1
|
Yang S, Peng C, Liu J, Yu H, Xu Z, Xie Y, Zhou J. Adsorption of cytochrome c on different self-assembled monolayers: The role of surface chemistry and charge density. Biointerphases 2024; 19:051005. [PMID: 39392277 DOI: 10.1116/6.0003986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
In this work, the adsorption behavior of cytochrome c (Cyt-c) on five different self-assembled monolayers (SAMs) (i.e., CH3-SAM, OH-SAM, NH2-SAM, COOH-SAM, and OSO3--SAM) was studied by combined parallel tempering Monte Carlo and molecular dynamics simulations. The results show that Cyt-c binds to the CH3-SAM through a hydrophobic patch (especially Ile81) and undergoes a slight reorientation, while the adsorption on the OH-SAM is relatively weak. Cyt-c cannot stably bind to the lower surface charge density (SCD, 7% protonation) NH2-SAM even under a relatively high ionic strength condition, while a higher SCD of 25% protonation promotes Cyt-c adsorption on the NH2-SAM. The preferred adsorption orientations of Cyt-c on the negatively-charged surfaces are very similar, regardless of the surface chemistry and the SCD. As the SCD increases, more counterions are attracted to the charged surfaces, forming distinct counterion layers. The secondary structure of Cyt-c is well kept when adsorbed on these SAMs except the OSO3--SAM surface. The deactivation of redox properties for Cyt-c adsorbed on the highly negatively-charged surface is due to the confinement of heme reorientation and the farther position of the central iron to the surfaces, as well as the relatively larger conformation change of Cyt-c adsorbed on the OSO3--SAM surface. This work may provide insightful guidance for the design of Cyt-c-based bioelectronic devices and controlled enzyme immobilization.
Collapse
Affiliation(s)
- Shengjiang Yang
- Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization, School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, People's Republic of China
| | - Chunwang Peng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jie Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yun Xie
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, People's Republic of China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
2
|
Oviedo-Rouco S, Spedalieri C, Scocozza MF, Tomasina F, Tórtora V, Radi R, Murgida DH. Correlated electric field modulation of electron transfer parameters and the access to alternative conformations of multifunctional cytochrome c. Bioelectrochemistry 2022; 143:107956. [PMID: 34624727 DOI: 10.1016/j.bioelechem.2021.107956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
Abstract
Cytochrome c (Cytc) is a multifunctional protein that, in its native conformation, shuttles electrons in the mitochondrial respiratory chain. Conformational transitions that involve replacement of the heme distal ligand lead to the gain of alternative peroxidase activity, which is crucial for membrane permeabilization during apoptosis. Using a time-resolved SERR spectroelectrochemical approach, we found that the key physicochemical parameters that characterize the electron transfer (ET) canonic function and those that determine the transition to alternative conformations are strongly correlated and are modulated by local electric fields (LEF) of biologically meaningful magnitude. The electron shuttling function is optimized at moderate LEFs of around 1 V nm-1. A decrease of the LEF is detrimental for ET as it rises the reorganization energy. Moreover, LEF values below and above the optimal for ET favor alternative conformations with peroxidase activity and downshifted reduction potentials. The underlying proposed mechanism is the LEF modulation of the flexibility of crucial protein segments, which produces a differential effect on the kinetic ET and conformational parameters of Cytc. These findings might be related to variations in the mitochondrial membrane potential during apoptosis, as the basis for the switch between canonic and alternative functions of Cytc. Moreover, they highlight the possible role of variable LEFs in determining the function of other moonlighting proteins through modulation of the protein dynamics.
Collapse
Affiliation(s)
- Santiago Oviedo-Rouco
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Spedalieri
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magalí F Scocozza
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Tomasina
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Izzo M, Osella S, Jacquet M, Kiliszek M, Harputlu E, Starkowska A, Łasica A, Unlu CG, Uśpieński T, Niewiadomski P, Bartosik D, Trzaskowski B, Ocakoglu K, Kargul J. Enhancement of direct electron transfer in graphene bioelectrodes containing novel cytochrome c 553 variants with optimized heme orientation. Bioelectrochemistry 2021; 140:107818. [PMID: 33905959 DOI: 10.1016/j.bioelechem.2021.107818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/03/2021] [Accepted: 04/03/2021] [Indexed: 11/20/2022]
Abstract
The highly efficient bioelectrodes based on single layer graphene (SLG) functionalized with pyrene self-assembled monolayer and novel cytochromec553(cytc553)peptide linker variants were rationally designed to optimize the direct electron transfer (DET) between SLG and the heme group of cyt. Through a combination of photoelectrochemical and quantum mechanical (QM/MM) approaches we show that the specific amino acid sequence of a short peptide genetically inserted between the cytc553holoprotein and thesurface anchoring C-terminal His6-tag plays a crucial role in ensuring the optimal orientation and distance of the heme group with respect to the SLG surface. Consequently, efficient DET occurring between graphene and cyt c553 leads to a 20-fold enhancement of the cathodic photocurrent output compared to the previously reported devices of a similar type. The QM/MM modeling implies that a perpendicular or parallel orientation of the heme group with respect to the SLG surface is detrimental to DET, whereas the tilted orientation favors the cathodic photocurrent generation. Our work confirms the possibility of fine-tuning the electronic communication within complex bio-organic nanoarchitectures and interfaces due to optimization of the tilt angle of the heme group, its distance from the SLG surface and optimal HOMO/LUMO levels of the interacting redox centers.
Collapse
Affiliation(s)
- Miriam Izzo
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Margot Jacquet
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Małgorzata Kiliszek
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Ersan Harputlu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400 Tarsus, Turkey
| | - Alicja Starkowska
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Anna Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - C Gokhan Unlu
- Department of Biomedical Engineering, Pamukkale University, TR-20070 Denizli, Turkey
| | - Tomasz Uśpieński
- Laboratory of Molecular and Cellular Signaling, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Paweł Niewiadomski
- Laboratory of Molecular and Cellular Signaling, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Kasim Ocakoglu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400 Tarsus, Turkey
| | - Joanna Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| |
Collapse
|
4
|
Murgida DH. In Situ Spectroelectrochemical Investigations of Electrode-Confined Electron-Transferring Proteins and Redox Enzymes. ACS OMEGA 2021; 6:3435-3446. [PMID: 33585730 PMCID: PMC7876673 DOI: 10.1021/acsomega.0c05746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 06/09/2023]
Abstract
This perspective analyzes recent advances in the spectroelectrochemical investigation of redox proteins and enzymes immobilized on biocompatible or biomimetic electrode surfaces. Specifically, the article highlights new insights obtained by surface-enhanced resonance Raman (SERR), surface-enhanced infrared absorption (SEIRA), protein film infrared electrochemistry (PFIRE), polarization modulation infrared reflection-absorption spectroscopy (PMIRRAS), Förster resonance energy transfer (FRET), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and differential electrochemical mass spectrometry (DMES)-based spectroelectrochemical methods on the structure, orientation, dynamics, and reaction mechanisms for a variety of immobilized species. This includes small heme and copper electron shuttling proteins, large respiratory complexes, hydrogenases, multicopper oxidases, alcohol dehydrogenases, endonucleases, NO-reductases, and dye decolorizing peroxidases, among other enzymes. Finally, I discuss the challenges and foreseeable future developments toward a better understanding of the functioning of these complex macromolecules and their exploitation in technological devices.
Collapse
Affiliation(s)
- Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química-Física,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos
Aires 1428, Argentina
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
5
|
Osella S. Artificial Photosynthesis: Is Computation Ready for the Challenge Ahead? NANOMATERIALS 2021; 11:nano11020299. [PMID: 33498961 PMCID: PMC7911014 DOI: 10.3390/nano11020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
A tremendous effort is currently devoted to the generation of novel hybrid materials with enhanced electronic properties for the creation of artificial photosynthetic systems. This compelling and challenging problem is well-defined from an experimental point of view, as the design of such materials relies on combining organic materials or metals with biological systems like light harvesting and redox-active proteins. Such hybrid systems can be used, e.g., as bio-sensors, bio-fuel cells, biohybrid photoelectrochemical cells, and nanostructured photoelectronic devices. Despite these efforts, the main bottleneck is the formation of efficient interfaces between the biological and the organic/metal counterparts for efficient electron transfer (ET). It is within this aspect that computation can make the difference and improve the current understanding of the mechanisms underneath the interface formation and the charge transfer efficiency. Yet, the systems considered (i.e., light harvesting protein, self-assembly monolayer and surface assembly) are more and more complex, reaching (and often passing) the limit of current computation power. In this review, recent developments in computational methods for studying complex interfaces for artificial photosynthesis will be provided and selected cases discussed, to assess the inherent ability of computation to leave a mark in this field of research.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Shen H, Wang YZ, Liu G, Li L, Xia R, Luo B, Wang J, Suo D, Shi W, Yong YC. A Whole-Cell Inorganic-Biohybrid System Integrated by Reduced Graphene Oxide for Boosting Solar Hydrogen Production. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03594] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongqiang Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yan-Zhai Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Guiwu Liu
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Rong Xia
- Zhenjiang Hengshun Bioengineering Co., Ltd, Zhenjiang 212013, P. R. China
| | - Bifu Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jixiang Wang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Di Suo
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
7
|
Oviedo-Rouco S, Perez-Bertoldi JM, Spedalieri C, Castro MA, Tomasina F, Tortora V, Radi R, Murgida DH. Electron transfer and conformational transitions of cytochrome c are modulated by the same dynamical features. Arch Biochem Biophys 2020; 680:108243. [DOI: 10.1016/j.abb.2019.108243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/11/2019] [Accepted: 12/29/2019] [Indexed: 01/17/2023]
|
8
|
Zhang C, Li X, Wang Z, Huang X, Ge Z, Hu B. Influence of Structured Water Layers on Protein Adsorption Process: A Case Study of Cytochrome c and Carbon Nanotube Interactions and Its Implications. J Phys Chem B 2020; 124:684-694. [PMID: 31880460 DOI: 10.1021/acs.jpcb.9b10192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome c, an essential protein of the electron transport chain, is known to be capable of amplifying the toxicity of carbon nanomaterials via free-radical generation. To understand their interaction, as well as the more general protein-nanoparticle interaction at molecular levels, we investigate the adsorptions between cytochrome c and carbon nanotubes (CNTs) in dynamic and thermodynamic ways using molecular dynamics simulations. The results reveal a well-defined three-phase process separated by two transition points: the diffusion phase where the protein diffuses in the water box, the lockdown phase I where the protein inserts into the surface-bound water layers and rearranges its conformation to fit to the surface of the CNT, and the lockdown phase II where cytochrome c repels the water molecules standing in its way to the surface of CNT and reaches stable adsorption states. The structured water layers affect the movement of atoms by electrostatic forces. In lockdown phase I, the conformation adjustment of the protein dominates the adsorption process. The most thermally favorable adsorption conformation is determined. It shows that except for the deformation of short β sheets and some portions of α helixes, most of the secondary structures of cytochrome c remain unchanged, implying that most of the functions of cytochrome c are preserved. During these processes, the energy contributions of the hydrophilic residues of cytochrome c are much larger than those of hydrophobic residues. Interestingly, the structured water layers at the CNT surface allow more hydrophilic residues such as Lys to get into close contact with the CNT, which plays a significant role during the anchoring process of adsorption. Our results demonstrate that the heme group is in close contact with the CNT in some of the adsorbed states, which hence provides a way for electron transfer from cytochrome c to the CNT surface.
Collapse
Affiliation(s)
- Chi Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xiaoyi Li
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zichen Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xuqi Huang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhenpeng Ge
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Benfeng Hu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
9
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
10
|
Zhu J, Jiang M, Ma H, Zhang H, Cheng W, Li J, Cai L, Han XX, Zhao B. Redox‐State‐Mediated Regulation of Cytochrome c Release in Apoptosis Revealed by Surface‐Enhanced Raman Scattering on Nickel Substrates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Muwei Jiang
- National Engineering Laboratory for AIDS Vaccine School of Life Science Jilin University Changchun 130012 P. R. China
| | - Hao Ma
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Haijing Zhang
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Weina Cheng
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Junbo Li
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine School of Life Science Jilin University Changchun 130012 P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| |
Collapse
|
11
|
Zhu J, Jiang M, Ma H, Zhang H, Cheng W, Li J, Cai L, Han XX, Zhao B. Redox-State-Mediated Regulation of Cytochrome c Release in Apoptosis Revealed by Surface-Enhanced Raman Scattering on Nickel Substrates. Angew Chem Int Ed Engl 2019; 58:16499-16503. [PMID: 31486254 DOI: 10.1002/anie.201909638] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 11/12/2022]
Abstract
The interaction of cytochrome c (Cyt c) with cardiolipin (CL) is believed to play an important role in the initial events of apoptosis. Herein, we investigate the structural changes of CL-bound Fe2+ Cyt c and the correlation with Cyt c release through surface-enhanced Raman spectroscopy (SERS) on nickel substrates. The SERS results together with molecular dynamics simulation reveal that Fe2+ Cyt c undergoes autoxidation and a relatively larger conformational alteration after binding with CL, inducing higher peroxidase activity of Cyt c and higher permeability of the CL membrane compared with those induced by the Fe3+ Cyt c. The proapoptotic activity and SERS effect of the Ni nanostructures allow the in situ study of the redox-state-dependent Cyt c release from isolated mitochondria, which reveals for the first time that the ferrous state of Cyt c most likely plays a more important role in triggering apoptosis.
Collapse
Affiliation(s)
- Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Muwei Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Hao Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Haijing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Weina Cheng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Junbo Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
12
|
Oviedo-Rouco S, Castro MA, Alvarez-Paggi D, Spedalieri C, Tortora V, Tomasina F, Radi R, Murgida DH. The alkaline transition of cytochrome c revisited: Effects of electrostatic interactions and tyrosine nitration on the reaction dynamics. Arch Biochem Biophys 2019; 665:96-106. [DOI: 10.1016/j.abb.2019.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022]
|
13
|
Ma S, Ludwig R. Direct Electron Transfer of Enzymes Facilitated by Cytochromes. ChemElectroChem 2019; 6:958-975. [PMID: 31008015 PMCID: PMC6472588 DOI: 10.1002/celc.201801256] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/12/2018] [Indexed: 01/03/2023]
Abstract
The direct electron transfer (DET) of enzymes has been utilized to develop biosensors and enzymatic biofuel cells on micro- and nanostructured electrodes. Whereas some enzymes exhibit direct electron transfer between their active-site cofactor and an electrode, other oxidoreductases depend on acquired cytochrome domains or cytochrome subunits as built-in redox mediators. The physiological function of these cytochromes is to transfer electrons between the active-site cofactor and a redox partner protein. The exchange of the natural electron acceptor/donor by an electrode has been demonstrated for several cytochrome carrying oxidoreductases. These multi-cofactor enzymes have been applied in third generation biosensors to detect glucose, lactate, and other analytes. This review investigates and classifies oxidoreductases with a cytochrome domain, enzyme complexes with a cytochrome subunit, and covers designed cytochrome fusion enzymes. The structurally and electrochemically best characterized proponents from each enzyme class carrying a cytochrome, that is, flavoenzymes, quinoenzymes, molybdenum-cofactor enzymes, iron-sulfur cluster enzymes, and multi-haem enzymes, are featured, and their biochemical, kinetic, and electrochemical properties are compared. The cytochromes molecular and functional properties as well as their contribution to the interdomain electron transfer (IET, between active-site and cytochrome) and DET (between cytochrome and electrode) with regard to the achieved current density is discussed. Protein design strategies for cytochrome-fused enzymes are reviewed and the limiting factors as well as strategies to overcome them are outlined.
Collapse
Affiliation(s)
- Su Ma
- Biocatalysis and Biosensing Laboratory Department of Food Science and TechnologyBOKU – University of Natural Resources and Life SciencesMuthgasse 181190ViennaAustria
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory Department of Food Science and TechnologyBOKU – University of Natural Resources and Life SciencesMuthgasse 181190ViennaAustria
| |
Collapse
|
14
|
Silveira CM, Castro MA, Dantas JM, Salgueiro C, Murgida DH, Todorovic S. Structure, electrocatalysis and dynamics of immobilized cytochrome PccH and its microperoxidase. Phys Chem Chem Phys 2018; 19:8908-8918. [PMID: 28295106 DOI: 10.1039/c6cp08361g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Geobacter sulfurreducens cells have the ability to exchange electrons with conductive materials, and the periplasmic cytochrome PccH plays an essential role in the direct electrode-to-cell electron transfer in this bacterium. It has atypically low redox potential and unique structural features that differ from those observed in other c-type cytochromes. We report surface enhanced resonance Raman spectroscopic and electrochemical characterization of the immobilized PccH, together with molecular dynamics simulations that allow for the rationalization of experimental observations. Upon attachment to electrodes functionalized with partially or fully hydrophobic self-assembled monolayers, PccH displays a distribution of native and non-native heme spin configurations, similar to those observed in horse heart cytochrome c. The native structural and thermodynamic features of PccH are preserved upon attachment mixed hydrophobic (-CH3/-NH2) surfaces, while pure -OH, -NH2 and -COOH surfaces do not provide suitable platforms for its adsorption, indicating that its still unknown physiological redox partner might be membrane integrated. Neither of the employed immobilization strategies results in electrocatalytically active PccH capable of the reduction of hydrogen peroxide. Pseudoperoxidase activity is observed in immobilized microperoxidase, which is enzymatically produced from PccH and spectroscopically characterized. Further improvement of PccH microperoxidase stability is required for its application in electrochemical biosensing of hydrogen peroxide.
Collapse
Affiliation(s)
- Célia M Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal. and UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Monte de Caparica, Portugal
| | - María A Castro
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Joana M Dantas
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Monte de Caparica, Portugal
| | - Carlos Salgueiro
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Monte de Caparica, Portugal
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
15
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
16
|
Kinetics, subcellular localization, and contribution to parasite virulence of a Trypanosoma cruzi hybrid type A heme peroxidase ( TcAPx-CcP). Proc Natl Acad Sci U S A 2017; 114:E1326-E1335. [PMID: 28179568 DOI: 10.1073/pnas.1618611114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Trypanosoma cruzi ascorbate peroxidase is, by sequence analysis, a hybrid type A member of class I heme peroxidases [TcAPx-cytochrome c peroxidase (CcP)], suggesting both ascorbate (Asc) and cytochrome c (Cc) peroxidase activity. Here, we show that the enzyme reacts fast with H2O2 (k = 2.9 × 107 M-1⋅s-1) and catalytically decomposes H2O2 using Cc as the reducing substrate with higher efficiency than Asc (kcat/Km = 2.1 × 105 versus 3.5 × 104 M-1⋅s-1, respectively). Visible-absorption spectra of purified recombinant TcAPx-CcP after H2O2 reaction denote the formation of a compound I-like product, characteristic of the generation of a tryptophanyl radical-cation (Trp233•+). Mutation of Trp233 to phenylalanine (W233F) completely abolishes the Cc-dependent peroxidase activity. In addition to Trp233•+, a Cys222-derived radical was identified by electron paramagnetic resonance spin trapping, immunospin trapping, and MS analysis after equimolar H2O2 addition, supporting an alternative electron transfer (ET) pathway from the heme. Molecular dynamics studies revealed that ET between Trp233 and Cys222 is possible and likely to participate in the catalytic cycle. Recognizing the ability of TcAPx-CcP to use alternative reducing substrates, we searched for its subcellular localization in the infective parasite stages (intracellular amastigotes and extracellular trypomastigotes). TcAPx-CcP was found closely associated with mitochondrial membranes and, most interestingly, with the outer leaflet of the plasma membrane, suggesting a role at the host-parasite interface. TcAPx-CcP overexpressers were significantly more infective to macrophages and cardiomyocytes, as well as in the mouse model of Chagas disease, supporting the involvement of TcAPx-CcP in pathogen virulence as part of the parasite antioxidant armamentarium.
Collapse
|
17
|
Laucirica G, Marmisollé WA, Azzaroni O. Dangerous liaisons: anion-induced protonation in phosphate–polyamine interactions and their implications for the charge states of biologically relevant surfaces. Phys Chem Chem Phys 2017; 19:8612-8620. [DOI: 10.1039/c6cp08793k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The specific binding of phosphates on surface amino groups has complex consequences on the protonation equilibriums and effective surface charges with serious implications for further biochemically relevant interactions.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata (UNLP)
- La Plata
| | - Waldemar A. Marmisollé
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata (UNLP)
- La Plata
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata (UNLP)
- La Plata
| |
Collapse
|
18
|
Abstract
Understanding protein-inorganic surface interactions is central to the rational design of new tools in biomaterial sciences, nanobiotechnology and nanomedicine. Although a significant amount of experimental research on protein adsorption onto solid substrates has been reported, many aspects of the recognition and interaction mechanisms of biomolecules and inorganic surfaces are still unclear. Theoretical modeling and simulations provide complementary approaches for experimental studies, and they have been applied for exploring protein-surface binding mechanisms, the determinants of binding specificity towards different surfaces, as well as the thermodynamics and kinetics of adsorption. Although the general computational approaches employed to study the dynamics of proteins and materials are similar, the models and force-fields (FFs) used for describing the physical properties and interactions of material surfaces and biological molecules differ. In particular, FF and water models designed for use in biomolecular simulations are often not directly transferable to surface simulations and vice versa. The adsorption events span a wide range of time- and length-scales that vary from nanoseconds to days, and from nanometers to micrometers, respectively, rendering the use of multi-scale approaches unavoidable. Further, changes in the atomic structure of material surfaces that can lead to surface reconstruction, and in the structure of proteins that can result in complete denaturation of the adsorbed molecules, can create many intermediate structural and energetic states that complicate sampling. In this review, we address the challenges posed to theoretical and computational methods in achieving accurate descriptions of the physical, chemical and mechanical properties of protein-surface systems. In this context, we discuss the applicability of different modeling and simulation techniques ranging from quantum mechanics through all-atom molecular mechanics to coarse-grained approaches. We examine uses of different sampling methods, as well as free energy calculations. Furthermore, we review computational studies of protein-surface interactions and discuss the successes and limitations of current approaches.
Collapse
|
19
|
Hannibal L, Tomasina F, Capdevila DA, Demicheli V, Tórtora V, Alvarez-Paggi D, Jemmerson R, Murgida DH, Radi R. Alternative Conformations of Cytochrome c: Structure, Function, and Detection. Biochemistry 2016; 55:407-28. [DOI: 10.1021/acs.biochem.5b01385] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luciana Hannibal
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Center
for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Mathildenstrasse 1, Freiburg D-79106, Germany
| | - Florencia Tomasina
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Daiana A. Capdevila
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Verónica Demicheli
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ronald Jemmerson
- Department
of Microbiology and Immunology, University of Minnesota, MMC 196,
420 Delaware Street, Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Rafael Radi
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
20
|
Peng C, Liu J, Xie Y, Zhou J. Molecular simulations of cytochrome c adsorption on positively charged surfaces: the influence of anion type and concentration. Phys Chem Chem Phys 2016; 18:9979-89. [DOI: 10.1039/c6cp00170j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The influence of anion type and concentration on the adsorption of cytochrome c onto the positively charged NH2-SAM surface.
Collapse
Affiliation(s)
- Chunwang Peng
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| | - Jie Liu
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| | - Yun Xie
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
21
|
Zitare U, Alvarez-Paggi D, Morgada MN, Abriata LA, Vila AJ, Murgida DH. Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in CuASites of Cytochrome cOxidase. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Zitare U, Alvarez-Paggi D, Morgada MN, Abriata LA, Vila AJ, Murgida DH. Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu(A) Sites of Cytochrome c Oxidase. Angew Chem Int Ed Engl 2015; 54:9555-9. [PMID: 26118421 DOI: 10.1002/anie.201504188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 11/06/2022]
Abstract
The Cu(A) site of cytochrome c oxidase is a redox hub that participates in rapid electron transfer at low driving forces with two redox cofactors in nearly perpendicular orientations. Spectroscopic and electrochemical characterizations performed on first and second-sphere mutants have allowed us to experimentally detect the reversible switching between two alternative electronic states that confer different directionalities to the redox reaction. Specifically, the M160H variant of a native Cu(A) shows a reversible pH transition that allows to functionally probe both states in the same protein species. Alternation between states exerts a dramatic impact on the kinetic redox parameters, thereby suggesting this effect as the mechanism underlying the efficiency and directionality of Cu(A) electron transfer in vivo. These findings may also prove useful for the development of molecular electronics.
Collapse
Affiliation(s)
- Ulises Zitare
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET (Argentina)
| | - Damián Alvarez-Paggi
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET (Argentina)
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and CONICET (Argentina)
| | - Luciano A Abriata
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and CONICET (Argentina)
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and CONICET (Argentina)
| | - Daniel H Murgida
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET (Argentina).
| |
Collapse
|
23
|
Capdevila DA, Marmisollé WA, Tomasina F, Demicheli V, Portela M, Radi R, Murgida DH. Specific methionine oxidation of cytochrome c in complexes with zwitterionic lipids by hydrogen peroxide: potential implications for apoptosis. Chem Sci 2015; 6:705-713. [PMID: 30154994 PMCID: PMC6085654 DOI: 10.1039/c4sc02181a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/01/2014] [Indexed: 11/21/2022] Open
Abstract
Cytochrome c (Cyt-c) has been previously shown to participate in cardiolipin (CL) oxidation and, therefore, in mitochondrial membrane permeabilization during the early events of apoptosis. The gain in this function has been ascribed to specific CL/Cyt-c interactions. Here we report that the cationic protein Cyt-c is also able to interact electrostatically with the main lipid components of the mitochondrial membranes, the zwitterionic lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE), through the mediation of phosphate anions that bind specifically to amino groups in the surfaces of protein and model membranes. In these complexes, Cyt-c reacts efficiently with H2O2 at submillimolar levels, which oxidizes the sulfur atom of the axial ligand Met80. The modified protein is stable and presents significantly enhanced peroxidatic activity. Based on these results, we postulate that the rise of H2O2 concentrations to the submillimolar levels registered during initiation of the apoptotic program may represent one signaling event that triggers the gain in peroxidatic function of the Cyt-c molecules bound to the abundant PE and PC membrane components. As the activated protein is a chemically stable species, it can potentially bind and oxidize important targets, such as CL.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Departamento de Química Inorgánica , Analítica y Química Física and INQUIMAE (CONICET-UBA) , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Pab. 2, piso 1 , C1428EHA-Buenos Aires , Argentina .
| | - Waldemar A Marmisollé
- Departamento de Química Inorgánica , Analítica y Química Física and INQUIMAE (CONICET-UBA) , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Pab. 2, piso 1 , C1428EHA-Buenos Aires , Argentina .
| | - Florencia Tomasina
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Magdalena Portela
- Unidad de Bioquímica y Proteómica Analíticas , Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica , Analítica y Química Física and INQUIMAE (CONICET-UBA) , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Pab. 2, piso 1 , C1428EHA-Buenos Aires , Argentina .
| |
Collapse
|
24
|
Wang GX, Zhou Y, Wang M, Bao WJ, Wang K, Xia XH. Structure orientation of hemin self-assembly layer determining the direct electron transfer reaction. Chem Commun (Camb) 2015; 51:689-92. [DOI: 10.1039/c4cc07719a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A strategy was proposed to control the hemin orientation via experimental models, which shows heme plane orientation dependent direct electron transfer and electrocatalysis.
Collapse
Affiliation(s)
- Gui-Xia Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Yue Zhou
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Min Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Wen-Jing Bao
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| |
Collapse
|
25
|
Capdevila DA, Álvarez-Paggi D, Castro MA, Tórtora V, Demicheli V, Estrín DA, Radi R, Murgida DH. Coupling of tyrosine deprotonation and axial ligand exchange in nitrocytochrome c. Chem Commun (Camb) 2014; 50:2592-4. [PMID: 24471160 DOI: 10.1039/c3cc47207h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here we report a spectroscopic, electrochemical and computational study of cytochrome c showing that nitration of Tyr74 induces Tyr deprotonation, which is coupled to Met/Lys axial ligand exchange, and results in concomitant gain of peroxidatic activity at physiological pH.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Haya L, Pardo JI, Mainar AM, Fatás E, Urieta JS. Regioselectivity of Electrochemical C-H Functionalization Via Iminium Ion. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.07.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Zanetti-Polzi L, Daidone I, Bortolotti CA, Corni S. Surface Packing Determines the Redox Potential Shift of Cytochrome c Adsorbed on Gold. J Am Chem Soc 2014; 136:12929-37. [DOI: 10.1021/ja505251a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Laura Zanetti-Polzi
- Center
S3, CNR NANO, Institute of Nanoscience, Via Campi 213/A, 41125, Modena, Italy
| | - Isabella Daidone
- Department
of Physical and Chemical Sciences, University of L’Aquila, via
Vetoio (Coppito 1), 67010, L’Aquila, Italy
| | - Carlo Augusto Bortolotti
- Center
S3, CNR NANO, Institute of Nanoscience, Via Campi 213/A, 41125, Modena, Italy
- Department
of Life Sciences, University of Modena and Reggio Emilia, Via Campi
183, 41125, Modena, Italy
| | - Stefano Corni
- Center
S3, CNR NANO, Institute of Nanoscience, Via Campi 213/A, 41125, Modena, Italy
| |
Collapse
|
28
|
Singh S, Thakur N, Oliveira A, Petruk AA, Hade MD, Sethi D, Bidon-Chanal A, Martí MA, Datta H, Parkesh R, Estrin DA, Luque FJ, Dikshit KL. Mechanistic insight into the enzymatic reduction of truncated hemoglobin N of Mycobacterium tuberculosis: role of the CD loop and pre-A motif in electron cycling. J Biol Chem 2014; 289:21573-83. [PMID: 24928505 DOI: 10.1074/jbc.m114.578187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many pathogenic microorganisms have evolved hemoglobin-mediated nitric oxide (NO) detoxification mechanisms, where a globin domain in conjunction with a partner reductase catalyzes the conversion of toxic NO to innocuous nitrate. The truncated hemoglobin HbN of Mycobacterium tuberculosis displays a potent NO dioxygenase activity despite lacking a reductase domain. The mechanism by which HbN recycles itself during NO dioxygenation and the reductase that participates in this process are currently unknown. This study demonstrates that the NADH-ferredoxin/flavodoxin system is a fairly efficient partner for electron transfer to HbN with an observed reduction rate of 6.2 μM/min(-1), which is nearly 3- and 5-fold faster than reported for Vitreoscilla hemoglobin and myoglobin, respectively. Structural docking of the HbN with Escherichia coli NADH-flavodoxin reductase (FdR) together with site-directed mutagenesis revealed that the CD loop of the HbN forms contacts with the reductase, and that Gly(48) may have a vital role. The donor to acceptor electron coupling parameters calculated using the semiempirical pathway method amounts to an average of about 6.4 10(-5) eV, which is lower than the value obtained for E. coli flavoHb (8.0 10(-4) eV), but still supports the feasibility of an efficient electron transfer. The deletion of Pre-A abrogated the heme iron reduction by FdR in the HbN, thus signifying its involvement during intermolecular interactions of the HbN and FdR. The present study, thus, unravels a novel role of the CD loop and Pre-A motif in assisting the interactions of the HbN with the reductase and the electron cycling, which may be vital for its NO-scavenging function.
Collapse
Affiliation(s)
- Sandeep Singh
- From the CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Naveen Thakur
- From the CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Ana Oliveira
- the Department de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Campus de l'Alimentació Torribera, Santa Coloma de Gramenet, Spain, and
| | - Ariel A Petruk
- the Departamento de Química Inorgánica, Analítica, y Química Física/INQUIMAE CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Mangesh Dattu Hade
- From the CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Deepti Sethi
- From the CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Axel Bidon-Chanal
- the Department de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Campus de l'Alimentació Torribera, Santa Coloma de Gramenet, Spain, and
| | - Marcelo A Martí
- the Departamento de Química Inorgánica, Analítica, y Química Física/INQUIMAE CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Himani Datta
- From the CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Raman Parkesh
- From the CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Dario A Estrin
- the Departamento de Química Inorgánica, Analítica, y Química Física/INQUIMAE CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - F Javier Luque
- the Department de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Campus de l'Alimentació Torribera, Santa Coloma de Gramenet, Spain, and
| | - Kanak L Dikshit
- From the CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India,
| |
Collapse
|
29
|
Martinez A, Peluffo G, Petruk AA, Hugo M, Piñeyro D, Demicheli V, Moreno DM, Lima A, Batthyány C, Durán R, Robello C, Martí MA, Larrieux N, Buschiazzo A, Trujillo M, Radi R, Piacenza L. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer. J Biol Chem 2014; 289:12760-78. [PMID: 24616096 DOI: 10.1074/jbc.m113.545590] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 10(4) M(-1) s(-1) and 4.3 ± 0.4 × 10(4) M(-1) s(-1) at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr(35). Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys(83) mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys(83) present in Fe-SODB acts as an electron donor that repairs Tyr(35) radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells.
Collapse
Affiliation(s)
- Alejandra Martinez
- From the Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Olloqui-Sariego JL, Moreno-Beltrán B, Díaz-Quintana A, De la Rosa MA, Calvente JJ, Andreu R. Temperature-Driven Changeover in the Electron-Transfer Mechanism of a Thermophilic Plastocyanin. J Phys Chem Lett 2014; 5:910-914. [PMID: 26274087 DOI: 10.1021/jz500150y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Electron-transfer kinetics of the thermophilic protein Plastocyanin from Phormidium laminosum adsorbed on 1,ω-alkanedithiol self-assembled monolayers (SAMs) deposited on gold have been investigated. The standard electron-transfer rate constant has been determined as a function of electrode-protein distance and solution viscosity over a broad temperature range (0-90 °C). For either thin or thick SAMs, the electron-transfer regime remains invariant with temperature, whereas for the 1,11-undecanethiol SAM of intermediate chain length, a kinetic regime changeover from a gated or friction-controlled mechanism at low temperature (0-30 °C) to a nonadiabatic mechanism above 40 °C is observed. To the best of our knowledge, this is the first time a thermal-induced transition between these two kinetic regimes is reported for a metalloprotein.
Collapse
Affiliation(s)
- José Luis Olloqui-Sariego
- †Departamento de Quı́mica Fı́sica, Universidad de Sevilla, c/Profesor Garcı́a González, 1, 41012 Sevilla, Spain
| | - Blas Moreno-Beltrán
- ‡Instituto de Bioquı́mica Vegetal y Fotosı́ntesis, cicCartuja, Universidad de Sevilla y C.S.I.C, Avd. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio Díaz-Quintana
- ‡Instituto de Bioquı́mica Vegetal y Fotosı́ntesis, cicCartuja, Universidad de Sevilla y C.S.I.C, Avd. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Miguel A De la Rosa
- ‡Instituto de Bioquı́mica Vegetal y Fotosı́ntesis, cicCartuja, Universidad de Sevilla y C.S.I.C, Avd. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan José Calvente
- †Departamento de Quı́mica Fı́sica, Universidad de Sevilla, c/Profesor Garcı́a González, 1, 41012 Sevilla, Spain
| | - Rafael Andreu
- †Departamento de Quı́mica Fı́sica, Universidad de Sevilla, c/Profesor Garcı́a González, 1, 41012 Sevilla, Spain
| |
Collapse
|
31
|
Alvarez-Paggi D, Zitare U, Murgida DH. The role of protein dynamics and thermal fluctuations in regulating cytochrome c/cytochrome c oxidase electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1196-207. [PMID: 24502917 DOI: 10.1016/j.bbabio.2014.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 01/06/2023]
Abstract
In this overview we present recent combined electrochemical, spectroelectrochemical, spectroscopic and computational studies from our group on the electron transfer reactions of cytochrome c and of the primary electron acceptor of cytochrome c oxidase, the CuA site, in biomimetic complexes. Based on these results, we discuss how protein dynamics and thermal fluctuations may impact on protein ET reactions, comment on the possible physiological relevance of these results, and finally propose a regulatory mechanism that may operate in the Cyt/CcO electron transfer reaction in vivo. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Damian Alvarez-Paggi
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, pab. 2, piso 3, C1428EHA Buenos Aires, Argentina
| | - Ulises Zitare
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, pab. 2, piso 3, C1428EHA Buenos Aires, Argentina
| | - Daniel H Murgida
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, pab. 2, piso 3, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
32
|
Ranieri A, Bortolotti CA, Battistuzzi G, Borsari M, Paltrinieri L, Di Rocco G, Sola M. Effect of motional restriction on the unfolding properties of a cytochrome c featuring a His/Met–His/His ligation switch. Metallomics 2014; 6:874-84. [DOI: 10.1039/c3mt00311f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
McMillan DGG, Marritt SJ, Kemp GL, Gordon-Brown P, Butt JN, Jeuken LJC. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes. Electrochim Acta 2013; 110:79-85. [PMID: 24634538 DOI: 10.1016/j.electacta.2013.01.153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes.
Collapse
Affiliation(s)
- Duncan G G McMillan
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom. ; School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sophie J Marritt
- Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. ; School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Gemma L Kemp
- Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. ; School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Piers Gordon-Brown
- Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. ; School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Julea N Butt
- Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. ; School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. ; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom. ; School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
34
|
Capdevila DA, Marmisollé WA, Williams FJ, Murgida DH. Phosphate mediated adsorption and electron transfer of cytochrome c. A time-resolved SERR spectroelectrochemical study. Phys Chem Chem Phys 2013; 15:5386-94. [PMID: 23000972 DOI: 10.1039/c2cp42044a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of proteins immobilized on biomimetic or biocompatible electrodes represents an active field of research as it pursues both fundamental and technological interests. In this context, adsorption and redox properties of cytochrome c (Cyt) on different electrode surfaces have been extensively reported, although in some cases with contradictory results. Here we report a SERR spectroelectrochemical study of the adsorption and electron transfer behaviour of the basic protein Cyt on electrodes coated with amino-terminated monolayers. The obtained results show that inorganic phosphate (Pi) and ATP anions are able to mediate high affinity binding of the protein with preservation of the native structure and rendering an average orientation that guarantees efficient pathways for direct electron transfer. These findings aid the design of Cyt-based bioelectronic devices and understanding the modulation by Pi and ATP of physiological functions of Cyt.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
35
|
Jiang N, Kuznetsov A, Nocek JM, Hoffman BM, Crane BR, Hu X, Beratan DN. Distance-independent charge recombination kinetics in cytochrome c-cytochrome c peroxidase complexes: compensating changes in the electronic coupling and reorganization energies. J Phys Chem B 2013; 117:9129-41. [PMID: 23895339 PMCID: PMC3809023 DOI: 10.1021/jp401551t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Charge recombination rate constants vary no more than 3-fold for interprotein ET in the Zn-substituted wild type (WT) cytochrome c peroxidase (CcP):cytochrome c (Cc) complex and in complexes with four mutants of the Cc protein (i.e., F82S, F82W, F82Y, and F82I), despite large differences in the ET distance. Theoretical analysis indicates that charge recombination for all complexes involves a combination of tunneling and hopping via Trp191. For three of the five structures (WT and F82S(W)), the protein favors hopping more than that in the other two structures that have longer heme → ZnP distances (F82Y(I)). Experimentally observed biexponential ET kinetics is explained by the complex locking in alternative coupling pathways, where the acceptor hole state is either primarily localized on ZnP (slow phase) or on Trp191 (fast phase). The large conformational differences between the CcP:Cc interface for the F82Y(I) mutants compared to that the WT and F82S(W) complexes are predicted to change the reorganization energies for the CcP:Cc ET reactions because of changes in solvent exposure and interprotein ET distances. Since the recombination reaction is likely to occur in the inverted Marcus regime, an increased reorganization energy compensates the decreased role for hopping recombination (and the longer transfer distance) in the F82Y(I) mutants. Taken together, coupling pathway and reorganization energy effects for the five protein complexes explain the observed insensitivity of recombination kinetics to donor-acceptor distance and docking pose and also reveals how hopping through aromatic residues can accelerate long-range ET.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Chemistry, Duke University, Durham, NC 27708
| | | | - Judith M. Nocek
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Xiangqian Hu
- Department of Chemistry, Duke University, Durham, NC 27708
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, NC 27708
- Department of Biochemistry, Duke University, Durham, NC 27708
- Department of Physics, Duke University, Durham, NC 27708
| |
Collapse
|
36
|
Electrochemical characterization of dehaloperoxidase adsorbates on COOH/OH mixed self-assembled monolayers. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Alvarez-Paggi D, Meister W, Kuhlmann U, Weidinger I, Tenger K, Zimányi L, Rákhely G, Hildebrandt P, Murgida DH. Disentangling Electron Tunneling and Protein Dynamics of Cytochrome c through a Rationally Designed Surface Mutation. J Phys Chem B 2013; 117:6061-8. [DOI: 10.1021/jp400832m] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- INQUIMAE-CONICET and Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria,
pab. 2, piso 3, C1428EHA-Buenos Aires, Argentina
| | - Wiebke Meister
- Institut für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 135, Sekr. PC14, D-10623-Berlin, Germany
| | - Uwe Kuhlmann
- Institut für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 135, Sekr. PC14, D-10623-Berlin, Germany
| | - Inez Weidinger
- Institut für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 135, Sekr. PC14, D-10623-Berlin, Germany
| | - Katalin Tenger
- Biological Research Center, Institute of Biophysics, H-6726 Szeged, Temesvári
krt. 62, Hungary
| | - László Zimányi
- Biological Research Center, Institute of Biophysics, H-6726 Szeged, Temesvári
krt. 62, Hungary
| | - Gábor Rákhely
- Department
of Biotechnology, University of Szeged,
H-6726, Közép fasor
52, Hungary
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 135, Sekr. PC14, D-10623-Berlin, Germany
| | - Daniel H. Murgida
- INQUIMAE-CONICET and Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria,
pab. 2, piso 3, C1428EHA-Buenos Aires, Argentina
| |
Collapse
|
38
|
Alvarez-Paggi D, Castro MA, Tórtora V, Castro L, Radi R, Murgida DH. Electrostatically Driven Second-Sphere Ligand Switch between High and Low Reorganization Energy Forms of Native Cytochrome c. J Am Chem Soc 2013; 135:4389-97. [DOI: 10.1021/ja311786b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
39
|
Amadei A, Daidone I, Bortolotti CA. A general statistical mechanical approach for modeling redox thermodynamics: the reaction and reorganization free energies. RSC Adv 2013. [DOI: 10.1039/c3ra42842g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
40
|
Clark RA, Trout CJ, Ritchey LE, Marciniak AN, Weinzierl M, Schirra CN, Christopher Kurtz D. Electrochemical titration of carboxylic acid terminated SAMs on evaporated gold: Understanding the ferricyanide electrochemistry at the electrode surface. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2012.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Wang GX, Wang M, Wu ZQ, Bao WJ, Zhou Y, Xia XH. Dependence of the direct electron transfer activity and adsorption kinetics of cytochrome c on interfacial charge properties. Analyst 2013; 138:5777-82. [DOI: 10.1039/c3an01042b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Siwko ME, Corni S. Cytochrome C on a gold surface: investigating structural relaxations and their role in protein–surface electron transfer by molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:5945-56. [DOI: 10.1039/c3cp00146f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Ferreiro DN, Boechi L, Estrin DA, Martí MA. The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin. J Inorg Biochem 2012; 119:75-84. [PMID: 23220591 DOI: 10.1016/j.jinorgbio.2012.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
Flavohemoglobins (FHbs) are members of the globin superfamily, widely distributed among prokaryotes and eukaryotes that have been shown to carry out nitric oxide dioxygenase (NOD) activity. In prokaryotes, such as Escherichia coli, NOD activity is a defence mechanism against the NO release by the macrophages of the hosts' immune system during infection. Because of that, FHbs have been studied thoroughly and several drugs have been developed in an effort to fight infectious processes. Nevertheless, the protein's structural determinants involved in the NOD activity are still poorly understood. In this context, the aim of the present work is to unravel the molecular basis of FHbs structural dynamics-to-function relationship using state of the art computer simulation tools. In an effort to fulfill this goal, we studied three key processes that determine NOD activity, namely i) ligand migration into the active site ii) stabilization of the coordinated oxygen and iii) intra-protein electron transfer (ET). Our results allowed us to determine key factors related to all three processes like the presence of a long hydrophobic tunnel for ligand migration, the presence of a water mediated hydrogen bond to stabilize the coordinated oxygen and therefore achieve a high affinity, and the best possible ET paths between the FAD and the heme, where water molecules play an important role. Taken together the presented results close an important gap in our understanding of the wide and diverse globin structural-functional relationships.
Collapse
Affiliation(s)
- Dardo N Ferreiro
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
44
|
Alternative ground states enable pathway switching in biological electron transfer. Proc Natl Acad Sci U S A 2012; 109:17348-53. [PMID: 23054836 DOI: 10.1073/pnas.1204251109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant Cu(A) redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or "invisible" electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein-protein interactions and membrane potential may optimize and regulate electron-proton energy transduction.
Collapse
|
45
|
Petruk AA, Bartesaghi S, Trujillo M, Estrin DA, Murgida D, Kalyanaraman B, Marti MA, Radi R. Molecular basis of intramolecular electron transfer in proteins during radical-mediated oxidations: computer simulation studies in model tyrosine-cysteine peptides in solution. Arch Biochem Biophys 2012; 525:82-91. [PMID: 22640642 DOI: 10.1016/j.abb.2012.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/05/2012] [Accepted: 05/20/2012] [Indexed: 11/15/2022]
Abstract
Experimental studies in hemeproteins and model Tyr/Cys-containing peptides exposed to oxidizing and nitrating species suggest that intramolecular electron transfer (IET) between tyrosyl radicals (Tyr-O(·)) and Cys residues controls oxidative modification yields. The molecular basis of this IET process is not sufficiently understood with structural atomic detail. Herein, we analyzed using molecular dynamics and quantum mechanics-based computational calculations, mechanistic possibilities for the radical transfer reaction in Tyr/Cys-containing peptides in solution and correlated them with existing experimental data. Our results support that Tyr-O(·) to Cys radical transfer is mediated by an acid/base equilibrium that involves deprotonation of Cys to form the thiolate, followed by a likely rate-limiting transfer process to yield cysteinyl radical and a Tyr phenolate; proton uptake by Tyr completes the reaction. Both, the pKa values of the Tyr phenol and Cys thiol groups and the energetic and kinetics of the reversible IET are revealed as key physico-chemical factors. The proposed mechanism constitutes a case of sequential, acid/base equilibrium-dependent and solvent-mediated, proton-coupled electron transfer and explains the dependency of oxidative yields in Tyr/Cys peptides as a function of the number of alanine spacers. These findings contribute to explain oxidative modifications in proteins that contain sequence and/or spatially close Tyr-Cys residues.
Collapse
Affiliation(s)
- Ariel A Petruk
- Instituto Superior de Investigaciones Biológicas (CONICET-UNT), Chacabuco 461, S.M. de Tucumán, Tucumán, T4000CAN, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sezer M, Millo D, Weidinger IM, Zebger I, Hildebrandt P. Analyzing the catalytic processes of immobilized redox enzymes by vibrational spectroscopies. IUBMB Life 2012; 64:455-64. [PMID: 22535701 DOI: 10.1002/iub.1020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/12/2012] [Indexed: 11/10/2022]
Abstract
Analyzing the structure and function of redox enzymes attached to electrodes is a central challenge in many fields of fundamental and applied life science. Electrochemical techniques such as cyclic voltammetry which are routinely used do not provide insight into the molecular structure and reaction mechanisms of the immobilized proteins. Surface-enhanced infrared absorption (SEIRA) and surface-enhanced resonance Raman (SERR) spectroscopy may fill this gap, if nanostructured Au or Ag are used as conductive support materials. In this account, we will first outline the principles of the methodology including a description of the most important strategies for biocompatible protein immobilization. Subsequently, we will critically review SERR and SEIRA spectroscopic approaches to characterize the protein and active site structure of the immobilized enzymes. Special emphasis is laid on the combination of surface-enhanced vibrational spectroscopies with electrochemical methods to analyze equilibria and dynamics of the interfacial redox processes. Finally, we will assess the potential of SERR and SEIRA spectroscopy for in situ investigations on the basis of the first promising studies on human sulfite oxidase and hydrogenases under turnover conditions.
Collapse
Affiliation(s)
- Murat Sezer
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | | | |
Collapse
|
47
|
Schkolnik G, Utesch T, Salewski J, Tenger K, Millo D, Kranich A, Zebger I, Schulz C, Zimányi L, Rákhely G, Mroginski MA, Hildebrandt P. Mapping local electric fields in proteins at biomimetic interfaces. Chem Commun (Camb) 2011; 48:70-2. [PMID: 22080181 DOI: 10.1039/c1cc13186a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a novel approach for determining the strength of the electric field experienced by proteins immobilised on membrane models. It is based on the vibrational Stark effect of a nitrile label introduced at different positions on engineered proteins and monitored by surface enhanced infrared absorption spectroscopy.
Collapse
Affiliation(s)
- Gal Schkolnik
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hoffmann R, Kriele A, Obloh H, Tokuda N, Smirnov W, Yang N, Nebel CE. The creation of a biomimetic interface between boron-doped diamond and immobilized proteins. Biomaterials 2011; 32:7325-32. [DOI: 10.1016/j.biomaterials.2011.06.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/21/2011] [Indexed: 11/30/2022]
|
49
|
Khoa Ly H, Wisitruangsakul N, Sezer M, Feng JJ, Kranich A, Weidinger IM, Zebger I, Murgida DH, Hildebrandt P. Electric-field effects on the interfacial electron transfer and protein dynamics of cytochrome c. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2010.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Sarewicz M, Pietras R, Froncisz W, Osyczka A. Reorientation of cytochrome c2 upon interaction with oppositely charged macromolecules probed by SR EPR: implications for the role of dipole moment to facilitate collisions in proper configuration for electron transfer. Metallomics 2011; 3:404-9. [PMID: 21431229 DOI: 10.1039/c0mt00105h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of water-soluble cytochrome c (c(2)) with its physiological redox partners is facilitated by electrostatic attractions between the two protein surfaces. Using spin-labeled cytochrome c(2) from Rhodobacter capsulatus and pulse electron paramagnetic resonance (EPR) measurements we compared spatial orientation of cytochrome c(2) upon its binding to surfaces of opposite charge. We observed that cytochrome c(2) can use its negatively charged "back" side when exposed to interact with positively charged surfaces (DEAE resin) which is the opposite to the use of its positively charged "front" side in physiological interaction with negatively charged binding domain of cytochrome bc(1). The later orientation is also adopted upon non-physiological binding of cytochrome c(2) to negatively charged carboxymethyl cellulose resin. These results directly demonstrate how the electric dipolar nature of cytochrome c(2) influences its orientation in interactions with charged surfaces, which may facilitate collisions with other redox proteins in a proper orientation to support physiologically-competent electron transfer. Saturation recovery EPR provides an attractive tool for monitoring spatial orientation of proteins in their interaction with surfaces in liquid phase. It is particularly valuable for metalloproteins engaged in redox reactions as a means to monitor the geometry and dynamics of formation of protein complexes in measurements that are independent of electron transfer processes.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul Gronostajowa 7, 30-307 Kraków, Poland
| | | | | | | |
Collapse
|