1
|
Feid C, Luma L, Fischer T, Löffler JG, Grebenovsky N, Wachtveitl J, Heckel A, Bredenbeck J. Iminothioindoxyl Donors with Exceptionally High Cross Section for Protein Vibrational Energy Transfer. Angew Chem Int Ed Engl 2024; 63:e202317047. [PMID: 38103205 DOI: 10.1002/anie.202317047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/18/2023]
Abstract
Various protein functions are related to vibrational energy transfer (VET) as an important mechanism. The underlying transfer pathways can be experimentally followed by ultrafast Vis-pump/IR-probe spectroscopy with a donor-sensor pair of non-canonical amino acids (ncAAs) incorporated in a protein. However, so far only one donor ncAA, azulenylalanine (AzAla), exists, which suffers from a comparably low Vis extinction coefficient. Here, we introduce two novel donor ncAAs based on an iminothioindoxyl (ITI) chromophore. The dimethylamino-ITI (DMA-ITI) and julolidine-ITI (J-ITI) moieties overcome the limitation of AzAla with a 50 times higher Vis extinction coefficient. While ITI moieties are known for ultrafast photoswitching, DMA-ITI and J-ITI exclusively form a hot ground state on the sub-ps timescale instead, which is essential for their usage as vibrational energy donor. In VET measurements of donor-sensor dipeptides we investigate the performance of the new donors. We observe 20 times larger signals compared to the established AzAla donor, which opens unprecedented possibilities for the study of VET in proteins.
Collapse
Affiliation(s)
- Carolin Feid
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt (Main), Germany
| | - Larita Luma
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt (Main), Germany
| | - Tobias Fischer
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt (Main), Germany
| | - Jan Gerrit Löffler
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt (Main), Germany
| | - Nikolai Grebenovsky
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt (Main), Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt (Main), Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt (Main), Germany
| | - Jens Bredenbeck
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Straße 1, 60438, Frankfurt (Main), Germany
| |
Collapse
|
2
|
Hudson RJ, MacDonald TSC, Cole JH, Schmidt TW, Smith TA, McCamey DR. A framework for multiexcitonic logic. Nat Rev Chem 2024:10.1038/s41570-023-00566-y. [PMID: 38273177 DOI: 10.1038/s41570-023-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 01/27/2024]
Abstract
Exciton science sits at the intersection of chemical, optical and spin-based implementations of information processing, but using excitons to conduct logical operations remains relatively unexplored. Excitons encoding information could be read optically (photoexcitation-photoemission) or electrically (charge recombination-separation), travel through materials via exciton energy transfer, and interact with one another in stimuli-responsive molecular excitonic devices. Excitonic logic offers the potential to mediate electrical, optical and chemical information. Additionally, high-spin triplet and quintet (multi)excitons offer access to well defined spin states of relevance to magnetic field effects, classical spintronics and spin-based quantum information science. In this Roadmap, we propose a framework for developing excitonic computing based on singlet fission (SF) and triplet-triplet annihilation (TTA). Various molecular components capable of modulating SF/TTA for logical operations are suggested, including molecular photo-switching and multi-colour photoexcitation. We then outline a pathway for constructing excitonic logic devices, considering aspects of circuit assembly, logical operation synchronization, and exciton transport and amplification. Promising future directions and challenges are identified, and the potential for realizing excitonic computing in the near future is discussed.
Collapse
Affiliation(s)
- Rohan J Hudson
- School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Exciton Science
| | - Thomas S C MacDonald
- Australian Research Council Centre of Excellence in Exciton Science
- School of Physics, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jared H Cole
- Australian Research Council Centre of Excellence in Exciton Science
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Timothy W Schmidt
- Australian Research Council Centre of Excellence in Exciton Science
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Trevor A Smith
- School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Exciton Science
| | - Dane R McCamey
- Australian Research Council Centre of Excellence in Exciton Science, .
- School of Physics, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Dunlop D, Ludvíková L, Banerjee A, Ottosson H, Slanina T. Excited-State (Anti)Aromaticity Explains Why Azulene Disobeys Kasha's Rule. J Am Chem Soc 2023; 145:21569-21575. [PMID: 37704031 PMCID: PMC10557139 DOI: 10.1021/jacs.3c07625] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 09/15/2023]
Abstract
Fluorescence exclusively occurs from the lowest excited state of a given multiplicity according to Kasha's rule. However, this rule is not obeyed by a handful of anti-Kasha fluorophores whose underlying mechanism is still understood merely on a phenomenological basis. This lack of understanding prevents the rational design and property-tuning of anti-Kasha fluorophores. Here, we propose a model explaining the photophysical properties of an archetypal anti-Kasha fluorophore, azulene, based on its ground- and excited-state (anti)aromaticity. We derived our model from a detailed analysis of the electronic structure of the ground singlet, first excited triplet, and quintet states and of the first and second excited singlet states using the perturbational molecular orbital theory and quantum-chemical aromaticity indices. Our model reveals that the anti-Kasha properties of azulene and its derivatives result from (i) the contrasting (anti)aromaticity of its first and second singlet excited states (S1 and S2, respectively) and (ii) an easily accessible antiaromaticity relief pathway of the S1 state. This explanation of the fundamental cause of anti-Kasha behavior may pave the way for new classes of anti-Kasha fluorophores and materials with long-lived, high-energy excited states.
Collapse
Affiliation(s)
- David Dunlop
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
542/2, Prague 6 160 00, Czech Republic
- Department
of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2 128 40, Czech Republic
| | - Lucie Ludvíková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
542/2, Prague 6 160 00, Czech Republic
| | - Ambar Banerjee
- Division
of X-ray Photon Science, Department of Physics and Astronomy—Ångström
Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden
| | - Henrik Ottosson
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 516, Uppsala 751 20, Sweden
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
542/2, Prague 6 160 00, Czech Republic
| |
Collapse
|
4
|
Hudson RJ, Manian A, Hall CR, Schmidt TW, Russo SP, Ghiggino KP, Smith TA. Quantifying the Relaxation Dynamics of Higher Electronic Excited States in Perylene. J Phys Chem Lett 2023; 14:8000-8008. [PMID: 37650733 DOI: 10.1021/acs.jpclett.3c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Gating logical operations through high-lying electronic excited states presents opportunities for developing ultrafast, subnanometer computational devices. A lack of molecular systems with sufficiently long-lived higher excited states has hindered practical realization of such devices, but recent studies have reported intriguing photophysics from high-lying excited states of perylene. In this work, we use femtosecond spectroscopy supported by quantum chemical calculations to identify and quantify the relaxation dynamics of monomeric perylene's higher electronic excited states. The 21B2u state is accessed through single-photon absorption at 250 nm, while the optically dark 21Ag state is excited via the 11B3u state. Population of either state results in subpicosecond relaxation to the 11B3u state, and we quantify 21Ag and 21B2u state lifetimes of 340 and 530 fs, respectively. These lifetimes are significantly longer than the singlet fission time constant from the perylene 21B2u state, suggesting that the higher electronic states of perylene may be useful for gating logical operations.
Collapse
Affiliation(s)
- Rohan J Hudson
- School of Chemistry, The University of Melbourne, Parkville 3010, VIC, Australia
- Australian Research Council Centre of Excellence in Exciton Science, Parkville 3010, Australia
| | - Anjay Manian
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
- Australian Research Council Centre of Excellence in Exciton Science, Parkville 3010, Australia
| | - Christopher R Hall
- School of Chemistry, The University of Melbourne, Parkville 3010, VIC, Australia
- Australian Research Council Centre of Excellence in Exciton Science, Parkville 3010, Australia
| | - Timothy W Schmidt
- School of Chemistry, The University of New South Wales, Sydney 2052, NSW Australia
- Australian Research Council Centre of Excellence in Exciton Science, Parkville 3010, Australia
| | - Salvy P Russo
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
- Australian Research Council Centre of Excellence in Exciton Science, Parkville 3010, Australia
| | - Kenneth P Ghiggino
- School of Chemistry, The University of Melbourne, Parkville 3010, VIC, Australia
- Australian Research Council Centre of Excellence in Exciton Science, Parkville 3010, Australia
| | - Trevor A Smith
- School of Chemistry, The University of Melbourne, Parkville 3010, VIC, Australia
- Australian Research Council Centre of Excellence in Exciton Science, Parkville 3010, Australia
| |
Collapse
|
5
|
Vardanyan A, Villinger A, Ehlers P, Langer P. Synthesis and Properties of Carbo- and Heterocyclic Benz[ a]azulenes. J Org Chem 2023; 88:11411-11423. [PMID: 37540628 DOI: 10.1021/acs.joc.2c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
A new and convenient synthesis of aryl-substituted naphtho[2,1-a]azulenes by the combination of Suzuki-Miyaura, Sonogashira, and cycloisomerization reactions is reported. The methodology was applied to the synthesis of hitherto unknown azuleno[1,2-h]quinolines, cyclohepta[1,2]indeno[4,5-b]thiophenes, and cyclohepta[1,2]indeno[4,5-c]thiophenes. The impact of different fused-heterocyclic rings on the photophysical and electrochemical properties of these azulene derivatives was studied by experimental and theoretical methods and hence provides a rationale for the preparation of novel azulene derivatives with improved properties for application as organic materials.
Collapse
Affiliation(s)
- Arpine Vardanyan
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Ehlers
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
- Leibniz Institut für Katalyse an der Universität Rostock, A.-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Peter Langer
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
- Leibniz Institut für Katalyse an der Universität Rostock, A.-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
6
|
Karak P, Moitra T, Ruud K, Chakrabarti S. Photophysics of uracil: an explicit time-dependent generating function-based method combining both nonadiabatic and spin-orbit coupling effects. Phys Chem Chem Phys 2023; 25:8209-8219. [PMID: 36881024 DOI: 10.1039/d2cp05955j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We present a composite framework for calculating the rates of non-radiative deactivation processes, namely internal conversion (IC) and intersystem crossing (ISC), on an equal footing by explicitly computing the non-adiabatic coupling (NAC) and spin-orbit coupling (SOC) constants, respectively. The stationary-state approach uses a time-dependent generating function based on Fermi's golden rule. We validate the applicability of the framework by computing the rate of IC for azulene, obtaining comparable rates to experimental and previous theoretical results. Next, we investigate the photophysics associated with the complex photodynamics of the uracil molecule. Interestingly, our simulated rates corroborate experimental observations. Detailed analyses using Duschinsky rotation matrices, displacement vectors and NAC matrix elements are presented to interpret the findings alongside testing the suitability of the approach for such molecular systems. The suitability of the Fermi's golden rule based method is explained qualitatively in terms of single-mode potential energy surfaces.
Collapse
Affiliation(s)
- Pijush Karak
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata-700009, West Bengal, India.
| | - Torsha Moitra
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway. .,Norwegian Defence Research Establishment, P.O.Box 25, 2027 Kjeller, Norway
| | - Swapan Chakrabarti
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata-700009, West Bengal, India.
| |
Collapse
|
7
|
Boeije Y, Olivucci M. From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions. Chem Soc Rev 2023; 52:2643-2687. [PMID: 36970950 DOI: 10.1039/d2cs00719c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
This review discusses how ultrafast organic photochemical reactions are controlled by conical intersections, highlighting that decay to the ground-state at multiple points of the intersection space results in their multi-mode character.
Collapse
Affiliation(s)
- Yorrick Boeije
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Massimo Olivucci
- Chemistry Department, University of Siena, Via Aldo Moro n. 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, USA
| |
Collapse
|
8
|
Solowan HP, Malý P, Brixner T. Direct comparison of molecular-beam versus liquid-phase pump-probe and two-dimensional spectroscopy on the example of azulene. J Chem Phys 2022; 157:044201. [DOI: 10.1063/5.0088365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although azulene's anomalous fluorescence originating from S2 rather than from S1 is the textbook example for the violation of Kasha's rule, the understanding of the underlying processes is still a subject of investigation. Here, we use action-based coherent two-dimensional electronic spectroscopy (2DES) to measure a single Liouville-space response pathway from S0 via S1 to the S2 state of azulene. We directly compare this sequential excitation in liquid phase detecting S2 fluorescence and in a molecular beam detecting photoionized cations, using the S2 anomalous emission to our advantage. We complement the 2DES study by pump-probe measurements of S1 excitation dynamics, including vibrational relaxation and passage through a conical intersection. The direct comparison of liquid and gas phase allows us to assess the effect of the solvent and the interplay of intra- and inter-molecular energy relaxation.
Collapse
Affiliation(s)
| | - Pavel Malý
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Germany
| | - Tobias Brixner
- Institut fuer Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Germany
| |
Collapse
|
9
|
Awuku S, Bradley SJ, Ghiggino KP, Steer RP, Stevens AL, White JM, Yeow C. Photophysics and spectroscopy of 1,2-Benzazulene. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Hewitt P, Shultz DA, Kirk ML. Rules for Magnetic Exchange in Azulene-Bridged Biradicals: Quo Vadis? J Org Chem 2021; 86:15577-15587. [PMID: 34644082 DOI: 10.1021/acs.joc.1c02085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electronic coupling through organic bridges facilitates magnetic exchange interactions and controls electron transfer and single-molecule device electron transport. Electronic coupling through alternant π-systems (e.g., benzene) is better understood than the corresponding coupling through nonalternant π-systems (e.g., azulene). Herein, we examine the structure, spectroscopy, and magnetic exchange coupling in two biradicals (1,3-SQ2Az and 1,3-SQ-Az-NN; SQ = the zinc(II) complex of spin-1/2 semiquinone radical anion, NN = spin-1/2 nitronylnitroxide; Az = azulene) that possess nonalternant azulene π-system bridges. The SQ radical spin density in both molecules is delocalized into the Az π-system, while the NN spin is effectively localized onto the five-atom ONCNO π-system of NN radical. The spin distributions and interactions are probed by EPR spectroscopy and magnetic susceptibility measurements. We find that J = +38 cm-1 for 1,3-SQ2Az and J = +9 cm-1 for 1,3-SQ-Az-NN (H=-2JS^SQ·S^SQorNN). Our results highlight the differences in exchange coupling mediated by azulene compared to exchange coupling mediated by alternant π-systems.
Collapse
Affiliation(s)
- Patrick Hewitt
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - David A Shultz
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Martin L Kirk
- Department of Chemistry, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
11
|
Ren JJ, Wang YH, Li WT, Jiang T, Shuai ZG. Time-dependent density matrix renormalization group coupled with n-mode representation potentials for the excited state radiationless decay rate: Formalism and application to azulene. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2108138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jia-jun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuan-heng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei-tang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhi-gang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Lvov AG, Bredihhin A. Azulene as an ingredient for visible-light- and stimuli-responsive photoswitches. Org Biomol Chem 2021; 19:4460-4468. [PMID: 33949609 DOI: 10.1039/d1ob00422k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The azulene molecule features a unique combination of optical, luminescence, and stimuli-responsive properties. This makes the azulene motif a promising functional group to be introduced in photoswitches. Recent challenges in the field of photochromic compounds require the development of new approaches to molecules that are switched by visible light (400-760 nm), are proton responsive and have advanced luminescent properties. Merging azulene with photoswitches opens prospects for fulfilling these requirements. Herein, we highlight recent results on the application of this hydrocarbon motif in various photochromic systems, such as stilbenes, diarylethenes, and azobenzenes.
Collapse
Affiliation(s)
- Andrey G Lvov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1, Favorsky St., Irkutsk, 664033, Russian Federation. and Irkutsk National Research Technical University 83, Lermontov St., Irkutsk, 664074, Russian Federation
| | | |
Collapse
|
13
|
Farfan CA, Turner DB. A systematic model study quantifying how conical intersection topography modulates photochemical reactions. Phys Chem Chem Phys 2020; 22:20265-20283. [PMID: 32966428 DOI: 10.1039/d0cp03464a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite their important role in photochemistry and expected presence in most polyatomic molecules, conical intersections have been thoroughly characterized in a comparatively small number of systems. Conical intersections can confer molecular photoreactivity or photostability, often with remarkable efficacy, due to their unique structure: at a conical intersection, the adiabatic potential energy surfaces of two or more electronic states are degenerate, enabling ultrafast decay from an excited state without radiative emission, known as nonadiabatic transfer. Furthermore, the precise conical intersection topography determines fundamental properties of photochemical processes, including excited-state decay rate, efficacy, and molecular products that are formed. However, these relationships have yet to be defined comprehensively. In this article, we use an adaptable computational model to investigate a variety of conical intersection topographies, simulate resulting nonadiabatic dynamics, and calculate key photochemical observables. We varied the vibrational mode frequencies to modify conical intersection topography systematically in four primary classes of conical intersections and quantified the resulting rate, total yield, and product yield of nonadiabatic decay. The results reveal that higher vibrational mode frequencies reduce nonadiabatic transfer, but increase the transfer rate and resulting photoproduct formation. These trends can inform progress toward experimental control of photochemical reactions or tuning of molecules' photochemical properties based on conical intersections and their topography.
Collapse
Affiliation(s)
- Camille A Farfan
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Daniel B Turner
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
14
|
Hattori Y, Maejima T, Sawae Y, Kitai JI, Morimoto M, Toyoda R, Nishihara H, Yokojima S, Nakamura S, Uchida K. Cyclization from Higher Excited States of Diarylethenes Having a Substituted Azulene Ring. Chemistry 2020; 26:11441-11450. [PMID: 32432373 DOI: 10.1002/chem.202001671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Indexed: 02/06/2023]
Abstract
The cyclization reaction of diarylethenes having an azulene ring occurs only via higher excited states. Novel diarylethenes having an azulene ring with a strong donor or acceptor were synthesized and examined in these reactions. A derivative having an electron-donating 1,3-benzodithiol-2-ylidenemethyl group at the 1-position of the azulene ring showed photochromism, whereas neither a derivative having a π-conjugated electron-donating group at the 3-position of the azulene ring nor derivatives having a π-conjugated electron-withdrawing group at the 1- or 3-position of the azulene ring showed any photochromism. The photoreactivities of these compounds were explained by calculating forces and bond orders on the excited states using density functional theory (DFT) and time-dependent (TD)-DFT.
Collapse
Affiliation(s)
- Yohei Hattori
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Tatsuya Maejima
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Yumi Sawae
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Jun-Ichiro Kitai
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Masakazu Morimoto
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Yokojima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shinichiro Nakamura
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kingo Uchida
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
15
|
Prlj A, Begušić T, Zhang ZT, Fish GC, Wehrle M, Zimmermann T, Choi S, Roulet J, Moser JE, Vaníček J. Semiclassical Approach to Photophysics Beyond Kasha's Rule and Vibronic Spectroscopy Beyond the Condon Approximation. The Case of Azulene. J Chem Theory Comput 2020; 16:2617-2626. [PMID: 32119547 DOI: 10.1021/acs.jctc.0c00079] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azulene is a prototypical molecule with an anomalous fluorescence from the second excited electronic state, thus violating Kasha's rule, and with an emission spectrum that cannot be understood within the Condon approximation. To better understand the photophysics and spectroscopy of azulene and other nonconventional molecules, we developed a systematic, general, and efficient computational approach combining the semiclassical dynamics of nuclei with ab initio electronic structure. First, to analyze the nonadiabatic effects, we complement the standard population dynamics by a rigorous measure of adiabaticity, estimated with the multiple-surface dephasing representation. Second, we propose a new semiclassical method for simulating non-Condon spectra, which combines the extended thawed Gaussian approximation with the efficient single-Hessian approach. S1 ← S0 and S2 ← S0 absorption and S2 → S0 emission spectra of azulene, recorded in a new set of experiments, agree very well with our calculations. We find that accuracy of the evaluated spectra requires the treatment of anharmonicity, Herzberg-Teller, and mode-mixing effects.
Collapse
Affiliation(s)
- Antonio Prlj
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tomislav Begušić
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Zhan Tong Zhang
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - George Cameron Fish
- Photochemical Dynamics Group, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marius Wehrle
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tomáš Zimmermann
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Seonghoon Choi
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Julien Roulet
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jacques-Edouard Moser
- Photochemical Dynamics Group, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
17
|
Murfin L, Weber M, Park SJ, Kim WT, Lopez-Alled CM, McMullin CL, Pradaux-Caggiano F, Lyall CL, Kociok-Köhn G, Wenk J, Bull SD, Yoon J, Kim HM, James TD, Lewis SE. Azulene-Derived Fluorescent Probe for Bioimaging: Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy. J Am Chem Soc 2019; 141:19389-19396. [PMID: 31773957 PMCID: PMC6909233 DOI: 10.1021/jacs.9b09813] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 12/28/2022]
Abstract
Two-photon fluorescence microscopy has become an indispensable technique for cellular imaging. Whereas most two-photon fluorescent probes rely on well-known fluorophores, here we report a new fluorophore for bioimaging, namely azulene. A chemodosimeter, comprising a boronate ester receptor motif conjugated to an appropriately substituted azulene, is shown to be an effective two-photon fluorescent probe for reactive oxygen species, showing good cell penetration, high selectivity for peroxynitrite, no cytotoxicity, and excellent photostability.
Collapse
Affiliation(s)
- Lloyd
C. Murfin
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Maria Weber
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- Center
for Sustainable Circular Technologies, University
of Bath, Bath BA2 7AY, United Kingdom
| | - Sang Jun Park
- Department
of Energy Systems Research, Ajou University, Suwon 443-749, South Korea
| | - Won Tae Kim
- Department
of Energy Systems Research, Ajou University, Suwon 443-749, South Korea
| | - Carlos M. Lopez-Alled
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- Center
for Sustainable Circular Technologies, University
of Bath, Bath BA2 7AY, United Kingdom
| | - Claire L. McMullin
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | - Catherine L. Lyall
- Materials
and Chemical Characterization (MC), University of Bath, Bath BA2 7AY, United Kingdom
| | - Gabriele Kociok-Köhn
- Materials
and Chemical Characterization (MC), University of Bath, Bath BA2 7AY, United Kingdom
| | - Jannis Wenk
- Center
for Sustainable Circular Technologies, University
of Bath, Bath BA2 7AY, United Kingdom
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Steven D. Bull
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- Center
for Sustainable Circular Technologies, University
of Bath, Bath BA2 7AY, United Kingdom
| | - Juyoung Yoon
- Department
of Chemistry and Nano Science, Ewha Woman’s
University, Seoul 120-750, South Korea
| | - Hwan Myung Kim
- Department
of Energy Systems Research, Ajou University, Suwon 443-749, South Korea
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- Center
for Sustainable Circular Technologies, University
of Bath, Bath BA2 7AY, United Kingdom
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- Center
for Sustainable Circular Technologies, University
of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
18
|
Steer RP. Photophysics of molecules containing multiples of the azulene carbon framework. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Wójcik P, Korona T, Tomza M. Interactions of benzene, naphthalene, and azulene with alkali-metal and alkaline-earth-metal atoms for ultracold studies. J Chem Phys 2019; 150:234106. [PMID: 31228913 DOI: 10.1063/1.5094907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We consider collisional properties of polyatomic aromatic hydrocarbon molecules immersed into ultracold atomic gases and investigate intermolecular interactions of exemplary benzene, naphthalene, and azulene with alkali-metal (Li, Na, K, Rb, and Cs) and alkaline-earth-metal (Mg, Ca, Sr, and Ba) atoms. We apply the state-of-the-art ab initio techniques to compute the potential energy surfaces (PESs). We use the coupled cluster method restricted to single, double, and noniterative triple excitations to reproduce the correlation energy and the small-core energy-consistent pseudopotentials to model the scalar relativistic effects in heavier metal atoms. We also report the leading long-range isotropic and anisotropic dispersion and induction interaction coefficients. The PESs are characterized in detail, and the nature of intermolecular interactions is analyzed and benchmarked using symmetry-adapted perturbation theory. The full three-dimensional PESs are provided for the selected systems within the atom-bond pairwise additive representation and can be employed in scattering calculations. The present study of the electronic structure is the first step toward the evaluation of prospects for sympathetic cooling of polyatomic aromatic molecules with ultracold atoms. We suggest azulene, an isomer of naphthalene which possesses a significant permanent electric dipole moment and optical transitions in the visible range, as a promising candidate for electric field manipulation and buffer-gas or sympathetic cooling.
Collapse
Affiliation(s)
- Paweł Wójcik
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Tatiana Korona
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Tomza
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
20
|
Aulin YV, Liu M, Piotrowiak P. Ultrafast Vibrational Cooling Inside of a Molecular Container. J Phys Chem Lett 2019; 10:2434-2438. [PMID: 31018088 DOI: 10.1021/acs.jpclett.9b00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vibrational cooling of azulene encapsulated in a hemicarcerand molecular container was studied by pump-probe spectroscopy. Within 1.5 ps of excitation of azulene to the S1 state, rapid internal conversion through a conical intersection leads to the formation of a vibrationally hot (∼1080 K) ground state, the subsequent cooling of which can be monitored by tracking the evolution of the red-shifted hot band at the edge of the ground-state absorption. It was found that the cooling of the hot S0 state of azulene in the host-guest complex (hemicarceplex) is 2-4 times faster than that in common organic solvents. Such large acceleration points to a high density of matching vibrational modes and efficient mechanical coupling between the guest and the host. The experimental observations were fully corroborated by the results of molecular dynamics simulations.
Collapse
Affiliation(s)
- Yaroslav V Aulin
- Department of Chemistry , Rutgers University-Newark , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Mengdi Liu
- Department of Chemistry , Rutgers University-Newark , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Piotr Piotrowiak
- Department of Chemistry , Rutgers University-Newark , 73 Warren Street , Newark , New Jersey 07102 , United States
| |
Collapse
|
21
|
Hanasaki K, Kanno M, Niehaus TA, Kono H. An efficient approximate algorithm for nonadiabatic molecular dynamics. J Chem Phys 2019; 149:244117. [PMID: 30599729 DOI: 10.1063/1.5046757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We propose a modification to the nonadiabatic surface hopping calculation method formulated in a paper by Yu et al. [Phys. Chem. Chem. Phys. 16, 25883 (2014)], which is a multidimensional extension of the Zhu-Nakamura theory with a practical diabatic gradient estimation algorithm. In our modification, their diabatic gradient estimation algorithm, which is based on a simple interpolation of the adiabatic potential energy surfaces, is replaced by an algorithm using the numerical derivatives of the adiabatic gradients. We then apply the algorithm to several models of nonadiabatic dynamics, both analytic and ab initio models, to numerically demonstrate that our method indeed widens the applicability and robustness of their method. We also discuss the validity and limitations of our new nonadiabatic surface hopping method while considering in mind potential applications to excited-state dynamics of biomolecules or unconventional nonadiabatic dynamics such as radiation decay processes in ultraintense X-ray fields.
Collapse
Affiliation(s)
- Kota Hanasaki
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Manabu Kanno
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Thomas A Niehaus
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeubanne, France
| | - Hirohiko Kono
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
22
|
Letrun R, Lang B, Yushchenko O, Wilcken R, Svechkarev D, Kolodieznyi D, Riedle E, Vauthey E. Excited-state dynamics of a molecular dyad with two orthogonally-oriented fluorophores. Phys Chem Chem Phys 2018; 20:30219-30230. [PMID: 30489576 DOI: 10.1039/c8cp05356a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The excited-state dynamics of a T-shaped bichromophoric molecule, consisting of two strong fluorophores, diphenyloxazole and diphenylpyrazoline, directly linked in an orthogonal geometry, was investigated. Despite the weak coupling ensured by this geometry and confirmed by the electronic absorption spectra, this dyad exhibits only weak fluorescence in both apolar and polar solvents, with fluorescence lifetimes ranging from 200 ps in CHX to 10 ps in ACN. Ultrafast spectroscopic measurements reveal that the fluorescence quenching in polar solvents is due to the population of a charge-separated state. In non-polar solvents, this process is energetically not feasible, and a quenching due to an efficient intersystem crossing (ISC) to the triplet manifold is proposed, based on quantum-chemical calculations. This process occurs via the spin-orbit charge-transfer (SOCT) ISC mechanism, which is enabled by the charge-transfer character acquired by the S1 state of the dyad upon structural relaxation and by the orthogonal arrangement of the molecular orbitals involved in the transition. The same mechanism is proposed to explain why the recombination of the charge-separated state is faster in medium than in highly polar solvents, as well as to account for the fast decay of the lowest triplet state to the ground state.
Collapse
Affiliation(s)
- Romain Letrun
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fregoni J, Granucci G, Coccia E, Persico M, Corni S. Manipulating azobenzene photoisomerization through strong light-molecule coupling. Nat Commun 2018; 9:4688. [PMID: 30409994 PMCID: PMC6224570 DOI: 10.1038/s41467-018-06971-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
The formation of hybrid light–molecule states (polaritons) offers a new strategy to manipulate the photochemistry of molecules. To fully exploit its potential, one needs to build a toolbox of polaritonic phenomenologies that supplement those of standard photochemistry. By means of a state-of-the-art computational photochemistry approach extended to the strong-coupling regime, here we disclose various mechanisms peculiar of polaritonic chemistry: coherent population oscillations between polaritons, quenching by trapping in dead-end polaritonic states and the alteration of the photochemical reaction pathway and quantum yields. We focus on azobenzene photoisomerization, that encompasses the essential features of complex photochemical reactions such as the presence of conical intersections and reaction coordinates involving multiple internal modes. In the strong coupling regime, a polaritonic conical intersection arises and we characterize its role in the photochemical process. Our chemically detailed simulations provide a framework to rationalize how the strong coupling impacts the photochemistry of realistic molecules. Manipulation of the photochemistry of molecules is traditionally achieved through synthetic chemical modifications. Here the authors use computational photochemistry to show how to control azobenzene photoisomerization through hybrid light–molecule states (polaritons).
Collapse
Affiliation(s)
- J Fregoni
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, University of Modena and Reggio Emilia, I-41125, Modena, Italy.,Istituto Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, I-41125, Modena, Italy
| | - G Granucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, I-56124, Pisa, Italy.
| | - E Coccia
- Dipartimento di Scienze Chimiche, University of Padova, I-35131, Padova, Italy
| | - M Persico
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, I-56124, Pisa, Italy
| | - S Corni
- Istituto Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, I-41125, Modena, Italy. .,Dipartimento di Scienze Chimiche, University of Padova, I-35131, Padova, Italy.
| |
Collapse
|
24
|
Japahuge A, Zeng T. Theoretical Studies of Singlet Fission: Searching for Materials and Exploring Mechanisms. Chempluschem 2018; 83:146-182. [PMID: 31957288 DOI: 10.1002/cplu.201700489] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/31/2017] [Indexed: 02/02/2023]
Abstract
In this Review article, a survey is given for theoretical studies in the subject of singlet fission. Singlet fission converts one singlet exciton to two triplet excitons. With the doubled number of excitons and the longer lifetime of the triplets, singlet fission provides an avenue to improve the photoelectric conversion efficiency in organic photovoltaic devices. It has been a subject of intense research in the past decade. Theoretical studies play an essential role in understanding singlet fission. This article presents a Review of theoretical studies in singlet fission since 2006, the year when the research interest in this subject was reignited. Both electronic structure and dynamics studies are covered. Electronic structure studies provide guidelines for designing singlet fission chromophores and insights into the couplings between single- and multi-excitonic states. The latter provides fundamental knowledge for engineering interchromophore conformations to enhance the fission efficiency. Dynamics studies reveal the importance of vibronic couplings in singlet fission.
Collapse
Affiliation(s)
- Achini Japahuge
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S5B6, Canada
| | - Tao Zeng
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S5B6, Canada
| |
Collapse
|
25
|
Li Z, Inhester L, Liekhus-Schmaltz C, Curchod BFE, Snyder JW, Medvedev N, Cryan J, Osipov T, Pabst S, Vendrell O, Bucksbaum P, Martinez TJ. Ultrafast isomerization in acetylene dication after carbon K-shell ionization. Nat Commun 2017; 8:453. [PMID: 28878226 PMCID: PMC5587545 DOI: 10.1038/s41467-017-00426-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 06/28/2017] [Indexed: 11/09/2022] Open
Abstract
Ultrafast proton migration and isomerization are key processes for acetylene and its ions. However, the mechanism for ultrafast isomerization of acetylene [HCCH]2+ to vinylidene [H2CC]2+ dication remains nebulous. Theoretical studies show a large potential barrier ( > 2 eV) for isomerization on low-lying dicationic states, implying picosecond or longer isomerization timescales. However, a recent experiment at a femtosecond X-ray free-electron laser suggests sub-100 fs isomerization. Here we address this contradiction with a complete theoretical study of the dynamics of acetylene dication produced by Auger decay after X-ray photoionization of the carbon atom K shell. We find no sub-100 fs isomerization, while reproducing the salient features of the time-resolved Coulomb imaging experiment. This work resolves the seeming contradiction between experiment and theory and also calls for careful interpretation of structural information from the widely applied Coulomb momentum imaging method. The timescale of isomerization in molecules involving ultrafast migration of constituent atoms is difficult to measure. Here the authors report that sub-100 fs isomerization time on acetylene dication in lower electronic states is not possible and point to misinterpretation of recent experimental results.
Collapse
Affiliation(s)
- Zheng Li
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA.,Department of Chemistry and the PULSE Institute, Stanford University, 333 Campus Drive, Stanford, California, 94305, USA
| | - Ludger Inhester
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, D-22607, Hamburg, Germany.,Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, D-22761, Hamburg, Germany
| | - Chelsea Liekhus-Schmaltz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA.,Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California, 94305, USA
| | - Basile F E Curchod
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA.,Department of Chemistry and the PULSE Institute, Stanford University, 333 Campus Drive, Stanford, California, 94305, USA
| | - James W Snyder
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA.,Department of Chemistry and the PULSE Institute, Stanford University, 333 Campus Drive, Stanford, California, 94305, USA
| | - Nikita Medvedev
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, D-22607, Hamburg, Germany.,Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic.,Laser Plasma Department, Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 3, 182 00, Prague 8, Czech Republic
| | - James Cryan
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA
| | - Timur Osipov
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA
| | - Stefan Pabst
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts, 02138, USA
| | - Oriol Vendrell
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000, Aarhus, Denmark
| | - Phil Bucksbaum
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA.,Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California, 94305, USA
| | - Todd J Martinez
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025, USA. .,Department of Chemistry and the PULSE Institute, Stanford University, 333 Campus Drive, Stanford, California, 94305, USA.
| |
Collapse
|
26
|
Dijkstra AG, Prokhorenko VI. Simulation of photo-excited adenine in water with a hierarchy of equations of motion approach. J Chem Phys 2017; 147:064102. [DOI: 10.1063/1.4997433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Arend G. Dijkstra
- University of Leeds, School of Chemistry and School of Physics and Astronomy, Leeds LS2 9JT, United Kingdom
| | - Valentyn I. Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
27
|
Richings GW, Habershon S. Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces. J Chem Theory Comput 2017; 13:4012-4024. [DOI: 10.1021/acs.jctc.7b00507] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gareth W. Richings
- Department of Chemistry and
Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department of Chemistry and
Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
28
|
Banerjee S, Skouteris D, Barone V. A diabatic electronic state system to describe the internal conversion of azulene. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS : ICCSA ... : INTERNATIONAL CONFERENCE ... PROCEEDINGS. ICCSA (CONFERENCE) 2017; 10408:328-337. [PMID: 31032486 PMCID: PMC6485616 DOI: 10.1007/978-3-319-62404-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A diabatic system of two electronic potential energy surfaces as well as the coupling between them is presented. The system is to be used to study the dynamics of the S1 → S0 internal conversion of azulene and is based on single point calculations of the minima of the two surfaces and a dipole-quadrupole (DQ) diabatization. Based on this, a couple of harmonic diabatic surfaces together with a linear coupling surface have been devised. Some preliminary dynamics results are shown.
Collapse
|
29
|
Savarese M, Raucci U, Netti PA, Adamo C, Rega N, Ciofini I. A qualitative model to identify non-radiative decay channels: the spiropyran as case study. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1966-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Fdez. Galván I, Delcey MG, Pedersen TB, Aquilante F, Lindh R. Analytical State-Average Complete-Active-Space Self-Consistent Field Nonadiabatic Coupling Vectors: Implementation with Density-Fitted Two-Electron Integrals and Application to Conical Intersections. J Chem Theory Comput 2016; 12:3636-53. [DOI: 10.1021/acs.jctc.6b00384] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Mickaël G. Delcey
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Thomas Bondo Pedersen
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033 Blindern, 0315 Oslo, Norway
| | - Francesco Aquilante
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, IT-40126 Bologna, Italy
| | | |
Collapse
|
31
|
Monti F, Venturini A, Nenov A, Tancini F, Finke AD, Diederich F, Armaroli N. Anilino-Substituted Multicyanobuta-1,3-diene Electron Acceptors: TICT Molecules with Accessible Conical Intersections. J Phys Chem A 2015; 119:10677-83. [DOI: 10.1021/acs.jpca.5b09291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Filippo Monti
- Istituto
per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Alessandro Venturini
- Istituto
per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Artur Nenov
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Francesca Tancini
- Laboratorium
für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Aaron D. Finke
- Laboratorium
für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - François Diederich
- Laboratorium
für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Nicola Armaroli
- Istituto
per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
32
|
Richings GW, Worth GA. A Practical Diabatisation Scheme for Use with the Direct-Dynamics Variational Multi-Configuration Gaussian Method. J Phys Chem A 2015; 119:12457-70. [DOI: 10.1021/acs.jpca.5b07921] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gareth W. Richings
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Graham A. Worth
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
33
|
Tang T, Lin T, Wang F, He C. Origin of Near-Infrared Absorption for Azulene-Containing Conjugated Polymers upon Protonation or Oxidation. J Phys Chem B 2015; 119:8176-83. [DOI: 10.1021/acs.jpcb.5b01613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Tang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore 117576
| | - Tingting Lin
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore, Singapore, 117602
| | - FuKe Wang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore 117543
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore, Singapore, 117602
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore 117576
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore, Singapore, 117602
| |
Collapse
|
34
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 760] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
35
|
Vosskötter S, Konieczny P, Marian CM, Weinkauf R. Towards an understanding of the singlet–triplet splittings in conjugated hydrocarbons: azulene investigated by anion photoelectron spectroscopy and theoretical calculations. Phys Chem Chem Phys 2015; 17:23573-81. [DOI: 10.1039/c5cp01826a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron density overlaps are correlated with singlet triplet splittings: azulene as a test case.
Collapse
Affiliation(s)
- Stefan Vosskötter
- Institute of Physical Chemistry
- Heinrich-Heine-Universität
- Universitätsstrasse 1
- 40225 Düsseldorf
- Germany
| | - Paul Konieczny
- Institute of Physical Chemistry
- Heinrich-Heine-Universität
- Universitätsstrasse 1
- 40225 Düsseldorf
- Germany
| | - Christel M. Marian
- Institute of Theoretical Chemistry
- Heinrich-Heine-Universität
- Universitätsstrasse 1
- 40225 Düsseldorf
- Germany
| | - Rainer Weinkauf
- Institute of Physical Chemistry
- Heinrich-Heine-Universität
- Universitätsstrasse 1
- 40225 Düsseldorf
- Germany
| |
Collapse
|
36
|
Zeng T, Ananth N, Hoffmann R. Seeking small molecules for singlet fission: a heteroatom substitution strategy. J Am Chem Soc 2014; 136:12638-47. [PMID: 25140824 DOI: 10.1021/ja505275m] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We design theoretically small molecule candidates for singlet fission chromophores, aiming to achieve a balance between sufficient diradical character and kinetic persistence. We develop a perturbation strategy based on the captodative effect to introduce diradical character into small π-systems. Specifically, this can be accomplished by replacing pairs of not necessarily adjacent C atoms with isoelectronic and isosteric pairs of B and N atoms. Three rules of thumb emerge from our studies to aid further design: (i) Lewis structures provide insight into likely diradical character; (ii) formal radical centers of the diradical must be well-separated; (iii) stabilization of radical centers by a donor (N) and an acceptor (B) is essential. Following the rules, we propose candidate molecules. Employing reliable multireference calculations for excited states, we identify three likely candidate molecules for SF chromophores. These include a benzene, a napthalene, and an azulene, where four C atoms are replaced by a pair of B and a pair of N atoms.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | | | | |
Collapse
|
37
|
Chiang YC, Klaiman S, Otto F, Cederbaum LS. The exact wavefunction factorization of a vibronic coupling system. J Chem Phys 2014; 140:054104. [DOI: 10.1063/1.4863315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Murai M, Ku SY, Treat ND, Robb MJ, Chabinyc ML, Hawker CJ. Modulating structure and properties in organic chromophores: influence of azulene as a building block. Chem Sci 2014. [DOI: 10.1039/c4sc01623h] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The properties of isomeric azulene derivatives, substituted through the 5-membered ring, were examined using a combination of experimentation and theoretical calculations for a series of well-defined electroactive oligomers.
Collapse
Affiliation(s)
- Masahito Murai
- Materials Research Laboratory
- University of California
- Santa Barbara, USA
- Division of Chemistry and Biotechnology
- Graduate School of Natural Science and Technology
| | - Sung-Yu Ku
- Materials Research Laboratory
- University of California
- Santa Barbara, USA
| | - Neil D. Treat
- Materials Research Laboratory
- University of California
- Santa Barbara, USA
- Materials Department
- University of California
| | - Maxwell J. Robb
- Materials Research Laboratory
- University of California
- Santa Barbara, USA
- Department of Chemistry and Biochemistry
- University of California
| | - Michael L. Chabinyc
- Materials Research Laboratory
- University of California
- Santa Barbara, USA
- Materials Department
- University of California
| | - Craig J. Hawker
- Materials Research Laboratory
- University of California
- Santa Barbara, USA
- Materials Department
- University of California
| |
Collapse
|
39
|
Robb MA. In This Molecule There Must Be a Conical Intersection. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2014. [DOI: 10.1016/b978-0-12-800256-8.00003-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
40
|
Blancafort L, Robb MA. A Valence Bond Description of the Prefulvene Extended Conical Intersection Seam of Benzene. J Chem Theory Comput 2012; 8:4922-30. [DOI: 10.1021/ct300625u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lluís Blancafort
- Institut de Química Computacional
and Departament de Química, Universitat de Girona, Campus de
Montilivi, E-17071 Girona, Spain
| | - Michael A. Robb
- Department of Chemistry, Imperial
College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
41
|
Fernandez-Alberti S, Roitberg AE, Nelson T, Tretiak S. Identification of unavoided crossings in nonadiabatic photoexcited dynamics involving multiple electronic states in polyatomic conjugated molecules. J Chem Phys 2012; 137:014512. [DOI: 10.1063/1.4732536] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Wu Q, Deng C, Peng Q, Niu Y, Shuai Z. Quantum chemical insights into the aggregation induced emission phenomena: a QM/MM study for pyrazine derivatives. J Comput Chem 2012; 33:1862-9. [PMID: 22622704 DOI: 10.1002/jcc.23019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/09/2012] [Accepted: 04/22/2012] [Indexed: 11/10/2022]
Abstract
There have been intensive studies on the newly discovered phenomena called aggregation induced emission (AIE), in contrast to the conventional aggregation quenching. Through combined quantum mechanics and molecular mechanics computations, we have investigated the aggregation effects on the excited state decays, both via radiative and nonradiative routes, for pyrazine derivatives 2,3-dicyano-5,6-diphenylpyrazine (DCDPP) and 2,3-dicyanopyrazino phenanthrene (DCPP) in condensed phase. We show that for DCDPP there appear AIE for all the temperature, because the phenyl ring torsional motions in gas phase can efficiently dissipate the electronic excited state energy, and get hindered in aggregate; while for its "locked"-phenyl counterpart, DCPP, theoretical calculation can only give the normal aggregation quenching. These first-principles based findings are consistent with recent experiment. The primary origin of the exotic AIE phenomena is due to the nonradiative decay effects. This is the first time that AIE is understood based on theoretical chemistry calculations for aggregates, which helps to resolve the present disputes over the mechanism.
Collapse
Affiliation(s)
- Qunyan Wu
- Department of Chemistry, MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Tsinghua University, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Wu Q, Peng Q, Niu Y, Gao X, Shuai Z. Theoretical Insights into the Aggregation-Induced Emission by Hydrogen Bonding: A QM/MM Study. J Phys Chem A 2012; 116:3881-8. [DOI: 10.1021/jp3002367] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qunyan Wu
- MOE Key Laboratory
of Organic
OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s
Republic of China
| | - Qian Peng
- Key Laboratory
of Organic Solids,
Beijing National Laboratory for Molecular Science (BNLMS), Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Yingli Niu
- Key Laboratory
of Organic Solids,
Beijing National Laboratory for Molecular Science (BNLMS), Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xing Gao
- MOE Key Laboratory
of Organic
OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s
Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory
of Organic
OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s
Republic of China
- Key Laboratory
of Organic Solids,
Beijing National Laboratory for Molecular Science (BNLMS), Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
44
|
Kitai JI, Kobayashi T, Uchida W, Hatakeyama M, Yokojima S, Nakamura S, Uchida K. Photochromism of a Diarylethene Having an Azulene Ring. J Org Chem 2012; 77:3270-6. [DOI: 10.1021/jo202673z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun-ichiro Kitai
- Department
of Materials Chemistry,
Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520-2194, Japan
| | - Takao Kobayashi
- Mitsubishi Chemical Group, Science and Technology Research Center, Inc.,
1000 Kamoshida, Yokohama 227-8502, Japan
| | - Waka Uchida
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku,
Yokohama 226-8503, Japan
| | - Makoto Hatakeyama
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku,
Yokohama 226-8503, Japan
| | - Satoshi Yokojima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji,
Tokyo 192-0392, Japan
- Nakamura
Laboratory, RIKEN Research Cluster for Innovation, 2-1 Hirosawa,
Wako, Saitama 351-0198, Japan
| | - Shinichiro Nakamura
- Nakamura
Laboratory, RIKEN Research Cluster for Innovation, 2-1 Hirosawa,
Wako, Saitama 351-0198, Japan
| | - Kingo Uchida
- Department
of Materials Chemistry,
Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520-2194, Japan
| |
Collapse
|
45
|
Nelson T, Fernandez-Alberti S, Chernyak V, Roitberg AE, Tretiak S. Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters. J Chem Phys 2012; 136:054108. [DOI: 10.1063/1.3680565] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Snyder Jr. JW, Mazziotti DA. Photoexcited tautomerization of vinyl alcohol to acetylaldehydevia a conical intersection from contracted Schrödinger theory. Phys Chem Chem Phys 2012; 14:1660-7. [DOI: 10.1039/c2cp23065h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Snyder JW, Mazziotti DA. Conical Intersection of the Ground and First Excited States of Water: Energies and Reduced Density Matrices from the Anti-Hermitian Contracted Schrödinger Equation. J Phys Chem A 2011; 115:14120-6. [DOI: 10.1021/jp208013m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James W. Snyder
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A. Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
48
|
Wu W, Su P, Shaik S, Hiberty PC. Classical Valence Bond Approach by Modern Methods. Chem Rev 2011; 111:7557-93. [DOI: 10.1021/cr100228r] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sason Shaik
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Philippe C. Hiberty
- Laboratoire de Chimie Physique, Groupe de Chimie Théorique, CNRS UMR 8000, Université de Paris-Sud, 91405 Orsay Cédex, France
| |
Collapse
|
49
|
Snyder JW, Mazziotti DA. Photoexcited conversion of gauche-1,3-butadiene to bicyclobutane via a conical intersection: Energies and reduced density matrices from the anti-Hermitian contracted Schrödinger equation. J Chem Phys 2011; 135:024107. [DOI: 10.1063/1.3606466] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
50
|
Qu Z, Zhang S, Liu C, Malrieu JP. Communication: A dramatic transition from nonferromagnet to ferromagnet in finite fused-azulene chain. J Chem Phys 2011; 134:021101. [PMID: 21241073 DOI: 10.1063/1.3533363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
One-dimensional fused-azulene oligomers (n = 2-6) are studied with the effective valence bond as well as density functional theory methods. A nonferromagnetic (closed-shell singlet) to ferromagnetic (triplet) ground state transformation is witnessed with increasing length of oligomers. The computational results are interpreted in terms of spin coupling between the unpaired electrons of two nonbonding molecular orbitals localized, respectively, on the top and bottom chains of the oligomers. The present study provides a theoretical suggestion for understanding the ferromagnetic spin polarizations that has been observed very recently in graphene nanoribbons.
Collapse
Affiliation(s)
- Zexing Qu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | |
Collapse
|