or stable RNA structures is one of the potential factors regulating the protein expressions and structures. In this study, a quadruplex-forming potential (QFP) sequence derived from an open reading frame of human estrogen receptor α (hERα) mRNA was revealed to form parallel G-quadruplex and halt the translation elongation in vitro. Moreover, when the full-length hERα and variants containing synonymous mutations in the QFP sequence were expressed in cells, translation products cleaved at specific site were observed in quantities dependent on the thermodynamic stability of the G-quadruplexes. These results suggest that the G-quadruplex formation in the coding region of the hERα mRNA impacts folding and proteolysis of hERα protein by slowing down or temporarily stalling the translation elongation.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research, Konan University, 7-1-20 Minatojimaminamimachi, Kobe 650-0047, Japan
| | | | | |
Collapse
|
35
|
Abstract
This review summarizes the results of structural studies carried out with analogs of G-quadruplexes built from natural nucleotides. Several dozens of base-, sugar-, and phosphate derivatives of the biological building blocks have been incorporated into more than 50 potentially quadruplex forming DNA and RNA oligonucleotides and the stability and folding topology of the resultant intramolecular, bimolecular and tetramolecular architectures characterized. The TG4T, TG5T, the 15 nucleotide-long thrombin binding aptamer, and the human telomere repeat AG3(TTAG3)3 sequences were modified in most cases, and four guanine analogs can be noted as being particularly useful in structural studies. These are the fluorescent 2-aminopurine, the 8-bromo-, and 8-methylguanines, and the hypoxanthine. The latter three analogs stabilize a given fold in a mixture of structures making possible accurate structural determinations by circular dichroism and nuclear magnetic resonance measurements.
Collapse
Affiliation(s)
- Janos Sagi
- a Rimstone Laboratory , RLI, 29 Lancaster Way, Cheshire , CT , 06410 , USA
| |
Collapse
|
36
|
Martadinata H, Phan AT. Structure of human telomeric RNA (TERRA): stacking of two G-quadruplex blocks in K(+) solution. Biochemistry 2013; 52:2176-83. [PMID: 23445442 DOI: 10.1021/bi301606u] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Telomeric repeat-containing RNAs (TERRA) are transcription products of the telomeres. Human TERRA sequences containing UUAGGG repeats can form parallel-stranded G-quadruplexes. The stacking interaction of such structures was shown to be important for ligand targeting and higher-order arrangement of G-quadruplexes in long TERRA sequences. Here we report on the first high-resolution structure of a stacked G-quadruplex formed by the 10-nucleotide human TERRA sequence r(GGGUUAGGGU) in potassium solution. This structure comprises two dimeric three-layer parallel-stranded G-quadruplex blocks, which stack on each other at their 5'-ends. The adenine in each UUA loop is nearly coplanar with the 5'-end G-tetrad forming an A·(G·G·G·G)·A hexad, thereby increasing the stacking contacts between the two blocks. Interestingly, this stacking and loop conformation is different from all structures previously reported for the free human TERRA but resembles the structure previously determined for a complex between a human TERRA sequence and an acridine ligand. This stacking conformation is a potential target for drugs that recognize or induce the stacking interface.
Collapse
Affiliation(s)
- Herry Martadinata
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|
37
|
Xu Y, Ishizuka T, Yang J, Ito K, Katada H, Komiyama M, Hayashi T. Oligonucleotide models of telomeric DNA and RNA form a Hybrid G-quadruplex structure as a potential component of telomeres. J Biol Chem 2012; 287:41787-96. [PMID: 23012368 DOI: 10.1074/jbc.m112.342030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Telomeric repeat-containing RNA, a non-coding RNA molecule, has recently been found in mammalian cells. The detailed structural features and functions of the telomeric RNA at human chromosome ends remain unclear, although this RNA molecule may be a key component of the telomere machinery. In this study, using model human telomeric DNA and RNA sequences, we demonstrated that human telomeric RNA and DNA oligonucleotides form a DNA-RNA G-quadruplex. We next employed chemistry-based oligonucleotide probes to mimic the naturally formed telomeric DNA-RNA G-quadruplexes in living cells, suggesting that the process of DNA-RNA G-quadruplex formation with oligonucleotide models of telomeric DNA and RNA could occur in cells. Furthermore, we investigated the possible roles of this DNA-RNA G-quadruplex. The formation of the DNA-RNA G-quadruplex causes a significant increase in the clonogenic capacity of cells and has an effect on inhibition of cellular senescence. Here, we have used a model system to provide evidence about the formation of G-quadruplex structures involving telomeric DNA and RNA sequences that have the potential to provide a protective capping structure for telomere ends.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Hui BWQ, Sherman JC. A Template-Assembled Synthetic U-Quadruplex. Chembiochem 2012; 13:1865-8. [DOI: 10.1002/cbic.201200442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Indexed: 01/23/2023]
|
39
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
40
|
Xu Y, Komiyama M. Structure, function and targeting of human telomere RNA. Methods 2012; 57:100-5. [PMID: 22425636 DOI: 10.1016/j.ymeth.2012.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/26/2012] [Accepted: 02/28/2012] [Indexed: 11/18/2022] Open
Abstract
Human telomeres play an important role in critical processes underlying genome stability, cancer, and aging. For a long time, telomeres have been considered transcriptionally silent. A recent finding demonstrated that telomere DNA is transcribed into telomeric repeat-containing RNA (referred to as TERRA) in mammalian cells. The existence of TERRA RNA may reveal a new level of regulation and protection of chromosome ends that could promote valuable insight into fundamental biological processes such as cancer and aging. Revealing the structure and function of telomere RNA will be essential for understanding telomere biology and telomere-related diseases. NMR and X-ray crystallography have demonstrated that human telomere RNA forms G-quadruplex structures. More recently, human telomere RNA is suggested to form a G-quadruplex dimer in the living cells by employing a light-switching probe. The proposed structures may be a valuable target for anticancer agents directed against telomeres. This review highlights the structures and topologies for telomere RNA G-quadruplex and recent efforts in the design of telomere RNA G-quadruplex ligands. The future challenges in the field are outlined.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | |
Collapse
|
41
|
Lease RA, Arluison V, Lavelle C. Twins, quadruplexes, and more: functional aspects of native and engineered RNA self-assembly in vivo.. FRONTIERS IN LIFE SCIENCE 2012; 6:19-32. [PMID: 23914307 PMCID: PMC3725660 DOI: 10.1080/21553769.2012.761163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/18/2012] [Indexed: 11/23/2022]
Abstract
The primacy and power of RNA in governing many processes of life has begun to be more fully appreciated in both the discovery and inventive sciences. A variety of RNA interactions regulate gene expression, and structural self-assembly underlies many of these processes. The understanding sparked by these discoveries has inspired and informed the engineering of novel RNA structures, control elements, and genetic circuits in cells. Many of these engineered systems are built up fundamentally from RNA–RNA interactions, often combining modular, rational design with functional selection and screening. It is therefore useful to review the particular class of RNA-based regulatory mechanisms that rely on RNA self-assembly either through homomeric (self–self) or heteromeric (self–nonself) RNA–RNA interactions. Structures and sequence elements within individual RNAs create a basis for the pairing interactions, and in some instances can even lead to the formation of RNA polymers. Example systems of dimers, multimers, and polymers are reviewed in this article in the context of natural systems, wherein the function and impact of self-assemblies are understood. Following this, a brief overview is presented of specific engineered RNA self-assembly systems implemented in vivo, with lessons learned from both discovery and engineering approaches to RNA–RNA self-assembly.
Collapse
Affiliation(s)
- Richard A Lease
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
42
|
Bugaut A, Balasubramanian S. 5'-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res 2012; 40:4727-41. [PMID: 22351747 PMCID: PMC3367173 DOI: 10.1093/nar/gks068] [Citation(s) in RCA: 469] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RNA structures in the untranslated regions (UTRs) of mRNAs influence post-transcriptional regulation of gene expression. Much of the knowledge in this area depends on canonical double-stranded RNA elements. There has been considerable recent advancement of our understanding of guanine(G)-rich nucleic acids sequences that form four-stranded structures, called G-quadruplexes. While much of the research has been focused on DNA G-quadruplexes, there has recently been a rapid emergence of interest in RNA G-quadruplexes, particularly in the 5′-UTRs of mRNAs. Collectively, these studies suggest that RNA G-quadruplexes exist in the 5′-UTRs of many genes, including genes of clinical interest, and that such structural elements can influence translation. This review features the progresses in the study of 5′-UTR RNA G-quadruplex-mediated translational control. It covers computational analysis, cell-free, cell-based and chemical biology studies that have sought to elucidate the roles of RNA G-quadruplexes in both cap-dependent and -independent regulation of mRNA translation. We also discuss protein trans-acting factors that have been implicated and the evidence that such RNA motifs have potential as small molecule target. Finally, we close the review with a perspective on the future challenges in the field of 5′-UTR RNA G-quadruplex-mediated translation regulation.
Collapse
Affiliation(s)
- Anthony Bugaut
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | |
Collapse
|
43
|
Hui BWQ, Sherman JC. Synthesis and characterization of a template-assembled synthetic U-quartet. Chem Commun (Camb) 2012; 48:109-11. [DOI: 10.1039/c1cc15608j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Ito K, Go S, Komiyama M, Xu Y. Inhibition of translation by small RNA-stabilized mRNA structures in human cells. J Am Chem Soc 2011; 133:19153-9. [PMID: 22007660 DOI: 10.1021/ja206353c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RNA-mediated gene regulation and expression are critically dependent on both nucleic acid architecture and recognition. We present a novel mechanism for the regulation of gene expression through direct RNA-RNA interactions between small RNA and mRNA in human cells. Using mRNA reporters containing G-rich sequences in the 5'-untranslated region (5'-UTR), in the coding region, or both, we showed that G-rich small RNAs bind to the reporter mRNAs and form an intermolecular RNA G-quadruplex that can inhibit gene translation in living cells. Using a combination of circular dichroism (CD) and RNase footprinting in vitro, we found that the intermolecular G-quadruplexes show a parallel G-quadruplex structure. We next investigated whether the intermolecular G-quadruplex is present in living cells. Employing the fluorophore-labeled probes, we found that two G-rich RNA molecules form an intermolecular G-quadruplex structure in living cells. These results extend the concept of small RNA-mediated expression and suggest an important role for such RNA structures in the inhibition of mRNA translation.
Collapse
Affiliation(s)
- Kenichiro Ito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | | | |
Collapse
|
45
|
Collie GW, Parkinson GN. The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 2011; 40:5867-92. [PMID: 21789296 DOI: 10.1039/c1cs15067g] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intriguing structural diversity in folded topologies available to guanine-rich nucleic acid repeat sequences have made four-stranded G-quadruplex structures the focus of both basic and applied research, from cancer biology and novel therapeutics through to nanoelectronics. Distributed widely in the human genome as targets for regulating gene expression and chromosomal maintenance, they offer unique avenues for future cancer drug development. In particular, the recent advances in chemical and structural biology have enabled the construction of bespoke selective DNA based aptamers to be used as novel therapeutic agents and access to detailed structural models for structure based drug discovery. In this critical review, we will explore the important underlying characteristics of G-quadruplexes that make them functional, stable, and predictable nanoscaffolds. We will review the current structural database of folding topologies, molecular interfaces and novel interaction surfaces, with a consideration to their future exploitation in drug discovery, molecular biology, supermolecular assembly and aptamer design. In recent years the number of potential applications for G-quadruplex motifs has rapidly grown, so in this review we aim to explore the many future challenges and highlight where possible successes may lie. We will highlight the similarities and differences between DNA and RNA folded G-quadruplexes in terms of stability, distribution, and exploitability as small molecule targets. Finally, we will provide a detailed review of basic G-quadruplex geometry, experimental tools used, and a critical evaluation of the application of high-resolution structural biology and its ability to provide meaningful and valid models for future applications (255 references).
Collapse
Affiliation(s)
- Gavin W Collie
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, London, UK WC1N 1AX
| | | |
Collapse
|
46
|
Collie GW, Sparapani S, Parkinson GN, Neidle S. Structural basis of telomeric RNA quadruplex--acridine ligand recognition. J Am Chem Soc 2011; 133:2721-8. [PMID: 21291211 DOI: 10.1021/ja109767y] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human telomeric DNA is now known to be transcribed into noncoding RNA sequences, termed TERRA. These sequences, which are believed to play roles in the regulation of telomere function, can form higher-order quadruplex structures and may themselves be the target of therapeutic intervention. The crystal structure of a TERRA quadruplex-acridine small-molecule complex at a resolution of 2.60 Å, is reported here and contrasts remarkably with the structure of the analogous DNA quadruplex complex. The bimolecular RNA complex has a parallel-stranded topology with propeller-like UUA loops. These loops are held in particular conformations by multiple hydrogen bonds involving the O2' hydroxyl groups of the ribonucleotide sugars and play an active role in binding the acridine molecules to the RNA quadruplex. By contrast, the analogous DNA quadruplex complex has simpler 1:1 acridine binding, with no loop involvement. There are significant loop conformational changes in the RNA quadruplex compared to the native TERRA quadruplex (Collie, G. W.; Haider, S. M.; Neidle, S.; Parkinson, G. N. Nucleic Acids Res. 2010, 38, 5569 - 5580), which have implications for the future design of small molecules targeting TERRA quadruplexes, and RNA quadruplexes more generally.
Collapse
Affiliation(s)
- Gavin W Collie
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, London, United Kingdom
| | | | | | | |
Collapse
|
47
|
Xu Y. Chemistry in human telomere biology: structure, function and targeting of telomere DNA/RNA. Chem Soc Rev 2011; 40:2719-40. [DOI: 10.1039/c0cs00134a] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Luo Q, Wu D, Liu S, Tang D, Huang Y, Liu X, Wang F, Wang R, Wu G. The formation of thymidine-based T-tetramers with remarkable structural and metal ion size effects. Org Biomol Chem 2010; 9:1030-3. [PMID: 21165518 DOI: 10.1039/c0ob00520g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present direct ESI Q-TOF MS and X-ray evidence for remarkable structural and metal ion size effects on the formation of thymidine-based T-tetramers. The conventional H-bond acceptors on the ribose and deoxyribose may disfavor the formation of T-tetramers, and in the series of alkali metal ions, lithium did not induce T-tetramer due to its small ion size. Sodium, potassium, rubidium and caesium could produce thymidine-based T-tetramers. Furthermore, rubidium and caesium could induce T-pentamers and dimeric T-pentamers probably due to their larger ion sizes.
Collapse
Affiliation(s)
- Qun Luo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The 5' guanosine tracts of human telomerase RNA are recognized by the G-quadruplex binding domain of the RNA helicase DHX36 and function to increase RNA accumulation. Mol Cell Biol 2010; 31:736-43. [PMID: 21149580 DOI: 10.1128/mcb.01033-10] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Telomerase promotes telomere maintenance by copying a template within its integral RNA subunit to elongate chromosome ends with new telomeric repeats. Motifs have been defined within the telomerase RNA that contribute to mature RNA accumulation, holoenzyme catalytic activity, or enzyme recruitment to telomeres. Here, we describe a motif of human telomerase RNA (hTR), not previously characterized in a cellular context, comprised of several guanosine tracts near the RNA 5' end. These guanosine tracts together are recognized by the DEXH box RNA helicase DHX36. The helicase domain of DHX36 does not mediate hTR binding; instead, hTR interacts with the N-terminal accessory domain of DHX36 known to bind specifically to the parallel-strand G-quadruplex substrates resolved by the helicase domain. The steady-state level of DHX36-hTR interaction is low, but hTR guanosine tract substitutions substantially reduce mature hTR accumulation and thereby reduce telomere maintenance. These findings suggest that G-quadruplex formation in the hTR precursor improves the escape of immature RNP from degradation, but subsequently the G-quadruplex may be resolved in favor of a longer terminal stem. We conclude that G-quadruplex formation within hTR can stimulate telomerase-mediated telomere maintenance.
Collapse
|