1
|
Yang S, Li B, Tang J, Peng H, Pu C, Zhao C, Xu H. Structural optimization based on 4,5-dihydropyrazolo[1,5-a]quinazoline scaffold for improved insecticidal activities. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105533. [PMID: 37666607 DOI: 10.1016/j.pestbp.2023.105533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 09/06/2023]
Abstract
The long-term and irrational application of insecticides has increased the rate of development of pest resistance and caused numerous environmental issues. To address these problems, our previous work reported that 4,5-dihydropyrazolo[1,5-a]quinazoline (DPQ) is a class of gelled heterocyclic compounds that act on insect γ-aminobutyric acid receptors (GABAR). DPQ scaffold has no cross-resistance to existing insecticides, so the development of this scaffold is an interesting task for integrated pest management. In the present study, a novel series of 4,5-dihydropyrazolo[1,5-a]quinazolines (DPQs) were designed and synthesized based on pyraquinil, a highly insecticidal compound discovered in our previous work. Insecticidal activities of the target compounds against diamondback moth (Plutella xylostella), beet armyworm (Spodoptera exigua), fall armyworm (Spodoptera frugiperda), and red imported fire ant (Solenopsis invicta Buren) were evaluated. Compounds 6 and 12 showed the best insecticidal activity against Plutella xylostella (P. xylostella) (LC50 = 1.49 and 0.97 mg/L), better than pyraquinil (LC50 = 1.76 mg/L), indoxacarb and fipronil (LC50 = 1.80 mg/L). Meanwhile, compound 12 showed slow toxicity to Solenopsis invicta Buren (S. invicta), with a 5 d mortality rate of 98.89% at 0.5 mg/L that is similar to fipronil. Moreover, Electrophysiological studies against the PxRDL1 GABAR heterologously expressed in Xenopus oocytes indicated that compound 12 could act as a potent GABA receptor antagonist (2 μΜ, inhibition rate, 68.25%). Molecular docking results showed that Ser285 (chain A) and Thr289 (chain D) of P. xylostella GABAR participated in hydrogen bonding interactions with compound 12, and density functional theory (DFT) calculations suggested the importance of pyrazolo[1,5-a]quinazoline core in potency. This systematic study provides valuable clues for the development of DPQ scaffold in the field of agrochemicals, and compound 12 can be further developed as an insecticide and bait candidate.
Collapse
Affiliation(s)
- Shuai Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Benjie Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jiahong Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Hongxiang Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chunmei Pu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
2
|
T211K substitution in Pseudomonas putida phenylserine aldolase improves catalytic efficiency towards l-threo-4-nitrophenylserine with reversed stereoselectivity. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Darcel L, Das S, Bonnard I, Banaigs B, Inguimbert N. Thirtieth Anniversary of the Discovery of Laxaphycins. Intriguing Peptides Keeping a Part of Their Mystery. Mar Drugs 2021; 19:md19090473. [PMID: 34564135 PMCID: PMC8471579 DOI: 10.3390/md19090473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Lipopeptides are a class of compounds generally produced by microorganisms through hybrid biosynthetic pathways involving non-ribosomal peptide synthase and a polyketyl synthase. Cyanobacterial-produced laxaphycins are examples of this family of compounds that have expanded over the past three decades. These compounds benefit from technological advances helping in their synthesis and characterization, as well as in deciphering their biosynthesis. The present article attempts to summarize most of the articles that have been published on laxaphycins. The current knowledge on the ecological role of these complex sets of compounds will also be examined.
Collapse
|
4
|
|
5
|
Watanabe T, Abe H, Shibasaki M. Catalytic Asymmetric Total Synthesis of Leucinostatin A. CHEM REC 2020; 21:175-187. [PMID: 33107684 DOI: 10.1002/tcr.202000108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Indexed: 12/30/2022]
Abstract
This review describes our efforts toward achieving catalytic asymmetric total synthesis of leucinostatin A, a compound that interferes with the tumor-stroma interaction. The synthesis utilizes four catalytic asymmetric reactions, including direct-type reactions exemplified by high atom-economy, and three C-C bond forming reactions. Thorough analysis of the NMR data, HPLC profiles, and biologic activity led us to unambiguously revise the absolute configuration regarding the 6-position of the AHMOD residue side chain from S (reported) to R. Other examples of previously reported important studies on the stereoselective synthesis of HyLeu and AHMOD are also described.
Collapse
Affiliation(s)
- Takumi Watanabe
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hikaru Abe
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| |
Collapse
|
6
|
Novel enzymatic reduction of α-amido- and α-cyanoalkyl-β-keto esters catalyzed by ketoreductases. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Liu Z, Chen X, Chen Q, Feng J, Wang M, Wu Q, Zhu D. Engineering of l-threonine aldolase for the preparation of 4-(methylsulfonyl)phenylserine, an important intermediate for the synthesis of florfenicol and thiamphenicol. Enzyme Microb Technol 2020; 137:109551. [DOI: 10.1016/j.enzmictec.2020.109551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 11/29/2022]
|
8
|
Li F, Jäger V. Synthesis of proteasome inhibitor 6-deoxy-omuralide and its enantiomer using stereoselective alkylation of substituted proline ester. Org Biomol Chem 2020; 18:4423-4432. [PMID: 32469026 DOI: 10.1039/d0ob01053g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A potent 20S proteasome inhibitor, 6-deoxy-omuralide was stereoselectively synthesized in 20 steps with 5.1% overall yield staring from a chiral boron agent and d-glyceraldehyde acetonide. The stereoselective alkylation of the substituted proline ester with 3-iodo-2-methylprop-1-ene served as the key step. The enantiomer of 6-deoxy-omuralide was achieved in 20 steps with 4.6% overall yield by just changing the chiral boron reagents in the first step. Our current work provides a flexible approach to 6-deoxy-omuralide and its enantiomer with the adornment at the C4 position.
Collapse
Affiliation(s)
- Feng Li
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Volker Jäger
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| |
Collapse
|
9
|
Hu Z, Zhu Y, Fu Z, Huang W. Asymmetric Synthesis of Enantioenriched 6-Hydroxyl Butyrolactams Promoted by N-Heterocyclic Carbene. J Org Chem 2019; 84:10328-10337. [PMID: 31328524 DOI: 10.1021/acs.joc.9b01490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, an efficient route to synthesize 6-hydroxyl butyrolactams has been successfully developed via an N-heterocyclic carbene-catalyzed formal [3 + 2] annulation of bromoenals with α-amino ketones, followed by reduction. Remarkably, enantioenriched epi-neoclausenamide, which is one of the clausenamide derivatives, could be efficiently prepared by this strategy.
Collapse
Affiliation(s)
- Zhouli Hu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Ying Zhu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China.,Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China.,Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China
| |
Collapse
|
10
|
Toda Y, Tanaka S, Gomyou S, Kikuchi A, Suga H. 4-Hydroxymethyl-substituted oxazolidinone synthesis by tetraarylphosphonium salt-catalyzed reactions of glycidols with isocyanates. Chem Commun (Camb) 2019; 55:5761-5764. [DOI: 10.1039/c9cc01983a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A tetraarylphosphonium catalyst enables efficient coupling reactions between glycidols and isocyanates to afford 4-hydroxymethyl-substituted oxazolidinones.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Shoya Tanaka
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Shuto Gomyou
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Ayaka Kikuchi
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| |
Collapse
|
11
|
Progress in using threonine aldolases for preparative synthesis. Enzyme Microb Technol 2018; 119:1-9. [DOI: 10.1016/j.enzmictec.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
|
12
|
Davies SG, Fletcher AM, Greenaway CJ, Kennedy MS, Mayer C, Roberts PM, Thomson JE. Trading N and O. Part 4: Asymmetric synthesis of syn-β-substituted-α-amino acids. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Watanabe T, Shibasaki M. Catalytic Asymmetric Synthesis of Natural Products Directed Toward Development of Novel Anti-infective and Anti-cancer Medicines. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Rullière P, Cannillo A, Grisel J, Cividino P, Sébastien Carret, Poisson JF. Total Synthesis of Proteasome Inhibitor (−)-Omuralide through Asymmetric Ketene [2 + 2]-Cycloaddition. Org Lett 2018; 20:4558-4561. [DOI: 10.1021/acs.orglett.8b01851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pauline Rullière
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Alexandre Cannillo
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Julien Grisel
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Pascale Cividino
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Sébastien Carret
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Jean-François Poisson
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| |
Collapse
|
15
|
Bulman Page PC, Goodyear RL, Horton AE, Chan Y, Karim R, O’Connell MA, Hamilton C, Slawin AMZ, Buckley BR, Allin SM. Formal Total Synthesis of (+)-C9-Deoxyomuralide from l-Leucine Using a Double Sacrificial Chirality Transfer Approach. J Org Chem 2017; 82:12209-12223. [DOI: 10.1021/acs.joc.7b02078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Benjamin R. Buckley
- Department
of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Steven M. Allin
- School of Science & Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
16
|
Li G, Sun Z, Yan Y, Zhang Y, Tang Y. Direct Transformation of HMF into 2,5-Diformylfuran and 2,5-Dihydroxymethylfuran without an External Oxidant or Reductant. CHEMSUSCHEM 2017; 10:494-498. [PMID: 27882693 DOI: 10.1002/cssc.201601322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The selective transformation of 5-hydroxymethylfurfural (HMF) to valuable 2,5-diformylfuran (DFF) and 2,5-dihydroxymethylfuran (DHMF) is highly desirable but remains a great challenge owing to its tendency to over-oxidation and over-reduction. In this work, HMF is directly converted into DFF and DHMF without external oxidant or reductant through a Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reaction. In such a MPVO process, HMF is used as both oxidant and reductant and DFF and DHMF are simultaneously produced with a 1:1 molar ratio in the presence of a Lewis acid catalyst. Under high initial HMF concentration, a HMF conversion of up to 44.7 % can be reached within 1 h. Moreover, this atom-efficient transformation route for HMF also provides a promising protocol for the crude separation of DHMF products from DFF products, owing to the lower solubility of DHMF compared to DFF in acetonitrile.
Collapse
Affiliation(s)
- Gang Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Zhen Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Yueer Yan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P.R. China
| |
Collapse
|
17
|
Hager A, Vrielink N, Hager D, Lefranc J, Trauner D. Synthetic approaches towards alkaloids bearing α-tertiary amines. Nat Prod Rep 2015; 33:491-522. [PMID: 26621771 DOI: 10.1039/c5np00096c] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alkaloids account for some of the most beautiful and biologically active natural products. Although they are usually classified along biosynthetic criteria, they can also be categorized according to certain structural motifs. Amongst these, the α-tertiary amine (ATA), i.e. a tetrasubstituted carbon atom surrounded by three carbons and one nitrogen, is particularly interesting. A limited number of methods have been described to access this functional group and fewer still are commonly used in synthesis. Herein, we review some approaches to asymmetrically access ATAs and provide an overview of alkaloid total syntheses where those have been employed.
Collapse
Affiliation(s)
- Anastasia Hager
- Fakultät für Chemie und Pharmazie, Ludwig-Maximilians-Universität München, and Munich Center for Integrated Protein Science, Butenandtstr. 5 - 13, 81377 München, Germany.
| | | | | | | | | |
Collapse
|
18
|
Pereira DM, Valentão P, Correia-da-Silva G, Teixeira N, Andrade PB. Translating endoplasmic reticulum biology into the clinic: a role for ER-targeted natural products? Nat Prod Rep 2015; 32:705-22. [PMID: 25703279 DOI: 10.1039/c4np00102h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ER stress has been identified as a hallmark, and sometimes trigger, of several pathologies, notably cancer, inflammation and neurodegenerative diseases like Alzheimer's and Parkinson's. Among the molecules described in literature known to affect ER function, the majority are natural products, suggesting that natural molecules may constitute a significant arsenal of chemical entities for modulating this cellular target. In this review, we will start by presenting the current knowledge of ER biology and the hallmarks of ER stress, thus paving the way for presenting the natural products that have been described as being ER modulators, either stress inducers or ER protectors. The chemistry, distribution and mechanism of action of these compounds will be presented and discussed.
Collapse
Affiliation(s)
- David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| | | | | | | | | |
Collapse
|
19
|
Sanapala SR, Kulkarni SS. One-pot synthesis of bicyclic sugar oxazolidinone from d-glucosamine. RSC Adv 2015. [DOI: 10.1039/c5ra02270c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Herein we report a one-pot and efficient method for the synthesis of a 1,2-cis fused furanoside bicyclic oxazolidinone derivative of d-glucosamine via pyranose to furanose conversion and concomitant cyclization involving the N-Troc group.
Collapse
|
20
|
Hedenström E, Wallin EA, Andersson J, Bång J, Wang HL, Löfstedt C, Brattström O, Baquet P. Stereoisomeric Analysis of 6,10,14-Trimethylpentadecan-2-ol and the Corresponding Ketone in Wing Extracts from African Bicyclus Butterfly Species. J Chem Ecol 2014; 41:44-51. [DOI: 10.1007/s10886-014-0539-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/28/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
|
21
|
Také A, Matsumoto A, Ōmura S, Takahashi Y. Streptomyces lactacystinicus sp. nov. and Streptomyces cyslabdanicus sp. nov., producing lactacystin and cyslabdan, respectively. J Antibiot (Tokyo) 2014; 68:322-7. [DOI: 10.1038/ja.2014.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/27/2014] [Accepted: 11/06/2014] [Indexed: 11/09/2022]
|
22
|
Development of Small Molecular Proteasome Inhibitors Using a Caenorhabditis elegans Screen. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2014; 2014:237286. [PMID: 25436151 PMCID: PMC4244688 DOI: 10.1155/2014/237286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022]
Abstract
We have developed a screening protocol to identify compounds with characteristics of small molecule proteasome inhibitors using the real-time analysis of the Caenorhabditis elegans germ line. This screen is able to identify compounds that induce germ line phenotypes characteristic of a reduction in proteasome function such as changes in polarity, aberrant nuclear morphology, and stimulation of apoptosis. This basic protocol is amenable to a high throughput (96-well) format and has been used successfully to identify multiple compounds for further analysis based on structural elements from the naturally occurring compounds lactacystin and the β-lactone homologs omuralide and salinosporamide A. The further development of this assay system should allow for the generation of novel small molecule proteasome inhibitors in a genetically tractable whole animal amenable to biochemical analysis.
Collapse
|
23
|
Sridhar C, Vijaykumar BVD, Radhika L, Shin DS, Chandrasekhar S. Asymmetric Formal Synthesis of (+)-Lactacystin. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophic natural products: chemistry and biology. Angew Chem Int Ed Engl 2014; 53:956-87. [PMID: 24353244 PMCID: PMC3945720 DOI: 10.1002/anie.201302268] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications. Nonetheless, the poor pharmacokinetic profile of neurotrophins severely restricts their clinical use. On the other hand, small molecules that modulate neurotrophic activity offer a promising therapeutic approach against neurological disorders. Nature has provided an impressive array of natural products that have potent neurotrophic activities. This Review highlights the current synthetic strategies toward these compounds and summarizes their ability to induce neuronal growth and rehabilitation. It is anticipated that neurotrophic natural products could be used not only as starting points in drug design but also as tools to study the next frontier in biomedical sciences: the brain activity map project.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Michelle H. Lacoske
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| |
Collapse
|
25
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophe Naturstoffe - ihre Chemie und Biologie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Gonda J, Maliňák D, Kováčová M, Martinková M. A convenient approach to an advanced intermediate for (+)-lactacystin synthesis. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Murakami T. Synthesis of all four stereoisomers of 5-formyl-4-hydroxymethyl-1,3-oxazolidin-2-ones from d-glucosamine. Carbohydr Res 2013; 375:47-54. [DOI: 10.1016/j.carres.2013.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 12/01/2022]
|
28
|
Trzoss L, Xu J, Lacoske MH, Mobley WC, Theodorakis EA. Illicium sesquiterpenes: divergent synthetic strategy and neurotrophic activity studies. Chemistry 2013; 19:6398-408. [PMID: 23526661 PMCID: PMC3875175 DOI: 10.1002/chem.201300198] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Indexed: 01/12/2023]
Abstract
Majucin-type sesquiterpenes from Illicium sp., such as jiadifenolide (2), jiadifenin (3), and (1R,10S)-2-oxo-3,4-dehydroxyneomajucin (4, ODNM), possess a complex caged chemical architecture and remarkable neurotrophic activities. As such, they represent attractive small-molecule leads against various neurodegenerative diseases. We present an efficient, enantioselective, and unified synthesis of 2, 3, and 4 and designed analogues that diverge from tetracyclic key intermediate 7. The synthesis of 7 is highlighted by the use of an enantioselective Robinson annulation reaction (construction of the AB rings), a Pd-mediated carbomethoxylation reaction (construction of the C ring), and a one-pot oxidative reaction cascade (construction of the D ring). Evaluation of the neurotrophic activity of these compounds led to the identification of several highly potent small molecules that significantly enhanced the activity of nerve growth factor (NGF) in PC-12 cells. Moreover, efforts to define the common pharmacophoric motif suggest that substitution at the C-10 center significantly affects bioactivity, while the hemiketal moiety of 2 and 3 and the C-1 substitution might not be critical to the neurotrophic activity.
Collapse
Affiliation(s)
- Lynnie Trzoss
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| | - Jing Xu
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| | - Michelle H. Lacoske
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| | - William C. Mobley
- Department of Neurosciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0752, USA
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| |
Collapse
|
29
|
Quantum chemical investigation on the influence of amino substitution on proton affinity of oxazolidin-2-one. Struct Chem 2013. [DOI: 10.1007/s11224-013-0228-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Bau JS, Chen IC, Yanga ZX, Zhu JL. Chiral Auxiliary Based Reductive Alkylation of α,α-Diallkyl β-Phosphonyl Esters. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201200508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Mycock DK, Glossop PA, Lewis W, Hayes CJ. A formal synthesis of (+)-lactacystin from 4-hydroxyproline. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.10.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
|
33
|
Rahmani R, Matsumoto M, Yamashita Y, Kobayashi S. Direct-Type Aldol Reactions of Fluorenylidene-Protected/Activated Glycine Esters with Aldehydes for the Synthesis of β-Hydroxy-α-amino Acid Derivatives. Chem Asian J 2012; 7:1191-4. [DOI: 10.1002/asia.201200081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Indexed: 11/10/2022]
|
34
|
Sunazuka T. Synthetic Study and Medicinal Chemistry of Microbial Bioactive Natural Products Including Macrolides. J SYN ORG CHEM JPN 2012. [DOI: 10.5059/yukigoseikyokaishi.70.690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Fun HK, Quah CK, Xu K, Zhang Y. Methyl 2-acetamido-2-(4-hydroxy-2-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-methylpentanoate. Acta Crystallogr Sect E Struct Rep Online 2011; 67:o1710-1. [PMID: 21837104 PMCID: PMC3151770 DOI: 10.1107/s1600536811022999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 06/14/2011] [Indexed: 11/22/2022]
Abstract
In the isoquinoline ring system of the title molecule, C19H24N2O6, the N-heterocyclic ring is in a half-boat conformation. The molecular structure is stabilized by an intramolecular O—H⋯O hydrogen bond, which generates an S(7) ring motif. In the crystal, molecules are linked via intermolecular bifurcated N—H⋯(O,O) and weak C—H⋯O hydrogen bonds into a three-dimensional network.
Collapse
|
36
|
Nishizawa R, Nishiyama T, Hisaichi K, Minamoto C, Murota M, Takaoka Y, Nakai H, Tada H, Sagawa K, Shibayama S, Fukushima D, Maeda K, Mitsuya H. Discovery of 4-[4-({(3R)-1-butyl-3-[(R)-cyclohexyl(hydroxy)methyl]-2,5-dioxo-1,4,9-triazaspiro[5.5]undec-9-yl}methyl)phenoxy]benzoic acid hydrochloride: a highly potent orally available CCR5 selective antagonist. Bioorg Med Chem 2011; 19:4028-42. [PMID: 21658961 PMCID: PMC7604827 DOI: 10.1016/j.bmc.2011.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 01/27/2023]
Abstract
Based on the original spirodiketopiperazine design framework, further optimization of an orally available CCR5 antagonist was undertaken. Structural hybridization of the hydroxylated analog 4 derived from one of the oxidative metabolites and the new orally available non-hydroxylated benzoic acid analog 5 resulted in another potent orally available CCR5 antagonist 6a as a clinical candidate. Full details of a structure-activity relationship (SAR) study and ADME properties are presented.
Collapse
Affiliation(s)
- Rena Nishizawa
- Medicinal Chemistry Research Laboratory, Ono Pharmaceutical Co. Ltd, Shimamoto, Mishima, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Intramolecular Palladium-Catalyzed Aminocarboxylation of Olefins as a Direct Route to Bicyclic Oxazolidinones. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201000889] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Nishizawa R, Nishiyama T, Hisaichi K, Minamoto C, Matsunaga N, Takaoka Y, Nakai H, Jenkinson S, Kazmierski WM, Tada H, Sagawa K, Shibayama S, Fukushima D, Maeda K, Mitsuya H. Spirodiketopiperazine-based CCR5 antagonist: discovery of an antiretroviral drug candidate. Bioorg Med Chem Lett 2011; 21:1141-5. [PMID: 21256008 PMCID: PMC7597670 DOI: 10.1016/j.bmcl.2010.12.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
Following the discovery that hydroxylated derivative 3 (Fig. 1) was one of the oxidative metabolites of the original lead 1, it was found that hydroxylated compound 4 possesses higher in vitro anti-HIV potency than the corresponding non-hydroxylated compound 2. Structural hybridation of 4 with the orally available analog 5 resulted in another orally-available spirodiketopiperazine CCR5 antagonist 6a that possesses more favorable pharmaceutical profile for use as a drug candidate.
Collapse
Affiliation(s)
- Rena Nishizawa
- Medicinal Chemistry Research Laboratory, Ono Pharmaceutical Co., Ltd, Shimamoto, Mishima, Osaka 618-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Use of Artificial Neural Network for a QSAR Study on Neurotrophic Activities of N-p-Tolyl/phenylsulfonyl L-Amino Acid Thiolester Derivatives. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.proeng.2011.08.957] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Affiliation(s)
- Yuji Kaiya
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | |
Collapse
|
41
|
Inuki S, Yoshimitsu Y, Oishi S, Fujii N, Ohno H. Ring-construction/stereoselective functionalization cascade: total synthesis of pachastrissamine (jaspine B) through palladium-catalyzed bis-cyclization of propargyl chlorides and carbonates. J Org Chem 2010; 75:3831-42. [PMID: 20455522 DOI: 10.1021/jo100544v] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Palladium(0)-catalyzed cyclization of bromoallenes, propargyl chlorides, and carbonates bearing hydroxy and benzamide groups as internal nucleophiles stereoselectively provides functionalized tetrahydrofuran. Cyclization reactivity is dependent on the relative configuration of the benzamide and leaving groups, and on the nature of the leaving groups. This bis-cyclization was used as the key step in a short total synthesis of pachastrissamine, which is a biologically active marine natural product.
Collapse
Affiliation(s)
- Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
42
|
Ham WH, Mu Y, Lee YS, Tian YS, Lee GJ, Joo JE. Stereoselective Intramolecular Cyclization of Isopentenyl Benzamide via π-Allylpalladium Complex Catalyzed by Pd(0). HETEROCYCLES 2010. [DOI: 10.3987/com-09-11850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Li Q, Yang SB, Zhang Z, Li L, Xu PF. Diastereo- and Enantioselective Synthesis of β-Hydroxy-α-Amino Acids: Application to the Synthesis of a Key Intermediate for Lactacystin. J Org Chem 2009; 74:1627-31. [DOI: 10.1021/jo8023973] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiong Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PRC
| | - Shao-Bo Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PRC
| | - Zhihui Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PRC
| | - Lei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PRC
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PRC
| |
Collapse
|
44
|
Sano S, Nakao M, Takeyasu M, Yoshioka Y, Nagao Y, Kitaike S. Use of Diketopiperazines for Determining Absolute Configurations of α-Substituted Serines by 1H-NMR Spectroscopy. HETEROCYCLES 2009. [DOI: 10.3987/com-08-s(d)47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Zhou QF, Wu QP, Xue S. Et3N-Promoted reaction of acetylenic ketones with N-(diphenylmethylene)glycinates: an efficient synthesis of α,β-dehydroamino acid derivatives. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.09.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Miyaoka H, Yamanishi M, Hoshino A, Mitome H, Kawashima E. Practical synthesis of a key intermediate for lactacystin from (R)-4-hydroxymethyl-2-phenyl-4,5-dihydrooxazol-4-ylmethyl acetate. Chem Pharm Bull (Tokyo) 2008; 56:738-41. [PMID: 18451571 DOI: 10.1248/cpb.56.738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A practical synthesis of a key intermediate for the proteasome inhibitor lactacystin from (R)-4-hydroxymethyl-2-phenyl-4,5-dihydrooxazol-4-ylmethyl acetate was established. (R)-4-Hydroxymethyl-2-phenyl-4,5-dihydrooxazol-4-ylmethyl acetate is a useful chiral building block for the synthesis of biologically active compounds containing alpha-substituted alpha-amino acid moieties.
Collapse
Affiliation(s)
- Hiroaki Miyaoka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
47
|
Gilley CB, Kobayashi Y. 2-Nitrophenyl Isocyanide as a Versatile Convertible Isocyanide: Rapid Access to a Fused γ-Lactam β-Lactone Bicycle. J Org Chem 2008; 73:4198-204. [DOI: 10.1021/jo800486k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cynthia B. Gilley
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive Mail Code 0343, La Jolla, California 92093-0343
| | - Yoshihisa Kobayashi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive Mail Code 0343, La Jolla, California 92093-0343
| |
Collapse
|
48
|
YANG ZN, FAN M, YANG XS, YU ZW, HAO XJ. Synthesis and Neurotrophic Activities ofN-p-Tolyl/phenylsulfonylL-Amino Acid Thiolester Derivatives. CHINESE J CHEM 2008. [DOI: 10.1002/cjoc.200890103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Sunazuka T, Hirose T, O̅mura S. Efficient total synthesis of novel bioactive microbial metabolites. Acc Chem Res 2008; 41:302-14. [PMID: 18217720 DOI: 10.1021/ar6000044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bioactive natural products produced by microbes have almost limitless potential in pharmaceutical applications, and the organic synthesis of such products as lead compounds will result in the creation of new and widely useful pharmaceutical products. A program of discovery of naturally occurring bioactive microbial metabolites has been ongoing at the Kitasato Institute. We have also developed efficient, rational, and highly flexible production methods for generation of target compounds, synthesis of related compounds, elucidation of their structure-activity relationships, and the possible creation of improved bioactive compounds. In this Account, the isolation and total synthesis of naturally occurring bioactive microbial metabolites in order to create novel medicines for specific illnesses is described. This covers diseases and conditions such as atherosclerosis, Alzheimer's disease, cancer, inflammation, and osteoporosis, among others, and focuses on six specific compounds. Pyripyropenes were discovered from Aspergillus fumigatus FO-1289 through our screening of microbial metabolites that strongly inhibit acyl-CoA cholesterol acyltransferase (ACAT) in order to develop a new class of cholesterol-lowering agents. These novel polyoxygenated mixed polyketide-terpenoid (meroterpenoid) metabolites contain a fused pyridyl alpha-pyrone moiety. We carried out the first total synthesis of (+)-pyripyropene A via a flexible, concise, and highly efficient route and also clarified the structure-activity relationships. Arisugacins were discovered from Penicillium sp. FO-4259 by our screening of microbial metabolites that strongly inhibit acetylcholinesterase (AChE) in order to create novel medicines for Alzheimer's disease (AD). Arisugacins are also meroterpenoids. We have achieved the first convergent total synthesis of arisugacins A and B. Lactacystin was isolated from Streptomyces sp. OM-6519 via our screening of microbial metabolites that promote the differentiation of the neuroblastoma cell to further discover new AD medicines. Lactacystin has a novel gamma-lactam thioester structure and is also a selective and strong proteasome inhibitor. We have developed a concise approach to synthesize lactacystin designed to afford easy access to the original compound and a variety of analogs. Macrosphelides were isolated from Microsphaeropsis sp. FO-5050 from our screening of microbial metabolites that inhibit the adhesion of HL-60 cells to human umbilical vein endothelial cells (HUVEC). Macrosphelides are the first 16-membered macrotriolides. Macrosphelides prevent cell-cell adhesion by inhibiting the binding of sialyl Lewis X to E-selectin. We have accomplished the first efficient total synthesis of macrosphelides. Madindolines were isolated from Streptomyces nitrosporeus K93-0711 by our program to discover new interleukin 6 (IL-6) modulators. Madindolines are comprised of a 3a-hydroxyfuroindoline ring connected at nitrogen via a methylene bridge to a cyclopentene-1,3-dione ring. We have developed an efficient and practical total synthesis of madindolines. Madindoline A binds to gp130 selectively and inhibits IL-6 activity. Neoxaline was isolated from Aspergillus japonicus Fg-551. Neoxaline is a member of a novel class of biologically active indole alkaloids characterized by a unique indoline spiroaminal framework and binds to tubulin, which results in inhibition of tubulin polymerization. We have developed a concise stereoselective synthesis of the indoline spiroaminal framework of neoxaline.
Collapse
Affiliation(s)
- Toshiaki Sunazuka
- Kitasato Institute for Life Sciences, Kitasato University and The Kitasato Institute, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Kitasato Institute for Life Sciences, Kitasato University and The Kitasato Institute, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Satoshi O̅mura
- Kitasato Institute for Life Sciences, Kitasato University and The Kitasato Institute, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
50
|
Pattenden G, Rescourio G. A new synthetic approach to (+)-lactacystin based on radical cyclisation of enantiopure α-ethynyl substituted serine derivatives to 4-methylenepyrrolidinones. Org Biomol Chem 2008; 6:3428-38. [DOI: 10.1039/b806681g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|