1
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Biswas M, Dey S, Dhara S, Panda S, Lahiri GK. Metal-ligand synergy driven functionalisation of alkylene linked bis(aldimine) on a diruthenium(II) platform. Cyclisation versus oxygenation. Dalton Trans 2024; 53:2167-2180. [PMID: 38192265 DOI: 10.1039/d3dt03730d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This article addresses the impact of metal-ligand redox cooperativity on the functionalisation of coordinated ligands. It demonstrates the structure-reactivity correlation of bis(aldimine) derived bis-bidentate L (Py-CHN-(CH2)n-NCH-Py, with n = 2 (L1), 3 (L2), 4 (L3)) as a function of the conformation (syn/anti) of its alkylene linker as well as the overall structural form (cis/trans) of (acac)2RuII(μ-L)RuII(acac)2 complex moieties (1-5) possessing an electron-rich acetylacetonate (acac) co-ligand. A systematic variation of the bridging alkylene unit of L in RuII/RuII-derived 1-5 led to the following reactivity/redox events, which were validated through structural, spectroscopic, electrochemical and theoretical evaluations: (i) Cyclisation of the ethylene linked (syn conformation) bis-aldimine unit of L1 via C-C coupling yielded pyrazine bridged (acac)2RuII(μ-L1')RuII(acac)2, 1a, while the corresponding anti-form (ethylene linker) of the metal-bound L1 in 2 ((acac)2RuII(μ-L1)RuII(acac)2) led to oxygenation at the ligand backbone (bis-aldimine (L) → bis(carboxamido) (L'')) via O2 activation to generate RuIIIRuIII-derived (acac)2RuIII(μ-L1''2-)RuIII(acac)2 (2a). (ii) Consequently, propylene and butylene linked L2 and L3 bridged between two {Ru(acac)2} units in 3 and 4/5 underwent oxygenation of L to L'' to yield diruthenium(III) complexes 3a and 4a/5a, respectively. (iii) In contrast, analogous L bridged oxidised [(acac)2RuIII(μ-L)RuIII(acac)2](ClO4)2 ([2](ClO4)2-[5](ClO4)2) and [{(PPh3)2(CO)(H)RuII}2(μ-L)](ClO4)2 ([6](ClO4)2-[8](ClO4)2) involving electron poor co-ligands failed to undergo the oxygenation of L irrespective of its n value, reemphasising the effective role of redox interplay between RuII and L particularly in the presence of an electron-rich acac co-ligand in the functionalisation of the latter in 1a-5a.
Collapse
Affiliation(s)
- Mitrali Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
3
|
Swatiputra AA, Mukherjee D, Dinda S, Roy S, Pramanik K, Ganguly S. Electron transfer catalysis mediated by 3d complexes of redox non-innocent ligands possessing an azo function: a perspective. Dalton Trans 2023; 52:15627-15646. [PMID: 37792473 DOI: 10.1039/d3dt02567e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
It was first reported almost two decades ago that ligands with azo functions are capable of accepting electron(s) upon coordination to produce azo-anion radical complexes, thereby exhibiting redox non-innocence. Over the past two decades, there have been numerous reports of such complexes along with their structures and diverse characteristics. The ability of a coordinated azo function to accept one or more electron(s), thereby acting as an electron reservoir, is currently employed to carry out electron transfer catalysis since they can undergo redox transformation at mild potentials due to the presence of energetically accessible energy levels. The cooperative involvement of redox non-innocent ligand(s) containing an azo group and the coordinated metal centre can adjust and modulate the Lewis acidity of the latter through selective ligand-centred redox events, thereby manipulating the capacity of the metal centre to bind to the substrate. We have summarized the list of first row transition metal complexes of iron, cobalt, nickel, copper and zinc with redox non-innocent ligands incorporating an azo function that have been exploited as electron transfer catalysts to effectuate sustainable synthesis of a wide variety of useful chemicals. These include ketazines, pyrimidines, benzothiazole, benzoxazoles, N-acyl hydrazones, quinazoline-4(3)H-ones, C-3 alkylated indoles, N-alkylated anilines and N-alkylated heteroamines. The reaction pathways, as demonstrated by catalytic loops, reveal that the azo function of a coordinated ligand can act as an electron sink in the initial steps to bring about alcohol oxidation and thereafter, they serve as an electron pool to produce the final products either via HAT or PCET processes.
Collapse
Affiliation(s)
- Alok Apan Swatiputra
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Debaarjun Mukherjee
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Soumitra Dinda
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Subhadip Roy
- Department of Chemistry, The ICFAI University Tripura, Tripura 799210, India
| | - Kausikisankar Pramanik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India
| | - Sanjib Ganguly
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| |
Collapse
|
4
|
Underhill J, Yang ES, Schmidt‐Räntsch T, Myers WK, Goicoechea JM, Abbenseth J. Dioxygen Splitting by a Tantalum(V) Complex Ligated by a Rigid, Redox Non-Innocent Pincer Ligand. Chemistry 2023; 29:e202203266. [PMID: 36281622 PMCID: PMC10098518 DOI: 10.1002/chem.202203266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 12/05/2022]
Abstract
The reaction of TaMe3 Cl2 with the rigid acridane-derived trisamine H3 NNN yields the tantalum(V) complex [TaCl2 (NNNcat )]. Subsequent reaction with dioxygen results in the full four-electron reduction of O2 yielding the oxido-bridged bimetallic complex [{TaCl2 (NNNsq )}2 O]. This dinuclear complex features an open-shell ground state due to partial ligand oxidation and was comprehensively characterized by single crystal X-ray diffraction, LIFDI mass spectrometry, NMR, EPR, IR and UV/VIS/NIR spectroscopy. The mechanism of O2 activation was investigated by DFT calculations revealing initial binding of O2 to the tantalum(V) center followed by complete O2 scission to produce a terminal oxido-complex.
Collapse
Affiliation(s)
- Jack Underhill
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield Rd.OxfordOX1 3TAUnited Kingdom
| | - Eric S. Yang
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield Rd.OxfordOX1 3TAUnited Kingdom
| | - Till Schmidt‐Räntsch
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | - William K. Myers
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield Rd.OxfordOX1 3TAUnited Kingdom
| | - Jose M. Goicoechea
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield Rd.OxfordOX1 3TAUnited Kingdom
| | - Josh Abbenseth
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield Rd.OxfordOX1 3TAUnited Kingdom
| |
Collapse
|
5
|
Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Wang L, Wang L. Ligands modification strategies for mononuclear water splitting catalysts. Front Chem 2022; 10:996383. [PMID: 36238101 PMCID: PMC9551221 DOI: 10.3389/fchem.2022.996383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Artificial photosynthesis (AP) has been proved to be a promising way of alleviating global climate change and energy crisis. Among various materials for AP, molecular complexes play an important role due to their favorable efficiency, stability, and activity. As a result of its importance, the topic has been extensively reviewed, however, most of them paid attention to the designs and preparations of complexes and their water splitting mechanisms. In fact, ligands design and preparation also play an important role in metal complexes’ properties and catalysis performance. In this review, we focus on the ligands that are suitable for designing mononuclear catalysts for water splitting, providing a coherent discussion at the strategic level because of the availability of various activity studies for the selected complexes. Two main designing strategies for ligands in molecular catalysts, substituents modification and backbone construction, are discussed in detail in terms of their potentials for water splitting catalysts.
Collapse
|
7
|
Riffel MN, Siegel L, Oliver AG, Tsui EY. Cluster self-assembly and anion binding by metal complexes of non-innocent thiazolidinyl-thiolate ligands. Dalton Trans 2022; 51:9611-9615. [PMID: 35695261 DOI: 10.1039/d2dt01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnII and FeII chloride complexes of a di(methylthiazolidinyl)pyridine ligand were deprotonated to form the corresponding thiolate complexes supported by redox-active iminopyridine moieties. The thiolate donor groups are nucleophilic and reactive toward oxidants, electrophiles, and protons, while the pendant thiazolidine rings are available for hydrogen bonding. Anion exchange with the weakly-coordinating triflate anion resulted in self-assembly of the iminopyridine complexes to form a trimeric [M3S3] cluster. Hydrogen bonding closely associates anions with this trimetallic core.
Collapse
Affiliation(s)
- Madeline N Riffel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| | - Lukas Siegel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA. .,Department of Chemistry, Heidelberg University, Heidelberg, Germany
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| | - Emily Y Tsui
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
8
|
Mondal R, Guin AK, Chakraborty G, Paul ND. Metal-ligand cooperative approaches in homogeneous catalysis using transition metal complex catalysts of redox noninnocent ligands. Org Biomol Chem 2022; 20:296-328. [PMID: 34904619 DOI: 10.1039/d1ob01153g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalysis offers a straightforward route to prepare various value-added molecules starting from readily available raw materials. The catalytic reactions mostly involve multi-electron transformations. Hence, compared to the inexpensive and readily available 3d-metals, the 4d and 5d-transition metals get an extra advantage for performing multi-electron catalytic reactions as the heavier transition metals prefer two-electron redox events. However, for sustainable development, these expensive and scarce heavy metal-based catalysts need to be replaced by inexpensive, environmentally benign, and economically affordable 3d-metal catalysts. In this regard, a metal-ligand cooperative approach involving transition metal complexes of redox noninnocent ligands offers an attractive alternative. The synergistic participation of redox-active ligands during electron transfer events allows multi-electron transformations using 3d-metal catalysts and allows interesting chemical transformations using 4d and 5d-metals as well. Herein we summarize an up-to-date literature report on the metal-ligand cooperative approaches using transition metal complexes of redox noninnocent ligands as catalysts for a few selected types of catalytic reactions.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| |
Collapse
|
9
|
Role of a Redox-Active Ligand Close to a Dinuclear Activating Framework. TOP ORGANOMETAL CHEM 2022. [DOI: 10.1007/3418_2022_77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Thenarukandiyil R, Paenurk E, Wong A, Fridman N, Karton A, Carmieli R, Ménard G, Gershoni-Poranne R, de Ruiter G. Extensive Redox Non-Innocence in Iron Bipyridine-Diimine Complexes: a Combined Spectroscopic and Computational Study. Inorg Chem 2021; 60:18296-18306. [PMID: 34787414 PMCID: PMC8653161 DOI: 10.1021/acs.inorgchem.1c02925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Indexed: 11/28/2022]
Abstract
Metal-ligand cooperation is an important aspect in earth-abundant metal catalysis. Utilizing ligands as electron reservoirs to supplement the redox chemistry of the metal has resulted in many new exciting discoveries. Here, we demonstrate that iron bipyridine-diimine (BDI) complexes exhibit an extensive electron-transfer series that spans a total of five oxidation states, ranging from the trication [Fe(BDI)]3+ to the monoanion [Fe(BDI]-1. Structural characterization by X-ray crystallography revealed the multifaceted redox noninnocence of the BDI ligand, while spectroscopic (e.g., 57Fe Mössbauer and EPR spectroscopy) and computational studies were employed to elucidate the electronic structure of the isolated complexes, which are further discussed in this report.
Collapse
Affiliation(s)
- Ranjeesh Thenarukandiyil
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Eno Paenurk
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Anthony Wong
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Natalia Fridman
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Amir Karton
- School
of Molecular Science, The University of
Western Australia, 35 Stirling Highway, 6009 Perth, Australia
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 761000, Israel
| | - Gabriel Ménard
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Renana Gershoni-Poranne
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Graham de Ruiter
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
11
|
Ren C, Liu J. Bioinspired Catalytic Reduction of Aqueous Perchlorate by One Single-Metal Site with High Stability against Oxidative Deactivation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
12
|
Mukherjee R. Assigning Ligand Redox Levels in Complexes of 2-Aminophenolates: Structural Signatures. Inorg Chem 2020; 59:12961-12977. [PMID: 32881491 DOI: 10.1021/acs.inorgchem.0c00240] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The purpose of this Viewpoint is to provide a broad-ranging update of advances in the coordination chemistry of redox-active (noninnocent) 2-aminophenolates, with emphasis on two ligand backbone structural parameters, the average of C-O and C-N (C-O/N) bond distances and Δa values, signifying the degree of bond-length alternation in the six-membered ring, in order to identify the redox level of the coordinated ligands. In the absence of magnetic, spectroscopic, and redox results, it has been established that it is possible to assign the electronic ground state of a coordination complex of 2-aminophenolates with consideration of charge, metal-ligand bond distances, and two very promising ligand backbone structural parameters. From a closer look at the sensitive ligand backbone metrical parameters of a diversified group of about 120 transition-metal complexes, a few very useful generalizations have been made.
Collapse
|
13
|
Li W, Liu XM. Mobilization and partitioning of rare earth elements in the presence of humic acids and siderophores. CHEMOSPHERE 2020; 254:126801. [PMID: 32334256 DOI: 10.1016/j.chemosphere.2020.126801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Developing rare earth elements (plus yttrium, REY) as a group of environmental tracer requires comprehensive understandings in their geochemical behaviors associated with natural organic matter. Recent work highlighted the promotions on REY mobilization and cerium oxidation by siderophores during silicate dissolution, but the mechanism remained ambiguous. Here, we performed batch fluid-rock interaction experiments to explore the functions of siderophore desferrioxamine B (DFOB) and humic acids (HA) towards REY mobility and partitioning during REY-bearing ferrihydrite dissolution. To acquire in-depth knowledge of organic controls on REY, we used multiple strategies, including elemental, multispectral, and electrochemical analyses, to investigate the organic regulation on REY geochemistry. This study sheds light on the function of ligand-specific selectivity and solid-fluid organic molecular fractionation, primarily dependent on hydrochemical settings (pH, organic compounds, ionic strength, and oxicity). Our results confirm the catalytic oxidation ability of ligand, which forms DFOB-Ce(IV) (K = 1042, electrochemistry), producing positive Ce anomalies in solutions by ligand-driven redox shifting. Both HA and DFOB showed high affinities to HREY, and facilitated LREY/HREY partitioning. The mobilization of REY and the development of Ce anomalies were limited by HA coatings that modified surface properties and disturbed the approach of DFOB. Excess siderophores attack inert HA coatings, facilitating REY liberation and Ce redox activities. The release of REY and catalytic oxidation of Ce can be inhibited at high ionic strength or under oxygen deficiency. Our study reveals that natural organic matter significantly influences the fate of REY in iron oxides, and crucial for the biogeochemical cycles of REY in nature.
Collapse
Affiliation(s)
- Wenshuai Li
- Department of Geological Sciences, University of North Carolina-Chapel Hill, NC, USA.
| | - Xiao-Ming Liu
- Department of Geological Sciences, University of North Carolina-Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Fujita D, Kaga A, Sugimoto H, Morimoto Y, Itoh S. Controlling Coordination Number of Rhodium(III) Complex by Ligand-Based Redox for Catalytic C–H Amination. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Daiki Fujita
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kaga
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuma Morimoto
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinobu Itoh
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Metal-Ligand Cooperativity of Phosphorus-Containing Pincer Systems. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Sinitsa DK, Sukhikh TS, Petrov PA, Nadolinny VA, Konchenko SN, Pushkarevsky NA. Structural Diversity of Calcium, Strontium, and Barium Complexes with Reduced Forms of the 3,6‐Di‐
tert
‐butyl‐o‐benzoquinone Ligand. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dmitry K. Sinitsa
- Nikolaev Institut of Inorganic Chemistry SB RAS Akademika Lavrentieva ave. 3 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University Pirogova st. 1 630090 Novosibirsk Russia
| | - Taisiya S. Sukhikh
- Nikolaev Institut of Inorganic Chemistry SB RAS Akademika Lavrentieva ave. 3 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University Pirogova st. 1 630090 Novosibirsk Russia
| | - Pavel A. Petrov
- Nikolaev Institut of Inorganic Chemistry SB RAS Akademika Lavrentieva ave. 3 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University Pirogova st. 1 630090 Novosibirsk Russia
| | - Vladimir A. Nadolinny
- Nikolaev Institut of Inorganic Chemistry SB RAS Akademika Lavrentieva ave. 3 630090 Novosibirsk Russia
| | - Sergey N. Konchenko
- Nikolaev Institut of Inorganic Chemistry SB RAS Akademika Lavrentieva ave. 3 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University Pirogova st. 1 630090 Novosibirsk Russia
| | - Nikolay A. Pushkarevsky
- Nikolaev Institut of Inorganic Chemistry SB RAS Akademika Lavrentieva ave. 3 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University Pirogova st. 1 630090 Novosibirsk Russia
| |
Collapse
|
17
|
Kim J, Kim YE, Park K, Lee Y. A Silyl-Nickel Moiety as a Metal–Ligand Cooperative Site. Inorg Chem 2019; 58:11534-11545. [DOI: 10.1021/acs.inorgchem.9b01388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeong-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Koeun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
Khan FF, Sobottka S, Sarkar B, Lahiri GK. Redox‐Induced Oxidative C−C Bond Cleavage of 2,2′‐Pyridil in Diruthenium Complexes. Chemistry 2019; 25:9737-9746. [DOI: 10.1002/chem.201901758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Farheen Fatima Khan
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Anorganische ChemieFreie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische ChemieFreie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Goutam Kumar Lahiri
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| |
Collapse
|
19
|
Skatova AA, Bazyakina NL, Fedushkin IL, Piskunov AV, Druzhkov NO, Cherkasov AV. Mononuclear gallium complexes with the redox-active dmp-bian ligand (dmp-bian is 1,2-bis[(2,6-dimethylphenyl)imino]acenaphthene): synthesis and reactions with alkynes. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2383-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Gonzalez‐de‐Castro A, Robertson CM, Xiao J. Boosting Molecular Complexity with O2: Iron‐Catalysed Oxygenation of 1‐Arylisochromans through Dehydrogenation, Csp3−O Bond Cleavage and Hydrogenolysis. Chemistry 2019; 25:4345-4357. [DOI: 10.1002/chem.201806117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Angela Gonzalez‐de‐Castro
- Department of ChemistryUniversity of Liverpool Liverpool L69 7ZD UK
- Innosyn B.V. P.O. Box 18 6160 MD Geleen The Netherlands
| | | | - Jianliang Xiao
- Department of ChemistryUniversity of Liverpool Liverpool L69 7ZD UK
| |
Collapse
|
21
|
van der Vlugt JI. Radical-Type Reactivity and Catalysis by Single-Electron Transfer to or from Redox-Active Ligands. Chemistry 2019; 25:2651-2662. [PMID: 30084211 PMCID: PMC6471147 DOI: 10.1002/chem.201802606] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Controlled ligand-based redox-activity and chemical non-innocence are rapidly gaining importance for selective (catalytic) processes. This Concept aims to provide an overview of the progress regarding ligand-to-substrate single-electron transfer as a relatively new mode of operation to exploit ligand-centered reactivity and catalysis based thereon.
Collapse
Affiliation(s)
- Jarl Ivar van der Vlugt
- Bio-Inspired Homogeneous and Supramolecular Catalysis Groupvan ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamNetherlands
| |
Collapse
|
22
|
Sobottka S, van der Meer MB, Glais E, Albold U, Suhr S, Su CY, Sarkar B. A coordinatively unsaturated iridium complex with an unsymmetrical redox-active ligand: (spectro)electrochemical and reactivity studies. Dalton Trans 2019; 48:13931-13942. [DOI: 10.1039/c9dt01597c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal–ligand cooperativity can be used in iridium complexes with an unsymmetrically substituted redox-active diamidobenzene ligand for bond activation reactions.
Collapse
Affiliation(s)
- Sebastian Sobottka
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| | | | - Estelle Glais
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Uta Albold
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Simon Suhr
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Cheng-Yong Su
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou,510275
- China
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| |
Collapse
|
23
|
Cheung WM, Au-Yeung KC, Wong KH, So YM, Sung HHY, Williams ID, Leung WH. Reactions of cerium complexes with transition metal nitrides: synthesis and structure of heterometallic cerium complexes containing bridging catecholate ligands. Dalton Trans 2019; 48:13458-13465. [DOI: 10.1039/c9dt02959a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterometallic cerium complexes containing bridging catecholate ligands have been synthesized from cerium complexes with Kläui's tripodal ligand and metal catecholates.
Collapse
Affiliation(s)
- Wai-Man Cheung
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- P. R. China
| | - Ka-Chun Au-Yeung
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- P. R. China
| | - Kai-Hong Wong
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- P. R. China
| | - Yat-Ming So
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- P. R. China
| | - Herman H. Y. Sung
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- P. R. China
| | - Ian D. Williams
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- P. R. China
| | - Wa-Hung Leung
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- P. R. China
| |
Collapse
|
24
|
Sharkey BE, Denning AL, Jentoft FC, Gangadhara R, Gopaladasu TV, Nicholas KM. New solid oxo-rhenium and oxo-molybdenum catalysts for the deoxydehydration of glycols to olefins. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.05.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Lecarme L, Chiang L, Moutet J, Leconte N, Philouze C, Jarjayes O, Storr T, Thomas F. The structure of a one-electron oxidized Mn(iii)-bis(phenolate)dipyrrin radical complex and oxidation catalysis control via ligand-centered redox activity. Dalton Trans 2018; 45:16325-16334. [PMID: 27711805 DOI: 10.1039/c6dt02163h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The tetradentate ligand dppH3, which features a half-porphyrin and two electron-rich phenol moieties, was prepared and chelated to manganese. The mononuclear Mn(iii)-dipyrrophenolate complex 1 was structurally characterized. The metal ion lies in a square pyramidal environment, the apical position being occupied by a methanol molecule. Complex 1 displays two reversible oxidation waves at 0.00 V and 0.47 V vs. Fc+/Fc, which are assigned to ligand-centered processes. The one-electron oxidized species 1+ SbF6- was crystallized, showing an octahedral Mn(iii) center with two water molecules coordinated at both apical positions. The bond distance analysis and DFT calculations disclose that the radical is delocalized over the whole aromatic framework. Complex 1+ SbF6- exhibits an Stot = 3/2 spin state due to the antiferromagnetic coupling between Mn(iii) and the ligand radical. The zero field splitting parameters are D = 1.6 cm-1, E/D = 0.18(1), g⊥ = 1.99 and g∥ = 1.98. The dication 12+ is an integer spin system, which is assigned to a doubly oxidized ligand coordinated to a Mn(iii) metal center. Both 1 and 1+ SbF6- catalyze styrene oxidation in the presence of PhIO, but the nature of the main reaction product is different. Styrene oxide is the main reaction product when using 1, but phenylacetaldehyde is formed predominantly when using 1+ SbF6-. We examined the ability of complex 1+ SbF6- to catalyze the isomerization of styrene oxide and found that it is an efficient catalyst for the anti-Markovnikov opening of styrene oxide. The formation of phenylacetaldehyde from styrene therefore proceeds in a tandem E-I (epoxidation-isomerization) mechanism in the case of 1+ SbF6-. This is the first evidence of control of the reactivity for styrene oxidation by changing the oxidation state of a catalyst based on a redox-active ligand.
Collapse
Affiliation(s)
- Laureline Lecarme
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Linus Chiang
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby, British Columbia V5A-1S4, Canada
| | - Jules Moutet
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Nicolas Leconte
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Christian Philouze
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Olivier Jarjayes
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Tim Storr
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby, British Columbia V5A-1S4, Canada
| | - Fabrice Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| |
Collapse
|
26
|
Harris CF, Bayless MB, van Leest NP, Bruch QJ, Livesay BN, Bacsa J, Hardcastle KI, Shores MP, de Bruin B, Soper JD. Redox-Active Bis(phenolate) N-Heterocyclic Carbene [OCO] Pincer Ligands Support Cobalt Electron Transfer Series Spanning Four Oxidation States. Inorg Chem 2017; 56:12421-12435. [DOI: 10.1021/acs.inorgchem.7b01906] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Caleb F. Harris
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Michael B. Bayless
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Nicolaas P. van Leest
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Quinton J. Bruch
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Brooke N. Livesay
- Department of Chemistry, Colorado State University, Fort
Collins, Colorado 80523-1872, United States
| | - John Bacsa
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- X-ray Crystallography Center, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Kenneth I. Hardcastle
- X-ray Crystallography Center, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort
Collins, Colorado 80523-1872, United States
| | - Bas de Bruin
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jake D. Soper
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
27
|
Sanz CA, McKay ZR, MacLean SWC, Patrick BO, Hicks RG. Synthesis and redox reactions of bis(verdazyl)palladium complexes. Dalton Trans 2017; 46:12636-12644. [PMID: 28913533 DOI: 10.1039/c7dt02646c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis and ligand-centered redox chemistry of palladium complexes bearing two potentially bidentate verdazyl ligands is explored. Reaction of 1,5-diisopropyl-3-pyridin-2-yl-6-oxoverdazyl radical 1 with Pd(NCMe)4·2BF4 gives a complex containing two coordinated verdazyl radicals. The structure of this complex consists of one verdazyl bound to Pd in a bidentate mode and the second verdazyl bound in a monodentate fashion through the pyridine substituent; the fourth coordination site is occupied by a solvent molecule (acetonitrile (3) or dimethyl sulfoxide (4)). Two-electron reduction of this complex with decamethylferrocene affords a bis(verdazyl) palladium complex (5) in which both verdazyls have been reduced to their anionic state and are both bound to Pd in bidentate manner. Complex 5 can be independently synthesized by a redox reaction between 1 and Pd2(dba)3. Reduced complex 5 can be re-oxidized to 3 or 4 with AgBF4; in contrast, oxidation with PhICl2 leads to ligand dissociation, ultimately giving radical 1 and a mono(verdazyl)dichloropalladium complex 2. One-electron oxidation using PhICl2 produces a formally "mixed valent" (in ligand) bis(verdazyl)chloropalladium complex (6) with one bidentate verdazyl anion ligand and one monodentate (pyridine-bound) verdazyl radical. Attempted protonation of the verdazyl ligands in complex 5 leads to complete ligand dissociation and protonation of both the tetrazine and pyridine moieties; deprotonation regenerates 5. Subsequent air oxidation of the tetrazane/pyridinium cation (formed as a tetrachloropalladate salt) leads to re-coordination of the verdazyl ligands to give 6 initially, but ultimately produces a combination of free radical 1 and 2.
Collapse
Affiliation(s)
- Corey A Sanz
- Department of Chemistry, University of Victoria, PO Box 3065 STN CSC, Victoria, B.C. V8W3V6, Canada.
| | | | | | | | | |
Collapse
|
28
|
Heins SP, Wolczanski PT, Cundari TR, MacMillan SN. Redox non-innocence permits catalytic nitrene carbonylation by (dadi)Ti[double bond, length as m-dash]NAd (Ad = adamantyl). Chem Sci 2017; 8:3410-3418. [PMID: 28507712 PMCID: PMC5417046 DOI: 10.1039/c6sc05610e] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/03/2017] [Indexed: 12/21/2022] Open
Abstract
Application of the diamide, diimine {-CH[double bond, length as m-dash]N(1,2-C6H4)N(2,6-iPr2-C6H3)}2 m ((dadi) m ) ligand to titanium provided adducts (dadi)TiL x (1-L x ; L x = THF, PMe2Ph, (CNMe)2), which possess the redox formulation [(dadi)4-]Ti(iv)L x , and 22 πe- (4n + 2). Related complexes containing titanium-ligand multiple bonds, (dadi)Ti[double bond, length as m-dash]X (2 [double bond, length as m-dash]X; X = O, NAd), exhibit a different dadi redox state, [(dadi)2-]Ti(iv)X, consistent with 20 πe- (4n). The Redox Non-Innocence (RNI) displayed by dadi m impedes binding by CO, and permits catalytic conversion of AdN3 + CO to AdNCO + N2. Kinetics measurements support carbonylation of 2 [double bond, length as m-dash]NAd as the rate determining step. Structural and computational evidence for the observed RNI is provided.
Collapse
Affiliation(s)
- Spencer P Heins
- Cornell University , Dept. Chemistry & Chemical Biology , Baker Laboratory , Ithaca , NY 14853 , USA .
| | - Peter T Wolczanski
- Cornell University , Dept. Chemistry & Chemical Biology , Baker Laboratory , Ithaca , NY 14853 , USA .
| | - Thomas R Cundari
- University of North Texas , Dept. of Chemistry , CASCaM , Denton , TX 76201 , USA .
| | - Samantha N MacMillan
- Cornell University , Dept. Chemistry & Chemical Biology , Baker Laboratory , Ithaca , NY 14853 , USA .
| |
Collapse
|
29
|
Hoffman JM, Oliver AG, Brown SN. The Metal or the Ligand? The Preferred Locus for Redox Changes in Oxygen Atom Transfer Reactions of Rhenium Amidodiphenoxides. J Am Chem Soc 2017; 139:4521-4531. [DOI: 10.1021/jacs.7b00985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Justin M. Hoffman
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Seth N. Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
30
|
Pichaandi KR, Kabalan L, Amini H, Zhang G, Zhu H, Kenttämaa HI, Fanwick PE, Miller JT, Kais S, Nabavizadeh SM, Rashdi M, Abu-Omar MM. Mechanism of Me-Re Bond Addition to Platinum(II) and Dioxygen Activation by the Resulting Pt-Re Bimetallic Center. Inorg Chem 2017; 56:2145-2152. [PMID: 28165752 DOI: 10.1021/acs.inorgchem.6b02801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unusual cis-oxidative addition of methyltrioxorhenium (MTO) to [PtMe2(bpy)], (bpy = 2,2'-bipyridine) (1) is described. Addition of MTO to 1 first gives the Lewis acid-base adduct [(bpy)Me2Pt-Re(Me)(O)3] (2) and subsequently affords the oxidative addition product [(bpy)Me3PtReO3] (3). All complexes 1, MTO, 2, and 3 are in equilibrium in solution. The structure of 2 was confirmed by X-ray crystallography, and its dissociation constant in solution is 0.87 M. The structure of 3 was confirmed by extended X-ray absorption fine structure and X-ray absorption near-edge structure in tandem with one- and two-dimensional NMR spectroscopy augmented by deuterium and 13C isotope-labeling studies. Kinetics of formation of compound 3 revealed saturation kinetics dependence on [MTO] and first-order in [Pt], complying with prior equilibrium formation of 2 with oxidative addition of Me-Re being the rate-determining step. Exposure of 3 to molecular oxygen or air resulted in the insertion of an oxygen atom into the platinum-rhenium bond forming [(bpy)Me3PtOReO3] (4) as final product. Density functional theory analysis on oxygen insertion pathways leading to complex 4, merited on the basis of Russell oxidation pathway, revealed the involvement of rhenium peroxo species.
Collapse
Affiliation(s)
- Kothanda Rama Pichaandi
- Brown Laboratory, Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Lara Kabalan
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation , Doha, Qatar
| | - Hashem Amini
- Department of Chemistry, College of Sciences, Shiraz University , Shiraz, 71467-13565 Iran
| | - Guanghui Zhang
- School of Chemical Engineering, Purdue University , Forney Hall of Chemical Engineering, 480 Stadium Drive, West Lafayette, Indiana 47907, United States
| | - Hanyu Zhu
- Brown Laboratory, Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Hilkka I Kenttämaa
- Brown Laboratory, Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Phillip E Fanwick
- Brown Laboratory, Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey T Miller
- School of Chemical Engineering, Purdue University , Forney Hall of Chemical Engineering, 480 Stadium Drive, West Lafayette, Indiana 47907, United States
| | - Sabre Kais
- Brown Laboratory, Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States.,Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation , Doha, Qatar
| | - S Masoud Nabavizadeh
- Department of Chemistry, College of Sciences, Shiraz University , Shiraz, 71467-13565 Iran
| | - Mehdi Rashdi
- Department of Chemistry, College of Sciences, Shiraz University , Shiraz, 71467-13565 Iran
| | - Mahdi M Abu-Omar
- Brown Laboratory, Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States.,School of Chemical Engineering, Purdue University , Forney Hall of Chemical Engineering, 480 Stadium Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Broere DLJ, van Leest NP, de Bruin B, Siegler MA, van der Vlugt JI. Reversible Redox Chemistry and Catalytic C(sp3)–H Amination Reactivity of a Paramagnetic Pd Complex Bearing a Redox-Active o-Aminophenol-Derived NNO Pincer Ligand. Inorg Chem 2016; 55:8603-11. [DOI: 10.1021/acs.inorgchem.6b01192] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniël L. J. Broere
- Homogeneous, Supramolecular & Bio-inspired Catalysis, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nicolaas P. van Leest
- Homogeneous, Supramolecular & Bio-inspired Catalysis, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular & Bio-inspired Catalysis, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maxime A. Siegler
- Department of Chemistry, John Hopkins University, Baltimore, Maryland 21218, United States
| | - Jarl Ivar van der Vlugt
- Homogeneous, Supramolecular & Bio-inspired Catalysis, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
32
|
Jacquet J, Chaumont P, Gontard G, Orio M, Vezin H, Blanchard S, Desage-El Murr M, Fensterbank L. C−N Bond Formation from a Masked High-Valent Copper Complex Stabilized by Redox Non-Innocent Ligands. Angew Chem Int Ed Engl 2016; 55:10712-6. [DOI: 10.1002/anie.201605132] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Jérémy Jacquet
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| | - Pauline Chaumont
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| | - Geoffrey Gontard
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| | - Maylis Orio
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2 UMR 7313; 13397 Marseille cedex 20 France
| | - Hervé Vezin
- Laboratoire de Spectrochimie Infrarouge et Raman; Université des Sciences et Technologies de Lille, UMR CNRS 8516; 59655 Villeneuve O'Ascq Cedex France
| | - Sébastien Blanchard
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| | - Marine Desage-El Murr
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| | - Louis Fensterbank
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| |
Collapse
|
33
|
Jacquet J, Chaumont P, Gontard G, Orio M, Vezin H, Blanchard S, Desage-El Murr M, Fensterbank L. C−N Bond Formation from a Masked High-Valent Copper Complex Stabilized by Redox Non-Innocent Ligands. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jérémy Jacquet
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| | - Pauline Chaumont
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| | - Geoffrey Gontard
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| | - Maylis Orio
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2 UMR 7313; 13397 Marseille cedex 20 France
| | - Hervé Vezin
- Laboratoire de Spectrochimie Infrarouge et Raman; Université des Sciences et Technologies de Lille, UMR CNRS 8516; 59655 Villeneuve O'Ascq Cedex France
| | - Sébastien Blanchard
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| | - Marine Desage-El Murr
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| | - Louis Fensterbank
- Sorbonne Universités, UPMC; Université Paris 06, UMR CNRS 8232; Institut Parisien de Chimie Moléculaire; France
| |
Collapse
|
34
|
King AE, Stieber SCE, Henson NJ, Kozimor SA, Scott BL, Smythe NC, Sutton AD, Gordon JC. Ni(bpy)(cod): A Convenient Entryway into the Efficient Hydroboration of Ketones, Aldehydes, and Imines. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600143] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Liu J, Wu D, Su X, Han M, Kimura SY, Gray DL, Shapley JR, Abu-Omar MM, Werth CJ, Strathmann TJ. Configuration Control in the Synthesis of Homo- and Heteroleptic Bis(oxazolinylphenolato/thiazolinylphenolato) Chelate Ligand Complexes of Oxorhenium(V): Isomer Effect on Ancillary Ligand Exchange Dynamics and Implications for Perchlorate Reduction Catalysis. Inorg Chem 2016; 55:2597-611. [DOI: 10.1021/acs.inorgchem.5b02940] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinyong Liu
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dimao Wu
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoge Su
- Pure Storage Inc., Mountain View, California 94041, United States
| | | | | | | | | | - Mahdi M. Abu-Omar
- Department of Chemistry and School of Chemical
Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Charles J. Werth
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Timothy J. Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
36
|
Broere DLJ, Modder DK, Blokker E, Siegler MA, van der Vlugt JI. Metal-Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox-Active Ligands. Angew Chem Int Ed Engl 2016; 55:2406-10. [DOI: 10.1002/anie.201509412] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/05/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Daniël L. J. Broere
- van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Dieuwertje K. Modder
- van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Eva Blokker
- van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Maxime A. Siegler
- Department of Chemistry; John Hopkins University; 3400 N, Charles St. Baltimore MD 21218 USA
| | - Jarl Ivar van der Vlugt
- van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
37
|
Broere DLJ, Modder DK, Blokker E, Siegler MA, van der Vlugt JI. Metal-Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox-Active Ligands. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Daniël L. J. Broere
- van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Dieuwertje K. Modder
- van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Eva Blokker
- van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Maxime A. Siegler
- Department of Chemistry; John Hopkins University; 3400 N, Charles St. Baltimore MD 21218 USA
| | - Jarl Ivar van der Vlugt
- van 't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
38
|
Broere DLJ, Plessius R, van der Vlugt JI. New avenues for ligand-mediated processes--expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands. Chem Soc Rev 2015; 44:6886-915. [PMID: 26148803 DOI: 10.1039/c5cs00161g] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Redox-active ligands have evolved from being considered spectroscopic curiosities - creating ambiguity about formal oxidation states in metal complexes - to versatile and useful tools to expand on the reactivity of (transition) metals or to even go beyond what is generally perceived possible. This review focusses on metal complexes containing either catechol, o-aminophenol or o-phenylenediamine type ligands. These ligands have opened up a new area of chemistry for metals across the periodic table. The portfolio of ligand-based reactivity invoked by these redox-active entities will be discussed. This ranges from facilitating oxidative additions upon d(0) metals or cross coupling reactions with cobalt(iii) without metal oxidation state changes - by functioning as an electron reservoir - to intramolecular ligand-to-substrate single-electron transfer to create a reactive substrate-centered radical on a Pd(ii) platform. Although the current state-of-art research primarily consists of stoichiometric and exploratory reactions, several notable reports of catalysis facilitated by the redox-activity of the ligand will also be discussed. In conclusion, redox-active ligands containing catechol, o-aminophenol or o-phenylenediamine moieties show great potential to be exploited as reversible electron reservoirs, donating or accepting electrons to activate substrates and metal centers and to enable new reactivity with both early and late transition as well as main group metals.
Collapse
Affiliation(s)
- Daniël L J Broere
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Homogeneous, Bio-Inspired and Supramolecular Catalysis Group, Science Park 904, Amsterdam, the Netherlands
| | | | | |
Collapse
|
39
|
Heins SP, Morris WD, Wolczanski PT, Lobkovsky EB, Cundari TR. Nitrene Insertion into CC and CH Bonds of Diamide Diimine Ligands Ligated to Chromium and Iron. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Heins SP, Morris WD, Wolczanski PT, Lobkovsky EB, Cundari TR. Nitrene Insertion into CC and CH Bonds of Diamide Diimine Ligands Ligated to Chromium and Iron. Angew Chem Int Ed Engl 2015; 54:14407-11. [DOI: 10.1002/anie.201507463] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Spencer P. Heins
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14850 (USA)
| | - Wesley D. Morris
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14850 (USA)
| | - Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14850 (USA)
| | - Emil B. Lobkovsky
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14850 (USA)
| | - Thomas R. Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Box 305070, Denton, TX 76203‐5070 (USA)
| |
Collapse
|
41
|
Kurahashi T. Reverse Catalase Reaction: Dioxygen Activation via Two-Electron Transfer from Hydroxide to Dioxygen Mediated By a Manganese(III) Salen Complex. Inorg Chem 2015; 54:8356-66. [PMID: 26347290 DOI: 10.1021/acs.inorgchem.5b01025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although atmospheric dioxygen is regarded as the most ideal oxidant, O2 activation for use in oxygenation reactions intrinsically requires a costly sacrificial reductant. The present study investigated the use of aqueous alkaline solution for O2 activation. A manganese(III) salen complex, Mn(III)(salen)(Cl), in toluene reacts with aqueous KOH solution under aerobic conditions, which yields a di-μ-oxo dimanganese(IV) salen complex, [Mn(IV)(salen)]2(μ-O)2. The (18)O isotope experiments show that (18)O2 is indeed activated to give [Mn(IV)(salen)]2(μ-(18)O)2 via a peroxide intermediate. Interestingly, the (18)OH(-) ion in H2(18)O was also incorporated to yield [Mn(IV)(salen)]2(μ-(18)O)2, which implies that a peroxide species is also generated from (18)OH(-). The addition of benzyl alcohol as a stoichiometric reductant selectively inhibits the (18)O incorporation from (18)OH(-), indicating that the reaction of Mn(III)(salen)(Cl) with OH(-) supplies the electrons for O2 reduction. The conversion of both O2 and OH(-) to a peroxide species is exactly the reverse of a catalase-like reaction, which has a great potential as the most efficient O2 activation. Mechanistic investigations revealed that the reaction of Mn(III)(salen)(Cl) with OH(-) generates a transient species with strong reducing ability, which effects the reduction of O2 by means of a manganese(II) intermediate.
Collapse
Affiliation(s)
- Takuya Kurahashi
- Institute for Molecular Science, National Institutes of Natural Sciences , Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
42
|
Dinda S, Genest A, Rösch N. O2 Activation and Catalytic Alcohol Oxidation by Re Complexes with Redox-Active Ligands: A DFT Study of Mechanism. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shrabani Dinda
- Institute of High Performance Computing, Agency for Science, Technology
and Research, 1 Fusionopolis Way, #16-16
Connexis, Singapore 138632, Singapore
| | - Alexander Genest
- Institute of High Performance Computing, Agency for Science, Technology
and Research, 1 Fusionopolis Way, #16-16
Connexis, Singapore 138632, Singapore
| | - Notker Rösch
- Institute of High Performance Computing, Agency for Science, Technology
and Research, 1 Fusionopolis Way, #16-16
Connexis, Singapore 138632, Singapore
- Department Chemie and Catalysis Research
Center, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
43
|
Seraya E, Luan Z, Law M, Heyduk AF. Synthesis of Catecholate Ligands with Phosphonate Anchoring Groups. Inorg Chem 2015. [DOI: 10.1021/acs.inorgchem.5b01191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elaine Seraya
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Zhongyue Luan
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697, United States
| | - Matt Law
- Department
of Chemistry, University of California, Irvine, California 92697, United States
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697, United States
| | - Alan F. Heyduk
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
44
|
Halbach RL, Teets TS, Nocera DG. Oxygen Reduction Mechanism of Monometallic Rhodium Hydride Complexes. Inorg Chem 2015; 54:7335-44. [DOI: 10.1021/acs.inorgchem.5b00856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert L. Halbach
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138-2902, United States
| | - Thomas S. Teets
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
- Department of Chemistry, University of Houston, 112 Fleming Building Houston, Texas 77204-5003, United States
| | - Daniel G. Nocera
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138-2902, United States
| |
Collapse
|
45
|
Lindley BM, Wolczanski PT, Cundari TR, Lobkovsky EB. First-Row Transition Metal and Lithium Pyridine-ene-amide Complexes Exhibiting N- and C-Isomers and Ligand-Based Activation of Benzylic C–H Bonds. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian M. Lindley
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Thomas R. Cundari
- Department of Chemistry, Center for Advanced
Scientific Computing and Modeling (CASCaM), University of North Texas, Box 305070, Denton, Texas 76203-5070, United States
| | - Emil B. Lobkovsky
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
46
|
Chatterjee I, Saha Chowdhury N, Ghosh P, Goswami S. Octacoordinated Dioxo-Molybdenum Complex via Formal Oxidative Addition of Molecular Oxygen. Studies of Chemical Reactions Between M(CO)6 (M = Cr, Mo) and 2,4-Di-tert-butyl-6-(pyridin-2-ylazo)-phenol. Inorg Chem 2015; 54:5257-65. [DOI: 10.1021/acs.inorgchem.5b00218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ipsita Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Nabanita Saha Chowdhury
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Pradip Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Sreebrata Goswami
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
47
|
Tanahashi H, Tsurugi H, Mashima K. Synthesis of Alkyl and Alkylidene Complexes of Tungsten Bearing Imido and Redox-Active α-Diimine or o-Iminoquinone Ligands and Their Application as Catalysts for Ring-Opening Metathesis Polymerization of Norbornene. Organometallics 2015. [DOI: 10.1021/om501010n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hiromasa Tanahashi
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University and CREST, JST, Toyonaka, Osaka 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University and CREST, JST, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University and CREST, JST, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
48
|
How a Redox-Innocent Metal Promotes the Formal Reductive Elimination of Biphenyl Using Redox-Active Ligands. Chemistry 2015; 21:4308-14. [DOI: 10.1002/chem.201406019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/07/2022]
|
49
|
Henthorn JT, Lin S, Agapie T. Combination of redox-active ligand and lewis acid for dioxygen reduction with π-bound molybdenum-quinonoid complexes. J Am Chem Soc 2015; 137:1458-64. [PMID: 25577950 DOI: 10.1021/ja5100405] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of π-bound Mo-quinonoid complexes supported by pendant phosphines have been synthesized. Structural characterization revealed strong metal-arene interactions between Mo and the π system of the quinonoid fragment. The Mo-catechol complex (2a) was found to react within minutes with 0.5 equiv of O(2) to yield a Mo-quinone complex (3), H(2)O, and CO. Si- and B-protected Mo-catecholate complexes also react with O(2) to yield 3 along with (R(2)SiO)n and (ArBO)(3) byproducts, respectively. Formally, the Mo-catecholate fragment provides two electrons, while the elements bound to the catecholate moiety act as acceptors for the O(2) oxygens. Unreactive by itself, the Mo-dimethyl catecholate analogue reduces O(2) in the presence of added Lewis acid, B(C(6)F(5))(3), to generate a Mo(I) species and a bis(borane)-supported peroxide dianion, [[(F(5)C(6))(3)B](2)O(2)(2-)], demonstrating single-electron-transfer chemistry from Mo to the O(2) moiety. The intramolecular combination of a molybdenum center, redox-active ligand, and Lewis acid reduces O(2) with pendant acids weaker than B(C(6)F(5))(3). Overall, the π-bound catecholate moiety acts as a two-electron donor. A mechanism is proposed in which O(2) is reduced through an initial one-electron transfer, coupled with transfer of the Lewis acidic moiety bound to the quinonoid oxygen atoms to the reduced O(2) species.
Collapse
Affiliation(s)
- Justin T Henthorn
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | | | | |
Collapse
|
50
|
Kochem A, Gellon G, Jarjayes O, Philouze C, du Moulinet d'Hardemare A, van Gastel M, Thomas F. Nickel(ii) radical complexes of thiosemicarbazone ligands appended by salicylidene, aminophenol and aminothiophenol moieties. Dalton Trans 2015; 44:12743-56. [DOI: 10.1039/c5dt00944h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neutral nickel(ii) complexes are chameleon pro-radical compounds: under their one-electron oxidized form they feature an iminosemiquinonate (or iminothiosemiquinonate) radical, while under their reduced form they are α-diimine π-radicals.
Collapse
Affiliation(s)
- Amélie Kochem
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
- Max Planck Institute for Chemical Energy Conversion
| | - Gisèle Gellon
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
| | - Olivier Jarjayes
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
| | - Christian Philouze
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
| | - Amaury du Moulinet d'Hardemare
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
| | - Maurice van Gastel
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Fabrice Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
| |
Collapse
|