1
|
Takeuchi N, Taniguchi M, Kato Y, Takata R, Osaka I, Nakajima N, Hamada M, Koyama Y. Synthesis and Conformational Behaviors of Unnatural Peptides Alternating Chiral and Achiral α,α-Disubstituted α-Amino Acid Units. Macromol Rapid Commun 2023; 44:e2300323. [PMID: 37668077 DOI: 10.1002/marc.202300323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/27/2023] [Indexed: 09/06/2023]
Abstract
The development of peptidomimetics to modulate the conformational profile of peptides has been extensively studied in the fields of biological and medicinal chemistry. However, large-scale synthesis of peptidomimetics with both an ordered sequence and a controlled secondary structure is highly challenging. In this paper, the framework of peptidomimetics has been designed to be alternating an achiral α,α-disubstituted α-amino acid unit and a chiral α-methylphenylalanine unit. The polymers are synthesized via invented Ugi reaction-based polycondensation technique. The chiral higher-order structures of the alternating peptides are evaluated mainly through circular dichroism (CD) spectroscopy. The UV-Vis and CD spectra of the polymers in three solvents are systematically measured at various temperatures. The anisotropic factors of CD (gCD ) values are calculated to know the chiroptical response. The results indicate the characteristic conformational behaviors. In a polar solvent, the hydrogen bonds between the N-H group of MePhe unit and the C=O of α,α-diphenylglycine unit outweigh the intraresidue hydrogen bonds in α,α-diphenylglycine unit, leading to the formation of a prevailing preferred-handed 310 -helical conformation. On the other hand, in a less polar solvent, the intrachain hydrogen bonds switch to intraresidue hydrogen bonds in α,α-diphenylglycine unit, which make the polymer adopting a prevailing extended planar C5 -conformation.
Collapse
Affiliation(s)
- Nanami Takeuchi
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Masataka Taniguchi
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yuki Kato
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Riko Takata
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhito Koyama
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
2
|
Li Z, Zhao C, Lin X, Ouyang G, Liu M. Stepwise Solution-Interfacial Nanoarchitectonics for Assembled Film with Full-Color and White-Light Circularly Polarized Luminescence. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37329570 DOI: 10.1021/acsami.3c05803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The fabrication of chiral thin films with tunable circularly polarized luminescence (CPL) colors is important in developing chiroptical materials but remains challenging due to the lack of assembly-initiated chiral film formation methodology. Here, by adopting a combined solution aggregation and interfacial assembly strategy, we report the fabrication of chiral film materials with full-color and white-light CPL. A biquinoline glutamic acid ester (abbreviated as BQGE) shows a typical aggregation-induced emission property with blue CPL after solution aggregation. Subsequent interfacial assembly of these solution aggregates on a solid substrate leads to the formation of a CPL active film consisting of nanobelt structures. Since the BQGE molecule has a coordination site, the CPL emission of an individual BQGE film can be extended from blue to green emission upon coordination with a zinc ion, accompanied by morphology transition from nanobelts to nanofibers. Further extension to red-color CPL is successfully achieved by coassembly with an achiral acceptor dye. Interestingly, the proper combination of coordination ratio and acceptor loading ratio provides bright white-light CPL emission from the BQGE/Zn2+/PDA triad composite film. This work provides a new approach to fabricating chiroptical film materials with controlled microscopic morphology and tunable CPL properties.
Collapse
Affiliation(s)
- Zujian Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Chenyang Zhao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Xuerong Lin
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Guanghui Ouyang
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| |
Collapse
|
3
|
Jana P, Samanta K, Ehlers M, Zellermann E, Bäcker S, Stauber RH, Schmuck C, Knauer SK. Impact of Peptide Sequences on Their Structure and Function: Mimicking of Virus-Like Nanoparticles for Nucleic Acid Delivery. Chembiochem 2023; 24:e202200519. [PMID: 36314419 PMCID: PMC10099937 DOI: 10.1002/cbic.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/30/2022] [Indexed: 01/05/2023]
Abstract
We rationally designed a series of amphiphilic hepta-peptides enriched with a chemically conjugated guanidiniocarbonylpyrrole (GCP) unit at the lysine side chain. All peptides are composed of polar (GCP) and non-polar (cyclohexyl alanine) residues but differ in their sequence periodicity, resulting in different secondary as well as supramolecular structures. CD spectra revealed the assembly of β-sheet-, α-helical and random structures for peptides 1, 2 and 3, respectively. Consequently, this enabled the formation of distinct supramolecular assemblies such as fibres, nanorod-like or spherical aggregates. Notably, all three cationic peptides are equipped with the anion-binding GCP unit and thus possess a nucleic acid-binding centre. However, only the helical (2) and the unstructured (3) peptide were able to assemble into small virus-like DNA-polyplexes and effectively deliver DNA into cells. Notably, as both peptides (2 and 3) were also capable of siRNA-delivery, they could be utilized to downregulate expression of the caner-relevant protein Survivin.
Collapse
Affiliation(s)
- Poulami Jana
- Department of Chemistry, Kaliachak College Sultanganj, Malda, 732201-, West Bengal, India
| | - Krishnananda Samanta
- Department of Chemistry, Balurghat College Dakshin Dinajpur, 733101-, West Bengal, India
| | - Martin Ehlers
- Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Elio Zellermann
- Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Sandra Bäcker
- Molecular Biology, University of Duisburg-Essen, 45117, Essen, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology, ENT Department, University Mainz Medical Center, 55131, Mainz, Germany
| | - Carsten Schmuck
- Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Shirley K Knauer
- Molecular Biology, University of Duisburg-Essen, 45117, Essen, Germany
| |
Collapse
|
4
|
Duan X, Zhang GQ, Ji S, Zhang Y, Li J, Ou H, Gao Z, Feng G, Ding D. Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imaging-Modality Transformable Characteristics for Improved Biological Applications. Angew Chem Int Ed Engl 2022; 61:e202116174. [PMID: 35030286 DOI: 10.1002/anie.202116174] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/22/2022]
Abstract
Persistent luminescence without excitation light and tissue autofluorescence interference holds great promise for biological applications, but is limited by available materials with long-wavelength emission and excellent clinical potential. Here, we report that porphyrin derivatives can emit near-infrared persistent luminescence over 60 min after cessation of excitation light or on interaction with peroxynitrite. A plausible mechanism of the successive oxidation of vinylene bonds was demonstrated. A supramolecular probe with a β-sheet structure was constructed to enhance the tumor targeting ability and the photoacoustic and persistent luminescence signals. Such probes featuring light-triggered function transformation from photoacoustic imaging to persistent luminescence imaging permit advanced image-guided cancer surgery. Furthermore, peroxynitrite-activated persistent luminescence of the supramolecular probe also enables rapid and precise screening of immunogenic cell death drugs.
Collapse
Affiliation(s)
- Xingchen Duan
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guo-Qiang Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shenglu Ji
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yiming Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guangxue Feng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| |
Collapse
|
5
|
Huo ZQ, Zhu F, Zhang XW, Zhang X, Liang HB, Yao JC, Liu Z, Zhang GM, Yao QQ, Qin GF. Approaches to Configuration Determinations of Flexible Marine Natural Products: Advances and Prospects. Mar Drugs 2022; 20:333. [PMID: 35621984 PMCID: PMC9143581 DOI: 10.3390/md20050333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Flexible marine natural products (MNPs), such as eribulin and bryostatin, play an important role in the development of modern marine drugs. However, due to the multiple chiral centers and geometrical uncertainty of flexible systems, configuration determinations of flexible MNPs face great challenges, which, in turn, have led to obstacles in druggability research. To resolve this issue, the comprehensive use of multiple methods is necessary. Additionally, configuration assignment methods, such as X-ray single-crystal diffraction (crystalline derivatives, crystallization chaperones, and crystalline sponges), NMR-based methods (JBCA and Mosher's method), circular dichroism-based methods (ECCD and ICD), quantum computational chemistry-based methods (NMR calculations, ECD calculations, and VCD calculations), and chemical transformation-based methods should be summarized. This paper reviews the basic principles, characteristics, and applicability of the methods mentioned above as well as application examples to broaden the research and applications of these methods and to provide a reference for the configuration determinations of flexible MNPs.
Collapse
Affiliation(s)
- Zong-Qing Huo
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
| | - Feng Zhu
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
| | - Xing-Wang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Hong-Bao Liang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Jing-Chun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
| | - Zhong Liu
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
| | - Gui-Min Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Qing-Qiang Yao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China;
| | - Guo-Fei Qin
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China; (Z.-Q.H.); (F.Z.); (H.-B.L.); (J.-C.Y.); (Z.L.); (G.-M.Z.)
| |
Collapse
|
6
|
Duan X, Zhang G, Ji S, Zhang Y, Li J, Ou H, Gao Z, Feng G, Ding D. Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imaging‐Modality Transformable Characteristics for Improved Biological Applications**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xingchen Duan
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Guo‐Qiang Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Shenglu Ji
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Yiming Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Jun Li
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Guangxue Feng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates School of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Dan Ding
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction Tianjin Stomatological Hospital The Affiliated Stomatological Hospital of Nankai University Tianjin 300041 China
| |
Collapse
|
7
|
Wan R, Ha DG, Dou JH, Lee WS, Chen T, Oppenheim JJ, Li J, Tisdale WA, Dincă M. Dipole-mediated exciton management strategy enabled by reticular chemistry. Chem Sci 2022; 13:10792-10797. [PMID: 36320711 PMCID: PMC9491208 DOI: 10.1039/d2sc01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Selectively blocking undesirable exciton transfer pathways is crucial for utilizing exciton conversion processes that involve participation of multiple chromophores. This is particularly challenging for solid-state systems, where the chromophores are fixed in close proximity. For instance, the low efficiency of solid-state triplet–triplet upconversion calls for inhibiting the parasitic singlet back-transfer without blocking the flow of triplet excitons. Here, we present a reticular chemistry strategy that inhibits the resonance energy transfer of singlet excitons. Within a pillared layer metal–organic framework (MOF), pyrene-based singlet donors are situated perpendicular to porphyrin-based acceptors. High resolution transmission electron microscopy and electron diffraction enable direct visualization of the structural relationship between donor and acceptor (D–A) chromophores within the MOF. Time-resolved photoluminescence measurements reveal that the structural and symmetry features of the MOF reduce the donor-to-acceptor singlet transfer efficiency to less than 36% compared to around 96% in the control sample, where the relative orientation of the donor and acceptor chromophores cannot be controlled. A strategy is designed to selectively block undesirable pathways in photophysical processes that consist of a mixture of Förster and Dexter energy transfer steps.![]()
Collapse
Affiliation(s)
- Ruomeng Wan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
| | - Dong-Gwang Ha
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
| | - Jin-Hu Dou
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
| | - Woo Seok Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
| | - Julius J. Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
| | - Jian Li
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
| |
Collapse
|
8
|
Pescitelli G. ECD exciton chirality method today: a modern tool for determining absolute configurations. Chirality 2021; 34:333-363. [PMID: 34791704 PMCID: PMC9299504 DOI: 10.1002/chir.23393] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023]
Abstract
The application of the exciton chirality method (ECM) to interpret electronic circular dichroism (ECD) spectra is a well‐established and still popular approach to assign the absolute configuration (AC) of natural products, chiral organic compounds, and organometallic species. The method applies to compounds containing at least two chromophores with electric dipole allowed transitions (e.g., π–π* transitions). The exciton chirality rule correlates the sign of an exciton couplet (two ECD bands with opposite sign and similar intensity) with the overall molecular stereochemistry, including the AC. A correct application of the ECM requires three main prerequisites: (a) the knowledge of the molecular conformation, (b) the knowledge of the directions of the electric transition moments (TDMs), and (c) the assumption that the exciton coupling mechanism must be the major source of the observed ECD signals. All these prerequisites can be easily verified by means of quantum‐mechanical (QM) calculations. In the present review, we shortly introduce the general principles that underpin the use of the ECM for configurational assignments and survey its applications, both classic ones and some reported in the recent literature. Based on these examples, we will stress the advantages of the ECM but also the key requisites for its correct application. Additionally, we will discuss the dependence of the couplet sign on geometrical parameters (angles α,β,γ between TDMs), which can be helpful for discerning the sign of exciton chirality in ambiguous situations. Finally, we will present a molecular orbital (MO) description of the exciton coupling phenomenon.
Collapse
Affiliation(s)
- Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| |
Collapse
|
9
|
Ji L, Liu Y, Li Z, Ouyang G, Liu M. Solvent-regulated chiral exciton coupling and CPL sign inversion of an amphiphilic glutamide-cyanostilbene. Chem Commun (Camb) 2021; 57:11314-11317. [PMID: 34635884 DOI: 10.1039/d1cc04471k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The chiral exciton couplings within a Y-shaped amphiphilic glutamide-cyanostilbene (GCS) could be significantly biased by solvent polarity and hydration effects, which led to sign inversion of both the circular dichroism and circularly polarized luminescence of the GCS assemblies.
Collapse
Affiliation(s)
- Lukang Ji
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.,Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yiran Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zujian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
10
|
Fry HC, Peters BL, Ferguson AL. Pushing and Pulling: A Dual pH Trigger Controlled by Varying the Alkyl Tail Length in Heme Coordinating Peptide Amphiphiles. J Phys Chem B 2021; 125:1317-1330. [PMID: 33529038 DOI: 10.1021/acs.jpcb.0c07713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Some organisms in nature that undergo anaerobic respiration utilize 1D nanoscale arrays of densely packed cytochromes containing the molecule heme. The assemblies can be mimicked with 1D nanoscale fibrils composed of peptide amphiphiles designed to coordinate heme in dense arrays. To create such materials and assemblies, it is critical to understand the assembly process and what controls the various aspects of hierarchical assembly. MD simulations suggest that shorter alkyl chains on the peptide lead to more dynamic structures than the peptides with longer chains that yield kinetically trapped states. The hydration parameters manifest themselves experimentally through the observation of a dual pH trigger, which controls the peptide assembly rate, the heme binding affinity, and heme organization kinetics. Great strides in understanding the relative complexity of the self-assembly process in relation to incorporating a functional moiety like heme opens up many possibilities in developing abiotic assemblies for bioelectronic devices and assemblies.
Collapse
Affiliation(s)
- H Christopher Fry
- Center for Nansocale Materials, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, Argonne, Illinois 60712, United States
| | - Brandon L Peters
- Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, Argonne, Illinois 60712, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Proficiency of nanostructured lipid carriers for the formulation of amphiphilic bile acid oligomers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Peng B, Liu XM, Tseng HR, Li LL, Wang H. A ratiometric photoacoustic imaging approach for semi-quantitative determination of aggregation efficiency in vivo. NANOSCALE 2020; 12:18654-18662. [PMID: 32618993 DOI: 10.1039/d0nr03218b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In vivo self-assembly not only endows dynamic supramolecules with various biological functions, but also realizes metabolic differences, and improves the level of diagnosis and treatment. However, the method of measuring aggregation efficiency in vivo is still challenging. In this work, we first proposed a ratiometric photoacoustic imaging method to measure the aggregation efficiency of molecules in vivo in real time and semi-quantitatively. Similar to the traditional fluorescence method, the ratiometric photoacoustic signal has a typical exponential relationship with the aggregation efficiency, which is defined as the percentage of aggregation molecules in the total molecules. Then, we proposed a ratiometric photoacoustic (PA) probe, which can be tailored by cathepsin E and self-assembled into nanofibers in situ inside pancreatic cancer cells. The maximum aggregation efficiency of 10-5 M PA probe was 58% after 2 hours of incubation. After intratumoral administration in xenografted pancreatic tumor mice, the highest aggregation efficiency was found to be 36% 6 hours after the injection. The ratiometric PA probe provides us with a real-time method to detect the aggregation efficiency in vivo, which is helpful to deepen the understanding of the dynamic assembly process and optimize the design of supramolecules.
Collapse
Affiliation(s)
- Bo Peng
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
| | | | | | | | | |
Collapse
|
13
|
Swathi K, Sissa C, Painelli A, George Thomas K. Supramolecular chirality: a caveat in assigning the handedness of chiral aggregates. Chem Commun (Camb) 2020; 56:8281-8284. [PMID: 32572405 DOI: 10.1039/d0cc01922d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The handedness of a supramolecular chiral aggregate is often assigned based on the sign of circular dichroism spectra, adopting the exciton chirality method. However, the method does not properly account for the nature of intermolecular interactions. We introduce a generalized picture on the use of the sign of chiral signals in determining the helicity of chiral aggregates, rooted in the exciton model, supported by TD-DFT results.
Collapse
Affiliation(s)
- K Swathi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | | | | | | |
Collapse
|
14
|
Gangemi CM, Randazzo R, Gaeta M, Fortuna CG, Fragalà ME, Purrello R, D’Urso A. Synthesis and characterization of 5-(4-carboxyphenylspermine)-10,15,20-triphenylporphyrin. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We synthetized and characterized a mono spermine porphyrin derivative by NMR, UV-vis and fluorescence spectroscopy. The photophysical properties and the protonation equilibria of 5-(4-carboxyphenylspermine)-10,15,20-triphenylporphyrin have been investigated, showing that porphyrin does not aggregate in acidic solutions, differently from what occurs as soon as the core of the porphyrin is deprotonated. These aggregation processes have been detected by the rising of new fluorescence band and a significant splitting of the Soret band.
Collapse
Affiliation(s)
| | - Rosalba Randazzo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Italy
| | - Massimiliano Gaeta
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Italy
| | - Cosimo G. Fortuna
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Italy
| | - Maria E. Fragalà
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Italy
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Italy
| | - Alessandro D’Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Italy
| |
Collapse
|
15
|
Chatterjee A, Afrose SP, Ahmed S, Venugopal A, Das D. Cross-β amyloid nanotubes for hydrolase-peroxidase cascade reactions. Chem Commun (Camb) 2020; 56:7869-7872. [PMID: 32154814 DOI: 10.1039/d0cc00279h] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we report the catalytic potential of short peptide based cross-β amyloid nanotubes with surface exposed histidine capable of binding hemin and showing facile cascade reactions, playing the dual roles of hydrolases and peroxidases, two of the most important classes of enzymes in extant biology. The activity of these simple systems exceeded those of modern and larger proteins like cytochrome C and hemoglobin. Further, evidence suggested that these self-assembled nanotubes foreshadow the process of intermediate channeling, a feature seen in the case of advanced enzymes.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | | | | | | | | |
Collapse
|
16
|
Ellestad G, Zask A, Berova N. The enduring legacy of Koji Nakanishi's research on bioorganic chemistry and natural products. Part 1: Isolation, structure determination and mode of action. Chirality 2020; 32:632-651. [PMID: 32157754 DOI: 10.1002/chir.23214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
In this brief review on Koji Nakanishi's remarkable career in natural products chemistry, we have highlighted a number of his accomplishments that illustrate the broad diversity of his interests. These include the isolation, structure determination, and biological mechanism of action of many natural products including the triterpenoid pristimerin; the diterpenoid ginkgolides; insect and crustacean molting hormones; phytoalexins; the toxic red tide principle brevetoxin; the vanadium tunicate pigments; philanthotoxin from killer wasps; antisickling agents; mitomycin DNA adducts; insect antifeedants; a mitotic hormone, the small molecule fish attractants from the sea anemone; new isolation and purification technologies; molecular chemistry of vision; age-related macular degeneration; and the development of the exciton circular dichroism (CD) chirality method for microscale determination of absolute configuration of natural products and chirality of other chiral molecules and supramolecular assembly.
Collapse
Affiliation(s)
- George Ellestad
- Department of Chemistry, Columbia University, New York, New York
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, New York
| | - Nina Berova
- Department of Chemistry, Columbia University, New York, New York
| |
Collapse
|
17
|
Burns JR, Wood JW, Stulz E. A Porphyrin-DNA Chiroptical Molecular Ruler With Base Pair Resolution. Front Chem 2020; 8:113. [PMID: 32175308 PMCID: PMC7054460 DOI: 10.3389/fchem.2020.00113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 11/13/2022] Open
Abstract
DNA-based molecular rulers enable scientists to determine important parameters across biology, from the measurement of protein binding interactions, to the study of membrane dynamics in cells. However, existing rulers can suffer from poor nanometre resolution due to the flexible nature of linkers used to tether to the DNA framework. We aimed to overcome this problem using zinc and free-base porphyrin chromophores attached via short and rigid acetylene linkers. This connectivity enables the distance and angle between the porphyrins to be fine-tuned along the DNA scaffold. The porphyrins undergo favorable energy transfer and chiral exciton coupling interactions to act as highly sensitive molecular ruler probes. To validate the system, we monitored the detection of small changes in DNA structure upon intercalation of ethidium bromide. CD spectroscopy showed the porphyrins undergo highly sensitive changes in excitation coupling to facilitate base pair resolution of the novel system.
Collapse
Affiliation(s)
- Jonathan R Burns
- Department of Chemistry, University College London, London, United Kingdom
| | - James W Wood
- School of Chemistry & Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Eugen Stulz
- School of Chemistry & Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
18
|
Zhou J, Gao ZJ, Cai JQ, Li LL, Wang H. Synthesis and Self-Assembly Behavior of Chlorophyll Derivatives for Ratiometric Photoacoustic Signal Optimization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1559-1568. [PMID: 32030985 DOI: 10.1021/acs.langmuir.9b03652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Self-assembly provides researchers powerful tools for creating ordered functional structures and complex architectures. Investigation of in vivo self-assembly reveals the assembly/aggregation-induced retention (AIR) effect and enhanced targeting effect, which can be applied to promising biomedical applications by enhancing molecular accumulation in the target region. These unique bioeffects inspire the interest of researchers in construction of self-assembled nanomaterials in biological systems. Although many efforts have been achieved, the in-depth analysis of the relationship between assemblies and functions is rarely reported. Here, we focus on the relationship of chlorophyll-derivative assemblies and their photoacoustic signals and attempt to establish a method for monitoring the aggregation efficiency in vivo based on photoacoustic signals. Three arginine-rich peptide-purpurin molecules were designed and synthesized. The assembled capabilities and assembly processes of these molecules were characterized and monitored by UV, fluorescence, and CD spectra images of gradually changing polarities in mixed solvents, and the morphologies of the assemblies were observed by TEM. Furthermore, the relationship between the aggregation ratios of the molecules and the ratiometric photoacoustic signals was systemically studied. We prospect that the fundamental research in revealing objective laws will be useful for future guidance in optimizing photoacoustic detection windows and assembled molecule design.
Collapse
Affiliation(s)
- Jin Zhou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Standardization and Measurement for Nanotechnology , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Zi-Jun Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Jun-Quan Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| |
Collapse
|
19
|
Majumder R, Roy S, Okamoto K, Nagao S, Matsuo T, Parui PP. Porphyrin-Based Probe for Simultaneous Detection of Interface Acidity and Polarity during Lipid-Phase Transition of Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:426-434. [PMID: 31820997 DOI: 10.1021/acs.langmuir.9b02781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biochemical activities at a membrane interface are affected by local pH/polarity related to membrane lipid properties including lipid dynamics. pH and polarity at the interface are two highly interdependent parameters, depending on various locations from the water-exposed outer surface to the less polar inner surface. The optical response of common pH or polarity probes is affected by both the local pH and polarity; therefore, estimation of these values using two separate probes localized at different interface depths can be erroneous. To estimate interface pH and polarity at an identical interface depth, we synthesized a glucose-pendant porphyrin (GPP) molecule for simultaneous pH and polarity detection by a single optical probe. pH-induced protonation equilibrium and polarity-dependent π-π stacking aggregation for GPP are exploited to measure pH and polarity changes at the 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) membrane interface during DMPG phase transition. An NMR study confirmed that GPP is located at the interface Stern layer of DMPG large unilamellar vesicle (LUV). Using UV-vis absorption studies with an adapted analysis protocol, we estimated interface pH, or its deviation from the bulk phase value (ΔpH), and the interface polarity simultaneously using the same spectra for sodium dodecyl sulfate micelle and DMPG LUV. During temperature-dependent gel to liquid-crystalline phase transition of DMPG, there was ∼0.5 unit increase in ΔpH from approximately -0.6 to -1.1, with a small increase in the interface dielectric constant from ∼60 to 63. A series of spectroscopic data indicate the utility of GPP for evaluation of local pH/polarity change during lipid phase transition of vesicles.
Collapse
Affiliation(s)
- Rini Majumder
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India
| | - Snigdha Roy
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India
| | - Kentaro Okamoto
- Division of Materials Science, Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , 8916-5 Takayama-cho , Ikoma , Nara 630-0192 , Japan
| | - Satoshi Nagao
- Division of Materials Science, Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , 8916-5 Takayama-cho , Ikoma , Nara 630-0192 , Japan
| | - Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , 8916-5 Takayama-cho , Ikoma , Nara 630-0192 , Japan
| | | |
Collapse
|
20
|
Saha B, Petrovic AG, Dhamija A, Berova N, Rath SP. Complexation of Chiral Zinc(II) Porphyrin Tweezer with Achiral Aliphatic Diamines Revisited: Molecular Dynamics, Electronic CD, and 1H NMR Analysis. Inorg Chem 2019; 58:11420-11438. [DOI: 10.1021/acs.inorgchem.9b00962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bapan Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Ana G. Petrovic
- Columbia University, Department of Chemistry, 3000 Broadway, New York, New York 10027, United States
- Department of Life Sciences, New York Institute of Technology, 1855 Broadway, New York, New York 10023, United States
| | - Avinash Dhamija
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Nina Berova
- Columbia University, Department of Chemistry, 3000 Broadway, New York, New York 10027, United States
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
21
|
Oliveras-González C, Linares M, Amabilino DB, Avarvari N. Large Synthetic Molecule that either Folds or Aggregates through Weak Supramolecular Interactions Determined by Solvent. ACS OMEGA 2019; 4:10108-10120. [PMID: 31460103 PMCID: PMC6648001 DOI: 10.1021/acsomega.9b01050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/29/2019] [Indexed: 05/12/2023]
Abstract
Weak noncovalent interactions between large disclike molecules in poorly solvating media generally lead to the formation of fibers where the molecules stack atop one another. Here, we show that a particular chiral spacing group between large aromatic moieties, which usually lead to columnar stacks, in this case gives rise to an intramolecularly folded structure in relatively polar solvents, but in very apolar solvents forms finite aggregates. The molecule that displays this behavior has a C 3 symmetric benzene-1,3,5-tris(3,3'-diamido-2,2'-bipyridine) (BTAB) core with three metalloporphyrin units appended to it through short chiral spacers. Quite well-defined chromophore arrangements are evident by circular dichroism (CD) spectroscopy of this compound in solution, where clear exciton coupled bands of porphyrins are observed. In more polar solvents where the molecules are dispersed, a relatively weak CD signal is observed as a result of intramolecular folding, a feature confirmed by molecular modeling. The intramolecular folding was confirmed by measuring the CD of a C 2 symmetric analogue. The C 3 symmetric BTAB cores that would normally be expected to stack in a chiral arrangement in apolar solvents show no indication of CD, suggesting that there is no transfer of chirality through it (although the expected planar conformation of the 2,2'-bipyridine unit is confirmed by NMR spectroscopy). The incorporation of the porphyrins on the 3,3'-diamino-2,2'-bipyridine moiety spaced by a chiral unit leaves the latter incapable of assembling through supramolecular π-π stacking. Rather, modeling indicates that the three metalloporphyrin units interact, thanks to van der Waals interactions, favoring their close interactions over that of the BTAB units. Atomic force microscopy shows that, in contrast to other examples of molecules with the same core, disclike aggregates (rather than fibrillar one dimensional aggregates) are favored by the C 3 symmetric molecule. The closed structures are formed through nondirectional interlocking of porphyrin rings. The chiral spacer between the rigid core and the porphyrin moieties is undoubtedly important in determining the outcome in polar or less polar solvents, as modeling shows that this joint in the molecule has two favored conformations that render the molecule relatively flat or convex.
Collapse
Affiliation(s)
| | - Mathieu Linares
- Laboratory
of Organic Electronics, ITN, Campus Norrköping, Scientific Visualization
Group, ITN, Campus Norrköping, and Swedish e-Science Research Centre
(SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - David B. Amabilino
- School
of Chemistry, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
- GSK Carbon
Neutral Laboratories for Sustainable Chemistry, The University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU Nottingham, U.K.
| | - Narcis Avarvari
- MOLTECH-Anjou,
UMR 6200, CNRS, Univ. Angers, 2bd Lavoisier, 49045 Angers Cedex, France
| |
Collapse
|
22
|
Tokunou Y, Okamoto A. Geometrical Changes in the Hemes of Bacterial Surface c-Type Cytochromes Reveal Flexibility in Their Binding Affinity with Minerals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7529-7537. [PMID: 30351954 DOI: 10.1021/acs.langmuir.8b02977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microbial extracellular electron transport occurs via the physical and electrical association of outer-membrane c-type cytochromes (OM c-Cyts) with extracellular solid surfaces. However, studies investigating the characteristics of cytochrome binding with solid materials have been limited to the use of purified units of OM c-Cyts dissolved in solution, rather than OM c-Cyts in intact cells, because of the lack of a methodology that specifically allows for the monitoring of OM c-Cyts in whole-cells. Here, we utilized circular dichroism (CD) spectroscopy to examine the molecular mechanisms and binding characteristics of the interaction between MtrC, a unit of OM c-Cyts, in whole Shewanella oneidensis MR-1 cells and hematite nanoparticles. The addition of hematite nanoparticles significantly decreased the intensity of the Soret CD peaks, indicating geometrical changes in the hemes in MtrC associated with their physical contact with hematite. The binding affinity of MtrC estimated using CD spectra changed predominantly depending upon the redox state of MtrC and the concentration of the hematite nanoparticles. In contrast, purified MtrC demonstrated a constant binding affinity following a Langmuir isotherm, with a standard Gibbs free energy of -43 kJ mol-1, suggesting that the flexibility in the binding affinity of MtrC with hematite was specific in membrane-bound protein complex conditions. Overall, these findings suggest that the binding affinity as well as the heme geometry of OM c-Cyts are flexibly modulated in the membrane complex associated with microbe-mineral interactions.
Collapse
Affiliation(s)
- Yoshihide Tokunou
- Department of Applied Chemistry , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
- International Center for Materials Nanoarchitectonics , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
- Center for Functional Sensor & Actuator , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| |
Collapse
|
23
|
Solomon LA, Wood AR, Sykes ME, Diroll BT, Wiederrecht GP, Schaller RD, Fry HC. Microenvironment control of porphyrin binding, organization, and function in peptide nanofiber assemblies. NANOSCALE 2019; 11:5412-5421. [PMID: 30855041 DOI: 10.1039/c8nr09556f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To take peptide materials from predominantly structural to functional assemblies, variations in cofactor binding sites must be engineered and controlled. Here, we have employed the peptide sequence c16-AHX3K3-CO2H where X3 represents the aliphatic structural component of the peptide design that dictates β-sheet formation and upon self-assembly yields a change in the overall microenvironment surrounding the Zn protoporphyrin IX ((PPIX)Zn) binding site. All peptides studied yield β-sheet rich nanofibers highlighting the materials' resiliency to amino acid substitution. We highlight that the (PPIX)Zn binding constants correlate strongly with amino acid side chain volume, where X = L or I yields the lowest dissociation constant values (KD). The resulting microenvironment highlights the materials' ability to control interchromophore electronic interactions such that slip-stacked cofacial arrangements are observed via exciton splitting in UV/visible and circular dichroism spectroscopy. Steady state and time-resolved photoluminescence suggests that greater interchromophore packing yields larger excimer populations and corresponding longer excimer association lifetimes (τA) which directly translates to shorter exciton diffusion lengths. In comparison to synthetic porphyrin molecular assemblies, this work demonstrates the ability to employ the peptide assembly to modulate the degree of cofactor arrangement, extent of excimer formation, and the exciton hopping rates all while in a platform amenable for producing polymer-like materials.
Collapse
Affiliation(s)
- Lee A Solomon
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Teraguchi M, Nahata N, Nishimura T, Aoki T, Kaneko T. Helix-Sense-Selective Polymerization of Phenylacetylenes Having a Porphyrin and a Zinc-Porphyrin Group: One-Handed Helical Arrangement of Porphyrin Pendants. Polymers (Basel) 2019; 11:E274. [PMID: 30960258 PMCID: PMC6419054 DOI: 10.3390/polym11020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/02/2019] [Accepted: 02/02/2019] [Indexed: 11/16/2022] Open
Abstract
Newly synthesized two kinds of achiral phenylacetylenes having a free-base- or a zinc-porphyrin (1 and Zn1, respectively) were polymerized by using a chiral rhodium catalyst system, Rh⁺(nbd)[(η⁶-C₆H₅)B⁻(C₆H₅)₃] catalyst and (R)-(+)- or (S)-(⁻)-1-phenylethylamine ((R)- or (S)-PEA, respectively) cocatalyst. Poly(1) and poly(Zn1) in THF showed a Cotton signal at the absorption region of the porphyrin and the main chain in the circular dichroism (CD) spectra. This result suggests that poly(1) and poly(Zn1) exist in a conformation with an excess of one-handed helix sense and the porphyrin moiety arranged in chiral helical fashion. The one-handed helical structure of poly(1) could be sustained in a mixture of THF/HMPA (10/2, v/v) due to stabilizing by stacking effect of porphyrin moieties along the main chain. This is the first example about helix-sense-selective polymerization by using Rh⁺(nbd)[(η⁶-C₆H₅)B⁻(C₆H₅)₃] catalyst. Additionally, poly(Zn1) showed about 10 times larger CD intensity in comparison with poly(1). This result suggests the regularity of arrangement of the porphyrin in poly(Zn1) is higher compared with poly(1). Spatial arrangement of porphyrins was achieved by utilizing a one-handed helical poly(phenylacetylenes) as a template.
Collapse
Affiliation(s)
- Masahiro Teraguchi
- Department of Chemistry and Chemical Engineering, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
- Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | - Nobuyuki Nahata
- Department of Chemistry and Chemical Engineering, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | - Takahiro Nishimura
- Department of Chemistry and Chemical Engineering, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | - Toshiki Aoki
- Department of Chemistry and Chemical Engineering, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
- Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | - Takashi Kaneko
- Department of Chemistry and Chemical Engineering, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
- Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
25
|
Tokunou Y, Chinotaikul P, Hattori S, Clarke TA, Shi L, Hashimoto K, Ishii K, Okamoto A. Whole-cell circular dichroism difference spectroscopy reveals an in vivo-specific deca-heme conformation in bacterial surface cytochromes. Chem Commun (Camb) 2019; 54:13933-13936. [PMID: 30403202 PMCID: PMC6301274 DOI: 10.1039/c8cc06309e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Our novel analytical framework to identify the inter-heme interaction in deca-heme cytochrome protein MtrC in whole cell revealed that the heme alignment in reduced MtrC is distinct from that in purified system.
We established whole-cell circular dichroism difference spectroscopy to identify the inter-heme interaction in deca-heme cytochrome protein MtrC in whole cell. Our data showed that the heme alignment of reduced MtrC in whole cell is distinct from that in purified one, suggesting the in vivo specific electron transport kinetics.
Collapse
Affiliation(s)
- Yoshihide Tokunou
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Takaishi K, Ema T. Control of Chiroptical Properties of Axially Chiral Naphthalene Oligomers. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuto Takaishi
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
| | - Tadashi Ema
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
27
|
Hestand NJ, Spano FC. Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer. Chem Rev 2018; 118:7069-7163. [PMID: 29664617 DOI: 10.1021/acs.chemrev.7b00581] [Citation(s) in RCA: 766] [Impact Index Per Article: 127.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The electronic excited states of molecular aggregates and their photophysical signatures have long fascinated spectroscopists and theoreticians alike since the advent of Frenkel exciton theory almost 90 years ago. The influence of molecular packing on basic optical probes like absorption and photoluminescence was originally worked out by Kasha for aggregates dominated by Coulombic intermolecular interactions, eventually leading to the classification of J- and H-aggregates. This review outlines advances made in understanding the relationship between aggregate structure and photophysics when vibronic coupling and intermolecular charge transfer are incorporated. An assortment of packing geometries is considered from the humble molecular dimer to more exotic structures including linear and bent aggregates, two-dimensional herringbone and "HJ" aggregates, and chiral aggregates. The interplay between long-range Coulomb coupling and short-range charge-transfer-mediated coupling strongly depends on the aggregate architecture leading to a wide array of photophysical behaviors.
Collapse
Affiliation(s)
- Nicholas J Hestand
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Frank C Spano
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
28
|
Takaishi K, Takehana R, Ema T. Intense excimer CPL of pyrenes linked to a quaternaphthyl. Chem Commun (Camb) 2018; 54:1449-1452. [DOI: 10.1039/c7cc09187g] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
(R,R,R)-Quaternaphthyl possessing multiple pyrenes emits CPL with high ΦFL and glum values both in solution and in the solid state.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Tsushima
- Japan
| | - Ryosuke Takehana
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Tsushima
- Japan
| | - Tadashi Ema
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Tsushima
- Japan
| |
Collapse
|
29
|
Zhong Y, Yang Y, Shen Y, Xu W, Wang Q, Connor AL, Zhou X, He L, Zeng XC, Shao Z, Lu ZL, Gong B. Enforced Tubular Assembly of Electronically Different Hexakis(m-Phenylene Ethynylene) Macrocycles: Persistent Columnar Stacking Driven by Multiple Hydrogen-Bonding Interactions. J Am Chem Soc 2017; 139:15950-15957. [DOI: 10.1021/jacs.7b09647] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulong Zhong
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Yang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Shen
- Bio-ID
Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenwu Xu
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Qiuhua Wang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Alan L. Connor
- Department
of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Xibin Zhou
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lan He
- National Institute for Food and Drug Control, Beijing 100050, China
| | - Xiao Cheng Zeng
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Zhifeng Shao
- Bio-ID
Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhong-lin Lu
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bing Gong
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
30
|
Vázquez JT. Features of electronic circular dichroism and tips for its use in determining absolute configuration. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Hu Q, Zhuo C, Wang Y, Hu C, Lang J. Chirality Transfer from Chiral Monoamines to an m-Phthalic Diamide-Linked Zinc Bisporphyrinate with a Benzylamide Substituent. Inorg Chem 2017; 56:10204-10214. [DOI: 10.1021/acs.inorgchem.7b00815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingyun Hu
- State
and Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Congcong Zhuo
- State
and Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Yong Wang
- State
and Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Chuanjiang Hu
- State
and Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Applied Technology College of Soochow University, Suzhou 215325, Jiangsu P.R. China
| | - Jianping Lang
- State
and Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
32
|
Affiliation(s)
- Gennaro Pescitelli
- Dipartimento Di Chimica E Chimica Industriale; Università Di Pisa; Pisa Italy
| | - Lorenzo Di Bari
- Dipartimento Di Chimica E Chimica Industriale; Università Di Pisa; Pisa Italy
| |
Collapse
|
33
|
Marafon G, Menegazzo I, De Zotti M, Crisma M, Toniolo C, Moretto A. Tuning morphological architectures generated through living supramolecular assembly of a helical foldamer end-capped with two complementary nucleobases. SOFT MATTER 2017; 13:4231-4240. [PMID: 28509927 DOI: 10.1039/c7sm00764g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two appropriately functionalized nucleobases, thymine and adenine, have been covalently linked at the N- and C-termini, respectively, of two α-aminoisobutyric acid-rich helical peptide foldamers, aiming at driving self-assembly through complementary recognition. A crystal-state analysis (by X-ray diffraction) on the shorter, achiral foldamer 1 unambiguously shows that adeninethymine base pairing, through Watson-Crick intermolecular H-bonding, does take place between either end of each peptide molecule. In the crystals, π-stacking between base pairs is also observed. Evidence for time-dependent foldameroldamer associations for the longer, chiral foldamer 2 in solution is provided by circular dichroism measurements. The self-assembly of foldamer 2, through living supramolecular polymerization, eventually leads to the formation of twisted fibers. Such a supramolecular organization can be affected by addition of either pristine adenine or thymine, that acts as a "terminator" by selectively matching a pairing nucleobase at one end of the foldamer. The co-assembly of foldamer 2 with a porphyrin-derivatized thymine, under appropriate experimental conditions, leads to the formation of vesicles which, in turn, can be converted to the fiber morphology by changing the environmental polarity. Conversely, dendrimeric, star polymer-like microstructures are generated when the supramolecular assembly of foldamer 2 is seeded by adenine-capped gold nanoparticles.
Collapse
Affiliation(s)
- Giulia Marafon
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Calvete MJF, Dias LD, Henriques CA, Pinto SMA, Carrilho RMB, Pereira MM. A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Zeolite as an Inorganic Acid Catalyst. Molecules 2017; 22:molecules22050741. [PMID: 28475140 PMCID: PMC6154588 DOI: 10.3390/molecules22050741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023] Open
Abstract
Herein we report the synthesis of unsymmetrical meso-aryl substituted porphyrins, using NaY zeolite as an inorganic acid catalyst. A comparative study between this method and the several synthetic strategies available in the literature was carried out. Our method presented a better, more cost-efficient rationale and displayed a significantly lower environmental impact. Furthermore, it was possible to verify the scalability of the process as well as the reutilization of the inorganic catalyst NaY (up to 6 times) without significant yield decrease. In addition, this method was applied to the synthesis of several other unsymmetrical porphyrins, from a low melting point porphyrin to mono-carboxylated halogenated unsymmetrical porphyrins, in yields higher than those found in the literature. Additionally, for the first time, two acetamide functionalized halogenated porphyrins were prepared in high yields. This methodology opens the way to the preparation of high yielding functionalized porphyrins, which can be easily immobilized for a variety of applications, either in catalysis or in biomedicine.
Collapse
Affiliation(s)
- Mário J F Calvete
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Lucas D Dias
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - César A Henriques
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Sara M A Pinto
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Rui M B Carrilho
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Mariette M Pereira
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
35
|
Hu T, Connor AL, Miller DP, Wang X, Pei Q, Liu R, He L, Zheng C, Zurek E, Lu ZL, Gong B. Helical Folding of Meta-Connected Aromatic Oligoureas. Org Lett 2017; 19:2666-2669. [DOI: 10.1021/acs.orglett.7b01005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ting Hu
- College
of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Alan L. Connor
- Department
of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Daniel P. Miller
- Department
of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Xiao Wang
- College
of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Qiang Pei
- College
of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Rui Liu
- College
of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Lan He
- College
of Chemistry, Beijing Normal University, 100875 Beijing, China
- National Institute for Food and Drug Control, Institute of Chemical Drug Control, TianTanXiLi 2, Beijing, 100050, China
| | - Chong Zheng
- Department
of Chemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Eva Zurek
- Department
of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Zhong-lin Lu
- College
of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Bing Gong
- College
of Chemistry, Beijing Normal University, 100875 Beijing, China
- Department
of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
36
|
Lv J, Hou K, Ding D, Wang D, Han B, Gao X, Zhao M, Shi L, Guo J, Zheng Y, Zhang X, Lu C, Huang L, Huang W, Tang Z. Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiawei Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NJTECH); 30 South Puzhu Road Nanjing 211816 P.R. China
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Ke Hou
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Defang Ding
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Dawei Wang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Bing Han
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Xiaoqing Gao
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Man Zhao
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Lin Shi
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Jun Guo
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Yonglong Zheng
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Xi Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NJTECH); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Chenguang Lu
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Ling Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NJTECH); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NJTECH); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| |
Collapse
|
37
|
Lv J, Hou K, Ding D, Wang D, Han B, Gao X, Zhao M, Shi L, Guo J, Zheng Y, Zhang X, Lu C, Huang L, Huang W, Tang Z. Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity. Angew Chem Int Ed Engl 2017; 56:5055-5060. [DOI: 10.1002/anie.201701512] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Jiawei Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NJTECH); 30 South Puzhu Road Nanjing 211816 P.R. China
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Ke Hou
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Defang Ding
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Dawei Wang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Bing Han
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Xiaoqing Gao
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Man Zhao
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Lin Shi
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Jun Guo
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Yonglong Zheng
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Xi Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NJTECH); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Chenguang Lu
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Ling Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NJTECH); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NJTECH); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| |
Collapse
|
38
|
Yang W, Kang B, Voelz VA, Seo J. Control of porphyrin interactions via structural changes of a peptoid scaffold. Org Biomol Chem 2017; 15:9670-9679. [DOI: 10.1039/c7ob02398g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A template to control porphyrin interactions is constructed by displaying porphyrins at defined positions on a helical peptoid.
Collapse
Affiliation(s)
- Woojin Yang
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology
- Gwangju 61005
- South Korea
| | - Boyeong Kang
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology
- Gwangju 61005
- South Korea
| | | | - Jiwon Seo
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology
- Gwangju 61005
- South Korea
| |
Collapse
|
39
|
Jana P, Ehlers M, Zellermann E, Samanta K, Schmuck C. pH-Controlled Formation of a Stable β-Sheet and Amyloid-like Fibers from an Amphiphilic Peptide: The Importance of a Tailor-Made Binding Motif for Secondary Structure Formation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Poulami Jana
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Martin Ehlers
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Elio Zellermann
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Krishnananda Samanta
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| |
Collapse
|
40
|
Jana P, Ehlers M, Zellermann E, Samanta K, Schmuck C. pH-Controlled Formation of a Stable β-Sheet and Amyloid-like Fibers from an Amphiphilic Peptide: The Importance of a Tailor-Made Binding Motif for Secondary Structure Formation. Angew Chem Int Ed Engl 2016; 55:15287-15291. [DOI: 10.1002/anie.201608069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Poulami Jana
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Martin Ehlers
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Elio Zellermann
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Krishnananda Samanta
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| |
Collapse
|
41
|
Hattori S, Akagawa K, Kudo K, Ishii K. Determination of the Absolute Configuration of Side Chains of Basic Amino Acid Residues Using the Water-Soluble Porphyrin-Based Exciton Chirality Method. J Phys Chem B 2016; 120:10280-10287. [DOI: 10.1021/acs.jpcb.6b07925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shingo Hattori
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kengo Akagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kazuaki Kudo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
42
|
Li LL, Zeng Q, Liu WJ, Hu XF, Li Y, Pan J, Wan D, Wang H. Quantitative Analysis of Caspase-1 Activity in Living Cells Through Dynamic Equilibrium of Chlorophyll-Based Nano-assembly Modulated Photoacoustic Signals. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17936-17943. [PMID: 27341352 DOI: 10.1021/acsami.6b05795] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In situ construction of self-assemblies with unique property in living systems is a promising direction in the biomedical field. The noninvasive methods for significant enzyme activity in living cells or living subjects are imperative and meantime challenge tasks. The dynamic process of self-assembly of chlorophyll-based molecules in complex biological systems can be monitored by photoacoustic signals, which supports a noninvasive way to understand and quantitatively measure the activity of caspase-1. Furthermore, the activity of caspase-1 enables reflection of the bacterial infection in the early stage. Here, we present a biocompatible self-assembly from chlorophyll-peptide derivatives and first correlate the dynamic equilibrium with ratiometric photoacoustic signals. The intracellular equilibrium was managed by a bacterial infection precaution protein, i.e., caspase-1. This system offers a trial of noninvasive method to quantitative detection and real-time monitoring of bacterial infection in the early stage.
Collapse
Affiliation(s)
- Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) Department Institution , No. 11 Beiyitiao, Beijing, China
| | - Qian Zeng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) Department Institution , No. 11 Beiyitiao, Beijing, China
| | - Wei-Jiao Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) Department Institution , No. 11 Beiyitiao, Beijing, China
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , Tianin, China
| | - Xue-Feng Hu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) Department Institution , No. 11 Beiyitiao, Beijing, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering, East China University of Science and Technology , Shanghai, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering, East China University of Science and Technology , Shanghai, China
| | - Jie Pan
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , Tianin, China
| | - Dong Wan
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , Tianin, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) Department Institution , No. 11 Beiyitiao, Beijing, China
| |
Collapse
|
43
|
Zheng W, Li X, Chen H, Xie Q, Li H. Synthesis and Photophysical Properties of Porphyrin-Arylimidazole Heterodyads. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Zheng
- College of Chemistry; Xiangtan University; Xiangtan 411105 Hunan Province China
| | - Xianglin Li
- College of Chemistry; Xiangtan University; Xiangtan 411105 Hunan Province China
| | - Hongbiao Chen
- College of Chemistry; Xiangtan University; Xiangtan 411105 Hunan Province China
| | - Qiong Xie
- College of Chemistry; Xiangtan University; Xiangtan 411105 Hunan Province China
| | - Huaming Li
- College of Chemistry; Xiangtan University; Xiangtan 411105 Hunan Province China
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Xiangtan University; Hunan Province China
| |
Collapse
|
44
|
Antoniuk-Pablant A, Kodis G, Moore AL, Moore TA, Gust D. Photoinduced Electron and Energy Transfer in a Molecular Triad Featuring a Fullerene Redox Mediator. J Phys Chem B 2016; 120:6687-97. [DOI: 10.1021/acs.jpcb.6b03470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Gerdenis Kodis
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ana L. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas A. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Devens Gust
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
45
|
Abstract
This review highlights and summarizes various optically active porphyrin and phthalocyanine molecules prepared using a wide range of structural modification methods to improve the design of novel structures and their applications. The induced chirality of some illustrative achiral bis-porphyrins with a chiral guest molecule is introduced because these systems are ideal for the identification and separation of chiral biologically active substrates. In addition, the relationship between CD signal and the absolute configuration of the molecule is analyzed through an analysis of the results of molecular modeling calculations. Possible future research directions are also discussed.
Collapse
Affiliation(s)
- Hua Lu
- Department of Chemistry, Graduate School of Science, Tohoku University , Sendai 980-8578, Japan
| | - Nagao Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University , Sendai 980-8578, Japan
| |
Collapse
|
46
|
Mándi A, Swamy MMM, Taniguchi T, Anetai M, Monde K. Reducing Molecular Flexibility by Cyclization for Elucidation of Absolute Configuration by CD Calculations: Daurichromenic Acid. Chirality 2016; 28:453-9. [DOI: 10.1002/chir.22606] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Attila Mándi
- Faculty of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology; Hokkaido University; Sapporo Japan
| | | | - Tohru Taniguchi
- Faculty of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology; Hokkaido University; Sapporo Japan
| | - Masaki Anetai
- Faculty of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology; Hokkaido University; Sapporo Japan
| | - Kenji Monde
- Faculty of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology; Hokkaido University; Sapporo Japan
| |
Collapse
|
47
|
Oohora K, Mashima T, Ohkubo K, Fukuzumi S, Hayashi T. Energy migration within hexameric hemoprotein reconstituted with Zn porphyrinoid molecules. Chem Commun (Camb) 2016; 51:11138-40. [PMID: 26073549 DOI: 10.1039/c5cc02680f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photosensitizers, Zn protoporphyrin IX and Zn chlorin e6, are completely inserted into each heme pocket of a hexameric apohemoprotein. The fluorescence quenching efficiencies upon addition of methyl viologen are 2.3 and 2.6 fold-higher than those of the partially photosensitizer-inserted proteins, respectively, indicating that the energy migration occurs within the proteins.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| | | | | | | | | |
Collapse
|
48
|
Schulze M, Scherer A, Hampel F, Stryker JM, Tykwinski RR. Synthesis and Aggregation Behavior of Chiral Naphthoquinoline Petroporphyrin Asphaltene Model Compounds. Chemistry 2016; 22:3378-3386. [DOI: 10.1002/chem.201504683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Matthias Schulze
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM); Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Henkestraße 42 91054 Erlangen Germany
| | - Alexander Scherer
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM); Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Henkestraße 42 91054 Erlangen Germany
| | - Frank Hampel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM); Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Henkestraße 42 91054 Erlangen Germany
| | - Jeffrey M. Stryker
- Department of Chemistry; University of Alberta; Edmonton AB T6G 2G2 Canada
| | - Rik R. Tykwinski
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM); Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Henkestraße 42 91054 Erlangen Germany
| |
Collapse
|
49
|
Li LL, Ma HL, Qi GB, Zhang D, Yu F, Hu Z, Wang H. Pathological-Condition-Driven Construction of Supramolecular Nanoassemblies for Bacterial Infection Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:254-262. [PMID: 26568542 DOI: 10.1002/adma.201503437] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/19/2015] [Indexed: 06/05/2023]
Abstract
A pyropheophorbide-α-based building block (Ppa-PLGVRG-Van) can be used to construct self-aggregated superstructures in vivo for highly specific and sensitive diagnosis of bacterial infection by noninvasive photoacoustic tomography. This in vivo supramolecular chemistry approach opens a new avenue for efficient, rapid, and early-stage disease diagnosis with high sensitivity and specificity.
Collapse
Affiliation(s)
- Li-Li Li
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Huai-Lei Ma
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Guo-Bin Qi
- Key Lab for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Ave, Wuhan, 430073, China
| | - Di Zhang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Faquan Yu
- Key Lab for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Ave, Wuhan, 430073, China
| | - Zhiyuan Hu
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Yangtze River Delta Academy of Nanotechnology and Industry Development Research, Jiaxing, 314000, China
| | - Hao Wang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
50
|
Bialas D, Kirchner E, Würthner F. Folding-induced exciton coupling in homo- and heterodimers of merocyanine dyes. Chem Commun (Camb) 2016; 52:3777-80. [DOI: 10.1039/c6cc00221h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Folding of a bis(merocyanine) dye with two different chromophores leads to a model system to elucidate electronic interactions in heteroaggregates.
Collapse
Affiliation(s)
- David Bialas
- Universität Würzburg
- Institut für Organische Chemie & Center for Nanosystems Chemistry
- 97074 Würzburg
- Germany
| | - Eva Kirchner
- Universität Würzburg
- Institut für Organische Chemie & Center for Nanosystems Chemistry
- 97074 Würzburg
- Germany
| | - Frank Würthner
- Universität Würzburg
- Institut für Organische Chemie & Center for Nanosystems Chemistry
- 97074 Würzburg
- Germany
| |
Collapse
|