1
|
Dangi A, Qureshi T, Chinnathambi S, Kiran Marelli U. Macrocyclic peptides derived from AcPHF6* and AcPHF6 to selectively modulate the Tau aggregation. Bioorg Chem 2024; 151:107625. [PMID: 39013241 DOI: 10.1016/j.bioorg.2024.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Ten macrocyclic peptides, each comprising 14 amino acids, were designed and synthesized based on the Tau aggregation model hexapeptides AcPHF6* and AcPHF6. The design took into account the aggregation tendencies of each residue in AcPHF6* and AcPHF6, their aggregation models, while employing peptide-based structural design principles including N-methylation to promote turns and to block hydrogen bond propagation and elongation of the aggregation chain. NMR analysis supported that all these peptides adopted an antiparallel β-sheet conformation. Self-aggregation studies characterized the aggregation properties of these peptides, identifying two peptides with the highest (P3) and lowest (P8) aggregation tendencies. In cross-aggregation studies with the parent peptides AcPHF6* and AcPHF6, P3 and P8 were found to promote and reduce aggregation, respectively. Furthermore, P3 and P8 demonstrated an enhancement and diminution effect on the aggregation of K18wt, indicating their capacity to modulate aggregation even at the macromolecular level. Thus, the two simple peptides, P3 and P8 selectively exhibit pro- or anti-aggregation effects on PHF peptides and Tau. This study, has thus developed structurally well-defined non-complex peptides, derived from AcPHF6* and AcPHF6, to modulate Tau aggregation as desired, offering applications in Tau model studies and the development of Tau aggregation inhibitors or promoters.
Collapse
Affiliation(s)
- Abha Dangi
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India
| | - Tazeen Qureshi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India.
| | - Udaya Kiran Marelli
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India.
| |
Collapse
|
2
|
Núñez-Villanueva D, Plata-Ruiz A, Romero-Muñiz I, Martín-Pérez I, Infantes L, González-Muñiz R, Martín-Martínez M. β-Turn Induction by a Diastereopure Azepane-Derived Quaternary Amino Acid. J Org Chem 2023; 88:14688-14696. [PMID: 37774108 PMCID: PMC10594656 DOI: 10.1021/acs.joc.3c01689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/01/2023]
Abstract
β-Turns are one of the most common secondary structures found in proteins. In the interest of developing novel β-turn inducers, a diastereopure azepane-derived quaternary amino acid has been incorporated into a library of simplified tetrapeptide models in order to assess the effect of the azepane position and peptide sequence on the stabilization of β-turns. The conformational analysis of these peptides by molecular modeling, NMR spectroscopy, and X-ray crystallography showed that this azepane amino acid is an effective β-turn inducer when incorporated at the i + 1 position. Moreover, the analysis of the supramolecular self-assembly of one of the β-turn-containing peptide models in the solid state reveals that it forms a supramolecular helical arrangement while maintaining the β-turn structure. The results here presented provide the basis for the use of this azepane quaternary amino acid as a strong β-turn inducer in the search for novel peptide-based bioactive molecules, catalysts, and biomaterials.
Collapse
Affiliation(s)
| | - Adrián Plata-Ruiz
- Instituto
de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ignacio Romero-Muñiz
- Instituto
de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Universidad
Autónoma de Madrid, Química Orgánica, Francisco Tomás y Valiente,
7, 28049 Madrid, Spain
| | - Ignacio Martín-Pérez
- Instituto
de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Lourdes Infantes
- Instituto
de Química Física Rocasolano (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain
| | | | | |
Collapse
|
3
|
Makino A, Ueda M, Uematsu Y, Ohora T, Ohtani T, Miyagawa S, Fujibayashi Y, Okazawa H, Tokunaga Y, Kiyono Y. Development of Low Molecular Weight Ligands for Integrin α<sub>v</sub>β<sub>3</sub>. Chem Pharm Bull (Tokyo) 2022; 70:293-299. [DOI: 10.1248/cpb.c21-01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Akira Makino
- Biomedical Imaging Research Center, University of Fukui
| | - Masahiro Ueda
- Graduate School of Engineering, Materials Science and Engineering, University of Fukui
| | - Yoshitaka Uematsu
- Graduate School of Engineering, Materials Science and Engineering, University of Fukui
| | - Takuya Ohora
- Graduate School of Engineering, Materials Science and Engineering, University of Fukui
| | - Takayuki Ohtani
- Graduate School of Engineering, Materials Science and Engineering, University of Fukui
| | - Shinobu Miyagawa
- Graduate School of Engineering, Materials Science and Engineering, University of Fukui
| | | | | | - Yuji Tokunaga
- Research and Education Program for Life Science, University of Fukui
| | - Yasushi Kiyono
- Research and Education Program for Life Science, University of Fukui
| |
Collapse
|
4
|
Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater 2022; 9:198-220. [PMID: 34820566 PMCID: PMC8586021 DOI: 10.1016/j.bioactmat.2021.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The construction of biomimetic vasculatures within the artificial tissue models or organs is highly required for conveying nutrients, oxygen, and waste products, for improving the survival of engineered tissues in vitro. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular biology have enabled the creation of three-dimensional (3D) tissues and organs composed of highly complex vascular systems. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the vascularization of tissues. Initially, the significance of vascular elements and the regeneration mechanisms of vascularization, including angiogenesis and vasculogenesis, are briefly introduced. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments in fabricating vascularized tissues or organs, in terms of tunable physical properties, high similarity in physiological environments, and alternative shaping mechanisms, among others. Furthermore, we discuss the utilization of such hydrogels-based vascularized tissues in various applications, including tissue regeneration, drug screening, and organ-on-chips. Finally, we put forward the key challenges, including multifunctionalities of hydrogels, selection of suitable cell phenotype, sophisticated engineering techniques, and clinical translation behind the development of the tissues with complex vasculatures towards their future development.
Collapse
Affiliation(s)
- Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| |
Collapse
|
5
|
Damjanovic J, Miao J, Huang H, Lin YS. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chem Rev 2021; 121:2292-2324. [PMID: 33426882 DOI: 10.1021/acs.chemrev.0c01087] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions are vital to biological processes, but the shape and size of their interfaces make them hard to target using small molecules. Cyclic peptides have shown promise as protein-protein interaction modulators, as they can bind protein surfaces with high affinity and specificity. Dozens of cyclic peptides are already FDA approved, and many more are in various stages of development as immunosuppressants, antibiotics, antivirals, or anticancer drugs. However, most cyclic peptide drugs so far have been natural products or derivatives thereof, with de novo design having proven challenging. A key obstacle is structural characterization: cyclic peptides frequently adopt multiple conformations in solution, which are difficult to resolve using techniques like NMR spectroscopy. The lack of solution structural information prevents a thorough understanding of cyclic peptides' sequence-structure-function relationship. Here we review recent development and application of molecular dynamics simulations with enhanced sampling to studying the solution structures of cyclic peptides. We describe novel computational methods capable of sampling cyclic peptides' conformational space and provide examples of computational studies that relate peptides' sequence and structure to biological activity. We demonstrate that molecular dynamics simulations have grown from an explanatory technique to a full-fledged tool for systematic studies at the forefront of cyclic peptide therapeutic design.
Collapse
Affiliation(s)
- Jovan Damjanovic
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - He Huang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
6
|
Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021; 50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the global market for peptide/protein-based therapeutics is witnessing significant growth, the development of peptide drugs remains challenging due to their low oral bioavailability, poor membrane permeability, and reduced metabolic stability. However, a toolbox of chemical approaches has been explored for peptide modification to overcome these obstacles. In recent years, there has been a revival of interest in photoinduced radical thiol-ene chemistry as a powerful tool for the construction of therapeutic peptides.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
7
|
Huang Z, Wu Y, Dong H, Zhao Y, Wu C. Design and Synthesis of Disulfide-Rich Peptides with Orthogonal Disulfide Pairing Motifs. J Org Chem 2020; 85:11475-11481. [PMID: 32786636 DOI: 10.1021/acs.joc.0c01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disulfide-rich peptides (DRPs) are a class of peptides that are constrained through two or more disulfide bonds. Though natural DRPs have been extensively exploited for developing protein binders or potential therapeutics, their synthesis and re-engineering to bind new targets are not straightforward due to difficulties in handling the disulfide pairing problem. Rationally designed DRPs with an intrinsically orthogonal disulfide pairing propensity provide an alternative to the natural scaffolds for developing functional DRPs. Herein we report the use of tandem CXPen/PenXC motifs ((C) cysteine; (Pen) penicillamine; (X) any residue) for directing the oxidative folding of peptides. Diverse tricyclic peptides were designed and synthesized by varying the pattern of C/Pen residues and incorporating a tandem CXPen/PenXC motif into peptides. The folding of these peptides was determined primarily by C/Pen patterns and tolerated to sequence manipulations. The applicability of the designed C/Pen-DRPs was demonstrated by designing protein binders using an epitope grafting strategy. This study thus demonstrates the potential of using orthogonal disulfide pairing to design DRP scaffolds with new structures and functions, which would greatly benefit the development of multicyclic peptide ligands and therapeutics.
Collapse
Affiliation(s)
- Zirong Huang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Huilei Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
8
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
9
|
Pina A, Kadri M, Arosio D, Dal Corso A, Coll JL, Gennari C, Boturyn D. Multimeric Presentation of RGD Peptidomimetics Enhances Integrin Binding and Tumor Cell Uptake. Chemistry 2020; 26:7492-7496. [PMID: 32227540 DOI: 10.1002/chem.202001115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Indexed: 12/13/2022]
Abstract
The use of multimeric ligands is considered as a promising strategy to improve tumor targeting for diagnosis and therapy. Herein, tetrameric RGD (Arg-Gly-Asp) peptidomimetics were designed to target αv β3 integrin-expressing tumor cells. These compounds were prepared by an oxime chemoselective assembly of cyclo(DKP-RGD) ligands and a cyclodecapeptide scaffold, which allows a tetrameric presentation. The resulting tetrameric RGD peptidomimetics were shown to improve αv β3 integrin binding compared with the monomeric form. Interestingly, these compounds were also able to enhance tumor cell endocytosis in the same way as tetrameric RGD peptides. Altogether, the results show the potential of the tetrameric cyclo(DKP-RGD) ligands for in vivo imaging and drug delivery.
Collapse
Affiliation(s)
- Arianna Pina
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Malika Kadri
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM, CNRS, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", Via C. Golgi, 19, 20133, Milan, Italy
| | - Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM, CNRS, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Didier Boturyn
- Department of Molecular Chemistry, University Grenoble Alpes, CNRS, 570, rue de la chimie, CS 40700, 38041, GRENOBLE Cedex 9, France
| |
Collapse
|
10
|
Shah SS, Casanova N, Antuono G, Sabatino D. Polyamide Backbone Modified Cell Targeting and Penetrating Peptides in Cancer Detection and Treatment. Front Chem 2020; 8:218. [PMID: 32296681 PMCID: PMC7136562 DOI: 10.3389/fchem.2020.00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cell penetrating and targeting peptides (CPPs and CTPs) encompass an important class of biochemically active peptides owning the capabilities of targeting and translocating within selected cell types. As such, they have been widely used in the delivery of imaging and therapeutic agents for the diagnosis and treatment of various diseases, especially in cancer. Despite their potential utility, first generation CTPs and CPPs based on the native peptide sequences are limited by poor biological and pharmacological properties, thereby restricting their efficacy. Therefore, medicinal chemistry approaches have been designed and developed to construct related peptidomimetics. Of specific interest herein, are the design applications which modify the polyamide backbone of lead CTPs and CPPs. These modifications aim to improve the biochemical characteristics of the native peptide sequence in order to enhance its diagnostic and therapeutic capabilities. This review will focus on a selected set of cell penetrating and targeting peptides and their related peptidomimetics whose polyamide backbone has been modified in order to improve their applications in cancer detection and treatment.
Collapse
Affiliation(s)
- Sunil S Shah
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Nelson Casanova
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Gina Antuono
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
11
|
Dinitroimidazoles as bifunctional bioconjugation reagents for protein functionalization and peptide macrocyclization. Nat Commun 2019; 10:142. [PMID: 30635561 PMCID: PMC6329768 DOI: 10.1038/s41467-018-08010-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 11/20/2022] Open
Abstract
Efficient and site-specific chemical modification of proteins under physiological conditions remains a challenge. Here we report that 1,4-dinitroimidazoles are highly efficient bifunctional bioconjugation reagents for protein functionalization and peptide macrocyclization. Under acidic to neutral aqueous conditions, 1,4-dinitroimidazoles react specifically with cysteines via a cine-substitution mechanism, providing rapid, stable and chemoselective protein bioconjugation. On the other hand, although unreactive towards amine groups under neutral aqueous conditions, 1,4-dinitroimidazoles react with lysines in organic solvents in the presence of base through a ring-opening & ring-close mechanism. The resulting cysteine- and lysine-(4-nitroimidazole) linkages exhibit stability superior to that of commonly employed maleimide-thiol conjugates. We demonstrate that 1,4-dinitroimidazoles can be applied in site-specific protein bioconjugation with functionalities such as fluorophores and bioactive peptides. Furthermore, a bisfunctional 1,4-dinitroimidazole derivative provides facile access to peptide macrocycles by crosslinking a pair of cysteine or lysine residues, including bicyclic peptides of complex architectures through highly controlled consecutive peptide macrocyclization. The selective formation of protein bioconjugates under physiological conditions is a challenging task. Here, the authors report that 1,4-dinitroimidazoles are reagents of choice for protein bioconjugation at either cysteine or lysine sites within short times and provide facile access to peptide macrocycles.
Collapse
|
12
|
Zhou S, Metcalf KJ, Bugga P, Grant J, Mrksich M. Photoactivatable Reaction for Covalent Nanoscale Patterning of Multiple Proteins. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40452-40459. [PMID: 30379516 PMCID: PMC6640637 DOI: 10.1021/acsami.8b16736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article describes a photochemical approach for independently patterning multiple proteins to an inert substrate, particularly for studies of cell adhesion. A photoactivatable chloropyrimidine ligand was employed for covalent immobilization of SnapTag fusion proteins on self-assembled monolayers of alkanethiolates on gold. A two-step procedure was used: first, patterned UV illumination of the surface activated protein capture ligands, and second, incubation with a SnapTag fusion protein bound to the surface in illuminated regions. Two different fluorescent proteins were patterned in registry with features of 400 nm in size over a 1 mm2 area. An example is given wherein an anti-carcinoembryonic antigen (anti-CEA) scFv antibody was patterned to direct the selective attachment of a human cancer cell line that express the CEA antigen. This method enables the preparation of surfaces with control over the density and activity of independently patterned proteins.
Collapse
Affiliation(s)
- Shengwang Zhou
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, People’s
Republic of China
- Department of Biomedical Engineering,
Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - Kevin J. Metcalf
- Department of Biomedical Engineering,
Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - Pradeep Bugga
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer Grant
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, People’s
Republic of China
- Department of Biomedical Engineering,
Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Richard M, Ariztia J, Lamandé-Langle S, Pellegrini Moïse N. Sugar γ-Amino Acids as Building Blocks for the Synthesis of Cyclic Neoglycopeptides. ChemistrySelect 2018. [DOI: 10.1002/slct.201802146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Julen Ariztia
- Université de Lorraine, CNRS, L2CM; F-5400 Nancy France
| | | | | |
Collapse
|
14
|
Slough DP, McHugh SM, Lin YS. Understanding and designing head-to-tail cyclic peptides. Biopolymers 2018; 109:e23113. [PMID: 29528114 PMCID: PMC6135719 DOI: 10.1002/bip.23113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/30/2023]
Abstract
Cyclic peptides (CPs) are an exciting class of molecules with a variety of applications. However, design strategies for CP therapeutics, for example, are generally limited by a poor understanding of their sequence-structure relationships. This knowledge gap often leads to a trial-and-error approach for designing CPs for a specific purpose, which is both costly and time-consuming. Herein, we describe the current experimental and computational efforts in understanding and designing head-to-tail CPs along with their respective challenges. In addition, we provide several future directions in the field of computational CP design to improve its accuracy, efficiency and applicability. These advances, combined with experimental techniques, shall ultimately provide a better understanding of these interesting molecules and a reliable working platform to rationally design CPs with desired characteristics.
Collapse
Affiliation(s)
| | | | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, United States
| |
Collapse
|
15
|
Xie L, Zhi X, Xiao N, Fang CJ, Yan CH. Constraining the conformation of peptides with Au nanorods to construct multifunctional therapeutic agents with targeting, imaging, and photothermal abilities. RSC Adv 2018; 8:26517-26522. [PMID: 35541046 PMCID: PMC9083084 DOI: 10.1039/c8ra04379e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
We demonstrated an easy-to-use strategy, instead of the tedious cyclization of the peptide backbone, to constrain the freedom of an RGD (arginine, glycine, aspartic acid) sequence with gold nanorods. We further constructed a multifunctional therapeutic agent which showed targeting, application in two-photon photoluminescence imaging, and near-infrared photothermal ability, suggesting the potential of this novel strategy in the development of RGD-containing drugs for biomedical applications.
Collapse
Affiliation(s)
- Linlin Xie
- School of Pharmaceutical Sciences, Capital Medical University Beijing 100069 China
| | - Xiaomin Zhi
- School of Pharmaceutical Sciences, Capital Medical University Beijing 100069 China
| | - Nao Xiao
- School of Pharmaceutical Sciences, Capital Medical University Beijing 100069 China
| | - Chen-Jie Fang
- School of Pharmaceutical Sciences, Capital Medical University Beijing 100069 China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
16
|
Abstract
Over the past two decades, developing medical applications for peptides has, and continues to be a highly active area of research. At present there are over 60 peptide-based drugs on the market and more than 140 in various stages of clinical trials. The interest in peptide-based therapeutics arises from their biocompatibility and their ability to form defined secondary and tertiary structures, resulting in a high selectivity for complex targets. However, there are significant challenges associated with the development of peptide-based therapeutics, namely peptides are readily metabolised in vivo. Peptoids are an emerging class of peptidomimetic and they offer an alternative to peptides. Peptoids are comprised of N-substituted glycines where side-chains are located on the nitrogen atom of the amide backbone rather than the α-carbon as is the case in peptides. This change in structure confers a high degree of resistance to proteolytic degradation but the absence of any backbone hydrogen bonding means that peptoids exhibit a high degree of conformational flexibility. Cyclisation has been explored as one possible route to rigidify peptoid structures, making them more selective, and, therefore more desirable as potential therapeutics. This review outlines the various strategies that have been developed over the last decade to access new types of macrocyclic peptoids.
Collapse
Affiliation(s)
| | - Steven L. Cobb
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
17
|
Wang J, Zha M, Fei Q, Liu W, Zhao Y, Wu C. Peptide Macrocycles Developed from Precisely Regulated Multiple Cyclization of Unprotected Peptides. Chemistry 2017; 23:15150-15155. [DOI: 10.1002/chem.201703139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jinghui Wang
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| | - Mirao Zha
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| | - Qianran Fei
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| | - Weidong Liu
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| | - Yibing Zhao
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| | - Chuanliu Wu
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| |
Collapse
|
18
|
Zabala-Uncilla N, Miranda JI, Laso A, Fernández X, Ganboa JI, Palomo C. Linear and Cyclic Depsipeptidomimetics with β-Lactam Cores: A Class of New αvβ3Integrin Receptor Inhibitors. Chembiochem 2017; 18:654-665. [DOI: 10.1002/cbic.201600642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Nerea Zabala-Uncilla
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| | - José I. Miranda
- SGIKer NMR Facility; Universidad del País Vasco UPV/EHU; Joxe Mari Korta R&D Center; Avenida Tolosa-72 20018 San Sebastian Spain
| | - Antonio Laso
- Genetadi Biotech A. G.; Edificio 502 Parque Tecnológico de Bizkaia 48160 Derio Spain
| | - Xavier Fernández
- Genetadi Biotech A. G.; Edificio 502 Parque Tecnológico de Bizkaia 48160 Derio Spain
| | - Jose I. Ganboa
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| | - Claudio Palomo
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| |
Collapse
|
19
|
Sonntag MH, Schill J, Brunsveld L. Integrin-Targeting Fluorescent Proteins: Exploration of RGD Insertion Sites. Chembiochem 2017; 18:441-443. [PMID: 28004511 PMCID: PMC5347895 DOI: 10.1002/cbic.201600514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 11/07/2022]
Abstract
The potential of the fluorescent protein scaffold to control peptide sequence functionality is illustrated by an exploration of fluorescent proteins as novel probes for targeting integrins. A library of fluorescent mCitrine proteins with RGD motifs incorporated at several positions in loops within the protein main chain was generated and characterized. Amino acid mutations to RGD as well as RGD insertions were evaluated: both led to constructs with typical mCitrine fluorescent properties. Screening experiments against four human integrin receptors revealed two strong‐binding constructs and two selective integrin binders. The effect of the site of RGD incorporation illustrates the importance of the protein scaffold on RGD sequence functionality, leading to fluorescent protein constructs with the potential for selective integrin targeting.
Collapse
Affiliation(s)
- Michael H. Sonntag
- Laboratory of Chemical BiologyInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| | - Jurgen Schill
- Laboratory of Chemical BiologyInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical BiologyInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| |
Collapse
|
20
|
Gentilucci L, Gallo F, Meloni F, Mastandrea M, Del Secco B, De Marco R. Controlling Cyclopeptide Backbone Conformation with β/α-Hybrid Peptide-Heterocycle Scaffolds. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luca Gentilucci
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Francesca Gallo
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Fernanda Meloni
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Marco Mastandrea
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Benedetta Del Secco
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Rossella De Marco
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
21
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- or α5β1-Integrin-Selective Peptidomimetics for Surface Coating. Angew Chem Int Ed Engl 2016; 55:7048-67. [PMID: 27258759 DOI: 10.1002/anie.201509782] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/21/2022]
Abstract
Engineering biomaterials with integrin-binding activity is a very powerful approach to promote cell adhesion, modulate cell behavior, and induce specific biological responses at the surface level. The aim of this Review is to illustrate the evolution of surface-coating molecules in this field: from peptides and proteins with relatively low integrin-binding activity and receptor selectivity to highly active and selective peptidomimetic ligands. In particular, we will bring into focus the difficult challenge of achieving selectivity between the two closely related integrin subtypes αvβ3 and α5β1. The functionalization of surfaces with such peptidomimetics opens the way for a new generation of highly specific cell-instructive surfaces to dissect the biological role of integrin subtypes and for application in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain.
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Tobias G Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
22
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- oder α5β1-Integrin-selektive Peptidmimetika für die Oberflächenbeschichtung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Tobias G. Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
23
|
Grassin A, Jourdan M, Dumy P, Boturyn D. Influence of Pre-organised Architecture on Cell Adhesion by Using Multivalent RGD Compounds. Chembiochem 2016; 17:515-20. [DOI: 10.1002/cbic.201500495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Adrien Grassin
- DCM UMR 5250; Université Grenoble Alpes-CNRS; 570 rue de la Chimie B. P. 53 38041 Grenoble cedex 9 France
| | - Muriel Jourdan
- DCM UMR 5250; Université Grenoble Alpes-CNRS; 570 rue de la Chimie B. P. 53 38041 Grenoble cedex 9 France
| | - Pascal Dumy
- IBMM UMR 5247; Ecole Nationale Supérieure de Chimie de Montpellier; 8 rue de l'École Normale 34090 Montpellier France
| | - Didier Boturyn
- DCM UMR 5250; Université Grenoble Alpes-CNRS; 570 rue de la Chimie B. P. 53 38041 Grenoble cedex 9 France
| |
Collapse
|
24
|
Zanella S, Mingozzi M, Dal Corso A, Fanelli R, Arosio D, Cosentino M, Schembri L, Marino F, De Zotti M, Formaggio F, Pignataro L, Belvisi L, Piarulli U, Gennari C. Synthesis, Characterization, and Biological Evaluation of a Dual-Action Ligand Targeting αvβ3 Integrin and VEGF Receptors. ChemistryOpen 2015; 4:633-41. [PMID: 26491644 PMCID: PMC4608532 DOI: 10.1002/open.201500062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 12/17/2022] Open
Abstract
A dual-action ligand targeting both integrin αVβ3 and vascular endothelial growth factor receptors (VEGFRs), was synthesized via conjugation of a cyclic peptidomimetic αVβ3 Arg-Gly-Asp (RGD) ligand with a decapentapeptide. The latter was obtained from a known VEGFR antagonist by acetylation at the Lys13 side chain. Functionalization of the precursor ligands was carried out in solution and in the solid phase, affording two fragments: an alkyne VEGFR ligand and the azide integrin αVβ3 ligand, which were conjugated by click chemistry. Circular dichroism studies confirmed that both the RGD and VEGFR ligand portions of the dual-action compound substantially adopt the biologically active conformation. In vitro binding assays on isolated integrin αVβ3 and VEGFR-1 showed that the dual-action conjugate retains a good level of affinity for both its target receptors, although with one order of magnitude (10/20 times) decrease in potency. The dual-action ligand strongly inhibited the VEGF-induced morphogenesis in Human Umbilical Vein Endothelial Cells (HUVECs). Remarkably, its efficiency in preventing the formation of new blood vessels was similar to that of the original individual ligands, despite the worse affinity towards integrin αVβ3 and VEGFR-1.
Collapse
Affiliation(s)
- Simone Zanella
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Michele Mingozzi
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Roberto Fanelli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'InsubriaVia Valleggio 11, 22100, Como, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), National Research Council (CNR)Via C. Golgi 19, 20133, Milan, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, Università degli Studi dell'InsubriaVia Ottorino Rossi 9, 21100, Varese, Italy
| | - Laura Schembri
- Center for Research in Medical Pharmacology, Università degli Studi dell'InsubriaVia Ottorino Rossi 9, 21100, Varese, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, Università degli Studi dell'InsubriaVia Ottorino Rossi 9, 21100, Varese, Italy
| | - Marta De Zotti
- Istituto di Chimica Biomolecolare, CNR, Unità di Padova, Dipartimento di Chimica, Università degli Studi di PadovaVia Marzolo 1, 35131, Padova, Italy
| | - Fernando Formaggio
- Istituto di Chimica Biomolecolare, CNR, Unità di Padova, Dipartimento di Chimica, Università degli Studi di PadovaVia Marzolo 1, 35131, Padova, Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'InsubriaVia Valleggio 11, 22100, Como, Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| |
Collapse
|
25
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Angew Chem Int Ed Engl 2015; 54:8896-927. [PMID: 26119925 PMCID: PMC4557054 DOI: 10.1002/anie.201412070] [Citation(s) in RCA: 526] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A-D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices.
Collapse
Affiliation(s)
- Marta Pelay-Gimeno
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Adrian Glas
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Oliver Koch
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| |
Collapse
|
26
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Strukturbasierte Entwicklung von Protein-Protein-Interaktionsinhibitoren: Stabilisierung und Nachahmung von Peptidliganden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412070] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Sobers CJ, Wood SE, Mrksich M. A gene expression-based comparison of cell adhesion to extracellular matrix and RGD-terminated monolayers. Biomaterials 2015; 52:385-94. [PMID: 25818445 PMCID: PMC4379455 DOI: 10.1016/j.biomaterials.2015.02.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 01/08/2023]
Abstract
This work uses global gene expression analysis to compare the extent to which model substrates presenting peptide adhesion motifs mimic the use of conventional extracellular matrix protein coated substrates for cell culture. We compared the transcriptional activities of genes in cells that were cultured on matrix-coated substrates with those cultured on self-assembled monolayers presenting either a linear or cyclic RGD peptide. Cells adherent to cyclic RGD were most similar to those cultured on native ECM, while cells cultured on monolayers presenting the linear RGD peptide had transcriptional activities that were more similar to cells cultured on the uncoated substrates. This study suggests that biomaterials presenting the cyclic RGD peptide are substantially better mimics of extracellular matrix than are uncoated materials or materials presenting the common linear RGD peptide.
Collapse
Affiliation(s)
- Courtney J Sobers
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Sarah E Wood
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
28
|
Atmuri NDP, Lubell WD. Insight into Transannular Cyclization Reactions To Synthesize Azabicyclo[X.Y.Z]alkanone Amino Acid Derivatives from 8-, 9-, and 10-Membered Macrocyclic Dipeptide Lactams. J Org Chem 2015; 80:4904-18. [DOI: 10.1021/acs.joc.5b00237] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. D. Prasad Atmuri
- Département de Chimie, Université de Montréal, P.O. Box 6128, Station
Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - William D. Lubell
- Département de Chimie, Université de Montréal, P.O. Box 6128, Station
Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
29
|
Wakefield AE, Wuest WM, Voelz VA. Molecular Simulation of Conformational Pre-Organization in Cyclic RGD Peptides. J Chem Inf Model 2015; 55:806-13. [PMID: 25741627 DOI: 10.1021/ci500768u] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To test the ability of molecular simulations to accurately predict the solution-state conformational properties of peptidomimetics, we examined a test set of 18 cyclic RGD peptides selected from the literature, including the anticancer drug candidate cilengitide, whose favorable binding affinity to integrin has been ascribed to its pre-organization in solution. For each design, we performed all-atom replica-exchange molecular dynamics simulations over several microseconds and compared the results to extensive published NMR data. We find excellent agreement with experimental NOE distance restraints, suggesting that molecular simulation can be a useful tool for the computational design of pre-organized solution-state structure. Moreover, our analysis of conformational populations estimates that, despite the potential for increased flexibility due to backbone amide isomerizaton, N-methylation provides about 0.5 kcal/mol of reduced conformational entropy to cyclic RGD peptides. The combination of pre-organization and binding-site compatibility explains the strong binding affinity of cilengitide to integrin.
Collapse
Affiliation(s)
- Amanda E Wakefield
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - William M Wuest
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
30
|
Yudin AK. Macrocycles: lessons from the distant past, recent developments, and future directions. Chem Sci 2015; 6:30-49. [PMID: 28553456 PMCID: PMC5424464 DOI: 10.1039/c4sc03089c] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/01/2014] [Indexed: 12/20/2022] Open
Abstract
A noticeable increase in molecular complexity of drug targets has created an unmet need in the therapeutic agents that are larger than traditional small molecules. Macrocycles, which are cyclic compounds comprising 12 atoms or more, are now recognized as molecules that "are up to the task" to interrogate extended protein interfaces. However, because macrocycles (particularly the ones based on peptides) are equipped with large polar surface areas, achieving cellular permeability and bioavailability is anything but straightforward. While one might consider this to be the Achilles' heel of this class of compounds, the synthetic community continues to develop creative approaches toward the synthesis of macrocycles and their site-selective modification. This perspective provides an overview of both mechanistic and structural issues that bear on macrocycles as a unique class of molecules. The reader is offered a historical foray into some of the classic studies that have resulted in the current renaissance of macrocycles. In addition, an attempt is made to overview the more recent developments that give hope that macrocycles might indeed turn into a useful therapeutic modality.
Collapse
Affiliation(s)
- Andrei K Yudin
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada . ; Blog: http://www.amphoteros.com
| |
Collapse
|
31
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed Engl 2014; 53:13020-41. [PMID: 25287434 DOI: 10.1002/anie.201401058] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2013] [Indexed: 12/18/2022]
Abstract
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein-like structures in water. However, short peptides can be induced to fold into protein-like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine-tune three-dimensional structure. Such constrained cyclic peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic peptidomimetics that refine peptide structure and confer biological properties.
Collapse
Affiliation(s)
- Timothy A Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072 (Australia)
| | | | | | | |
Collapse
|
32
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Fixierung cyclischer Peptide: Mimetika von Proteinstrukturmotiven. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401058] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
RGD-Functionalization of Poly(2-oxazoline)-Based Networks for Enhanced Adhesion to Cancer Cells. Polymers (Basel) 2014. [DOI: 10.3390/polym6020264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Kamlet AS, Préville C, Farley KA, Piotrowski DW. Regioselective hydroarylations and parallel kinetic resolution of Vince lactam. Angew Chem Int Ed Engl 2013; 52:10607-10. [PMID: 23956102 DOI: 10.1002/anie.201304818] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Indexed: 01/08/2023]
Abstract
Two regioselective and complementary hydroarylation reactions of an unsymmetrical cyclic olefin have been developed. The products can be transformed in one step into constrained γ-amino acids. Regioselective arylation of Vince lactam is controlled by the choice of phosphine ligand enantiomer and the substituent on the amide nitrogen atom. The method was extended to a general regiodivergent parallel kinetic resolution of the racemic lactam.
Collapse
Affiliation(s)
- Adam S Kamlet
- Worldwide Medicinal Chemistry, Pfizer Inc. Eastern Point Road, Groton, CT 06340 (USA).
| | | | | | | |
Collapse
|
35
|
Kamlet AS, Préville C, Farley KA, Piotrowski DW. Regioselective Hydroarylations and Parallel Kinetic Resolution of Vince Lactam. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Rhodium-catalyzed hydroformylation in fused azapolycycles synthesis. Top Curr Chem (Cham) 2013; 342:151-86. [PMID: 23609320 DOI: 10.1007/128_2013_432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
N-Heterocycles, including fused ones, have proven to be an important class of compounds since they possess biological and pharmacological activities themselves and serve as valuable intermediates for synthetic drug discovery. My interest in the synthesis of these compounds stems from studies dealing with the hydroformylation (oxo) of olefins. The dihydroindolizines and benzofused ones are easily generated via rhodium-catalyzed hydroformylation of N-allylpyrroles and indoles: the butanal intermediate undergoes an intramolecular cyclodehydration giving the final polycyclic compound. This chapter reports my results in the area of the conversions of oxo aldehydes with additional C,C-bond-forming reactions together with relevant work from other laboratories on additional C,N-bond-forming reactions, encountered in the field of Azapolycycles synthesis over the last 5 years or so. The intramolecular sequences for polycylization will be especially emphasized using rhodium complexes to effect these transformations, under both conventional and microwave heating.
Collapse
|
37
|
Mingozzi M, Dal Corso A, Marchini M, Guzzetti I, Civera M, Piarulli U, Arosio D, Belvisi L, Potenza D, Pignataro L, Gennari C. CyclicisoDGR Peptidomimetics as Low-Nanomolar αvβ3Integrin Ligands. Chemistry 2013; 19:3563-7. [DOI: 10.1002/chem.201204639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Indexed: 02/04/2023]
|
38
|
Ulrich S, Dumy P, Boturyn D, Renaudet O. Engineering of biomolecules for sensing and imaging applications. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013; 42:1147-235. [DOI: 10.1039/c2cs35265f] [Citation(s) in RCA: 977] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Colombo R, Mingozzi M, Belvisi L, Arosio D, Piarulli U, Carenini N, Perego P, Zaffaroni N, De Cesare M, Castiglioni V, Scanziani E, Gennari C. Synthesis and biological evaluation (in vitro and in vivo) of cyclic arginine-glycine-aspartate (RGD) peptidomimetic-paclitaxel conjugates targeting integrin αVβ3. J Med Chem 2012; 55:10460-74. [PMID: 23140358 DOI: 10.1021/jm301058f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A small library of integrin ligand-paclitaxel conjugates 10-13 was synthesized with the aim of using the tumor-homing cyclo[DKP-RGD] peptidomimetics for site-directed delivery of the cytotoxic drug. All the paclitaxel-RGD constructs 10-13 inhibited biotinylated vitronectin binding to the purified αVβ3 integrin receptor at low nanomolar concentration and showed in vitro cytotoxic activity against a panel of human tumor cell lines similar to that of paclitaxel. Among the cell lines, the cisplatin-resistant IGROV-1/Pt1 cells expressed high levels of integrin αVβ3, making them attractive to be tested in in vivo models. cyclo[DKP-f3-RGD]-PTX 11 displayed sufficient stability in physiological solution and in both human and murine plasma to be a good candidate for in vivo testing. In tumor-targeting experiments against the IGROV-1/Pt1 human ovarian carcinoma xenotransplanted in nude mice, compound 11 exhibited a superior activity compared with paclitaxel, despite the lower (about half) molar dosage used.
Collapse
Affiliation(s)
- Raffaele Colombo
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Marchini M, Mingozzi M, Colombo R, Guzzetti I, Belvisi L, Vasile F, Potenza D, Piarulli U, Arosio D, Gennari C. Cyclic RGD peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands. Chemistry 2012; 18:6195-207. [PMID: 22517378 DOI: 10.1002/chem.201200457] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Indexed: 11/09/2022]
Abstract
The synthesis of eight bifunctional diketopiperazine (DKP) scaffolds is described; these were formally derived from 2,3-diaminopropionic acid and aspartic acid (DKP-1-DKP-7) or glutamic acid (DKP-8) and feature an amine and a carboxylic acid functional group. The scaffolds differ in the configuration at the two stereocenters and the substitution at the diketopiperazinic nitrogen atoms. The bifunctional diketopiperazines were introduced into eight cyclic peptidomimetics containing the Arg-Gly-Asp (RGD) sequence. The resulting RGD peptidomimetics were screened for their ability to inhibit biotinylated vitronectin binding to the purified integrins α(v)β(3) and α(v)β(5), which are involved in tumor angiogenesis. Nanomolar IC(50) values were obtained for the RGD peptidomimetics derived from trans DKP scaffolds (DKP-2-DKP-8). Conformational studies of the cyclic RGD peptidomimetics by (1)H NMR spectroscopy experiments (VT-NMR and NOESY spectroscopy) in aqueous solution and Monte Carlo/Stochastic Dynamics (MC/SD) simulations revealed that the highest affinity ligands display well-defined preferred conformations featuring intramolecular hydrogen-bonded turn motifs and an extended arrangement of the RGD sequence [Cβ(Arg)-Cβ(Asp) average distance ≥8.8 Å]. Docking studies were performed, starting from the representative conformations obtained from the MC/SD simulations and taking as a reference model the crystal structure of the extracellular segment of integrin α(v)β(3) complexed with the cyclic pentapeptide, Cilengitide. The highest affinity ligands produced top-ranked poses conserving all the important interactions of the X-ray complex.
Collapse
Affiliation(s)
- Mattia Marchini
- Università degli Studi di Milano, Dipartimento di Chimica Organica e Industriale, Via Venezian, 21, I-20133, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sharma A, Sharma S, Tripathi RP, Ampapathi RS. Robust Turn Structures in α3β Cyclic Tetrapeptides Induced and Controlled by Carbo-β3 Amino Acid. J Org Chem 2012; 77:2001-7. [DOI: 10.1021/jo2019834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anindra Sharma
- Divisions
of Medicinal and Process Chemistry and ‡NMR Centre, SAIF, Central Drug Research Institute (CSIR), Lucknow-226001,
India
| | - Shrikant Sharma
- Divisions
of Medicinal and Process Chemistry and ‡NMR Centre, SAIF, Central Drug Research Institute (CSIR), Lucknow-226001,
India
| | - Rama P. Tripathi
- Divisions
of Medicinal and Process Chemistry and ‡NMR Centre, SAIF, Central Drug Research Institute (CSIR), Lucknow-226001,
India
| | - Ravi Sankar Ampapathi
- Divisions
of Medicinal and Process Chemistry and ‡NMR Centre, SAIF, Central Drug Research Institute (CSIR), Lucknow-226001,
India
| |
Collapse
|
43
|
Almeida AM, Li R, Gellman SH. Parallel β-sheet secondary structure is stabilized and terminated by interstrand disulfide cross-linking. J Am Chem Soc 2012; 134:75-8. [PMID: 22148521 PMCID: PMC3266109 DOI: 10.1021/ja208856c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Disulfide bonds between Cys residues in adjacent strands of parallel β-sheets are rare among proteins, which suggests that parallel β-sheet structure is not stabilized by such disulfide cross-links. We report experimental results that show, surprisingly, that an interstrand disulfide bond can stabilize parallel β-sheets formed by an autonomously folding peptide in aqueous solution. NMR analysis reveals that parallel β-sheet structure is terminated beyond the disulfide bond, which causes deviation from the extended backbone conformation at one of the Cys residues.
Collapse
Affiliation(s)
- Aaron M. Almeida
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wi, 53706 (USA)
| | - Rebecca Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wi, 53706 (USA)
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wi, 53706 (USA)
| |
Collapse
|
44
|
Abstract
Peptide macrocycles have found applications that range from drug discovery to nanomaterials. These ring-shaped molecules have shown remarkable capacity for functional fine-tuning. Such capacity is enabled by the possibility of adjusting the peptide conformation using the techniques of chemical synthesis. Cyclic peptides have been difficult, and often impossible, to prepare using traditional synthetic methods. For macrocyclization to occur, the activated peptide must adopt an entropically disfavoured pre-cyclization conformation before forming the desired product. Here, we review recent solutions to some of the major challenges in this important area of contemporary synthesis.
Collapse
|
45
|
Aizpurua JM, Ganboa JI, Palomo C, Loinaz I, Oyarbide J, Fernandez X, Balentová E, Fratila RM, Jiménez A, Miranda JI, Laso A, Ávila S, Castrillo JL. Cyclic RGD β-Lactam Peptidomimetics Induce Differential Gene Expression in Human Endothelial Cells. Chembiochem 2011; 12:401-5. [DOI: 10.1002/cbic.201000572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Indexed: 12/11/2022]
|
46
|
Inokuchi E, Yamada A, Hozumi K, Tomita K, Oishi S, Ohno H, Nomizu M, Fujii N. Design and synthesis of amidine-type peptide bond isosteres: application of nitrile oxide derivatives as active ester equivalents in peptide and peptidomimetics synthesis. Org Biomol Chem 2011; 9:3421-7. [DOI: 10.1039/c0ob01193b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010; 31:4639-56. [PMID: 20303169 PMCID: PMC2907908 DOI: 10.1016/j.biomaterials.2010.02.044] [Citation(s) in RCA: 903] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/16/2010] [Indexed: 12/12/2022]
Abstract
In this review, we explore different approaches for introducing bioactivity into poly(ethylene glycol) (PEG) hydrogels. Hydrogels are excellent scaffolding materials for repairing and regenerating a variety of tissues because they can provide a highly swollen three-dimensional (3D) environment similar to soft tissues. Synthetic hydrogels like PEG-based hydrogels have advantages over natural hydrogels, such as the ability for photopolymerization, adjustable mechanical properties, and easy control of scaffold architecture and chemical compositions. However, PEG hydrogels alone cannot provide an ideal environment to support cell adhesion and tissue formation due to their bio-inert nature. The natural extracellular matrix (ECM) has been an attractive model for the design and fabrication of bioactive scaffolds for tissue engineering. ECM-mimetic modification of PEG hydrogels has emerged as an important strategy to modulate specific cellular responses. To tether ECM-derived bioactive molecules (BMs) to PEG hydrogels, various strategies have been developed for the incorporation of key ECM biofunctions, such as specific cell adhesion, proteolytic degradation, and signal molecule-binding. A number of cell types have been immobilized on bioactive PEG hydrogels to provide fundamental knowledge of cell/scaffold interactions. This review addresses the recent progress in material designs and fabrication approaches leading to the development of bioactive hydrogels as tissue engineering scaffolds.
Collapse
Affiliation(s)
- Junmin Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
48
|
da Ressurreição A, Vidu A, Civera M, Belvisi L, Potenza D, Manzoni L, Ongeri S, Gennari C, Piarulli U. Cyclic RGD-Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds as New Potent Integrin Ligands. Chemistry 2009; 15:12184-8. [DOI: 10.1002/chem.200902398] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Bonnet P, Agrafiotis DK, Zhu F, Martin E. Conformational Analysis of Macrocycles: Finding What Common Search Methods Miss. J Chem Inf Model 2009; 49:2242-59. [DOI: 10.1021/ci900238a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Pascal Bonnet
- Johnson & Johnson Pharmaceutical Research and Development, Division of Janssen Pharmaceutica N.V., Turnhoutsweg 30, 2340 Beerse, Belgium, Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 665 Stockton Drive, Exton, Pennsylvania 19341, and Novartis, 4560 Horton Street, Emeryville, California 94608
| | - Dimitris K. Agrafiotis
- Johnson & Johnson Pharmaceutical Research and Development, Division of Janssen Pharmaceutica N.V., Turnhoutsweg 30, 2340 Beerse, Belgium, Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 665 Stockton Drive, Exton, Pennsylvania 19341, and Novartis, 4560 Horton Street, Emeryville, California 94608
| | - Fangqiang Zhu
- Johnson & Johnson Pharmaceutical Research and Development, Division of Janssen Pharmaceutica N.V., Turnhoutsweg 30, 2340 Beerse, Belgium, Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 665 Stockton Drive, Exton, Pennsylvania 19341, and Novartis, 4560 Horton Street, Emeryville, California 94608
| | - Eric Martin
- Johnson & Johnson Pharmaceutical Research and Development, Division of Janssen Pharmaceutica N.V., Turnhoutsweg 30, 2340 Beerse, Belgium, Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 665 Stockton Drive, Exton, Pennsylvania 19341, and Novartis, 4560 Horton Street, Emeryville, California 94608
| |
Collapse
|
50
|
Manzoni L, Belvisi L, Arosio D, Civera M, Pilkington-Miksa M, Potenza D, Caprini A, Araldi EM, Monferini E, Mancino M, Podestà F, Scolastico C. Cyclic RGD-Containing Functionalized Azabicycloalkane Peptides as Potent Integrin Antagonists for Tumor Targeting. ChemMedChem 2009; 4:615-32. [DOI: 10.1002/cmdc.200800422] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|