1
|
Sloseris D, Forde NR. AGEing of collagen: The effects of glycation on collagen's stability, mechanics and assembly. Matrix Biol 2025; 135:153-160. [PMID: 39805674 DOI: 10.1016/j.matbio.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example. Glycation has been associated with tissue stiffening and reduced collagen fibril remodelling. In this study, we investigate the effects of glycation on the stability of type I collagen, its molecular-level mechanics and its ability to perform its physiological role of self-assembly. Collagen AGEing is induced in vitro by incubation with ribose. We confirm and assess glycation using fluorescence measurements and changes in collagen's electrophoretic mobility. Susceptibility to trypsin digestion and circular dichroism (CD) spectroscopy are used to probe changes in collagen's triple helical stability, revealing decreased stability due to glycation. Atomic Force Microscopy (AFM) imaging is used to quantify how AGEing affects collagen flexibility, where we find molecular-scale stiffening. Finally we use microscopy to show that glycated collagen molecules are unable to self-assemble into fibrils. These findings shed light on the molecular mechanisms underlying AGE-induced tissue changes, offering insight into how glycation modifies protein structure and stability.
Collapse
Affiliation(s)
- Daniel Sloseris
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
2
|
More SH, Schmutz M, Jierry L, Ganesh KN. Supramolecular multiplexes from collagen mimetic peptide-PNA(GGG) 3 conjugates and C-rich DNA: pH-induced reversible switching from triplex-duplex to triplex- i-motif. Biomater Sci 2024; 13:261-274. [PMID: 39539132 DOI: 10.1039/d4bm00955j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides are well known for forming nanoparticles, while DNA duplexes, triplexes and tetraplexes create rigid nanostructures. Accordingly, the covalent conjugation of peptides to DNA/RNA produces hybrid self-assembling features and may lead to interesting nano-assemblies distinct from those of their individual components. Herein, we report the preparation of a collagen mimetic peptide incorporating lysine in its backbone, with alkylamino side chains radially conjugated with G-rich PNA [collagen-(PNA-GGG)3]. In the presence of complementary C-rich DNA (dCCCTTTCCC) at neutral pH, the collagen mimetic triplexes were interconnected by PNA-GGG : DNA-CCC duplexes, leading to the formation of larger assemblies of nanostructures. Upon decreasing the pH to 4.5, the dissociation of the triplex-duplex assembly released the protonated C-rich DNA, which immediately folded into an i-motif. With an increase in the pH to 7.2 (neutral), the i-motif unfolded into linear DNA, which reformed the PNA-GGG : DNA-CCC duplex interconnecting the collagen triplexes. The pH-induced switching of the assembly and disassembly was reversible over a few cycles. The hybrid collagen-(PNAGGG)3 : DNA-C3T3C3 triplex-duplex and the individual components of the assembly including the i-motif were characterized by UV and CD melting, fluorescence, TEM and gel electrophoresis. The pH-induced reversible switching was established by the changes in the CD and fluorescence properties. Peptide-DNA conjugates have wide applications in both biology and materials science, ranging from therapeutics and drug delivery to diagnostics and molecular switches. Thus, the prototype ensemble of the triplex peptide-PNA conjugate and its duplex with DNA described herein has potential for elaboration into rationally designed systems by varying the PNA/DNA sequences to trap functional ligands/drugs for release in pH-controlled environments.
Collapse
Affiliation(s)
- Shahaji H More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India.
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Marc Schmutz
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India.
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India.
| |
Collapse
|
3
|
Wang Y, Zhang Y, Shen Z, Qiu Y, Wang C, Wu Z, Shen M, Shao C, Tang R, Hannig M, Fu B, Zhou Z. STMP and PVPA as Templating Analogs of Noncollagenous Proteins Induce Intrafibrillar Mineralization of Type I Collagen via PCCP Process. Adv Healthc Mater 2024; 13:e2400102. [PMID: 38657167 DOI: 10.1002/adhm.202400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Indexed: 04/26/2024]
Abstract
The phosphorylated noncollagenous proteins (NCPs) play a vital role in manipulating biomineralization, while the mechanism of phosphorylation of NCPs in intrafibrillar mineralization of collagen fibril has not been completely deciphered. Poly(vinylphosphonic acid) (PVPA) and sodium trimetaphosphate (STMP) as templating analogs of NCPs induce hierarchical mineralization in cooperation with indispensable sequestration analogs such as polyacrylic acid (PAA) via polymer-induced liquid-like precursor (PILP) process. Herein, STMP-Ca and PVPA-Ca complexes are proposed to achieve rapid intrafibrillar mineralization through polyelectrolyte-Ca complexes pre-precursor (PCCP) process. This strategy is further verified effectively for remineralization of demineralized dentin matrix both in vitro and in vivo. Although STMP micromolecule fails to stabilize amorphous calcium phosphate (ACP) precursor, STMP-Ca complexes facilely permeate into intrafibrillar interstices and trigger phase transition of ACP to hydroxyapatite within collagen. In contrast, PVPA-stabilized ACP precursors lack liquid-like characteristic and crystallize outside collagen due to rigid conformation of PVPA macromolecule, while PVPA-Ca complexes infiltrate into partial intrafibrillar intervals under electrostatic attraction and osmotic pressure as evidenced by intuitionistic 3D stochastic optical reconstruction microscopy (3D-STORM). The study not only extends the variety and size range of polyelectrolyte for PCCP process but also sheds light on the role of phosphorylation for NCPs in biomineralization.
Collapse
Affiliation(s)
- Yiru Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Yizhou Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Zhe Shen
- School of Stomatology, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310000, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Chaoyang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Minjuan Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310000, China
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424, Homburg Saar, Germany
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
4
|
Tan SH, Liu S, Teoh SH, Bonnard C, Leavesley D, Liang K. A sustainable strategy for generating highly stable human skin equivalents based on fish collagen. BIOMATERIALS ADVANCES 2024; 158:213780. [PMID: 38280287 DOI: 10.1016/j.bioadv.2024.213780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Tissue engineered skin equivalents are increasingly recognized as potential alternatives to traditional skin models such as human ex vivo skin or animal skin models. However, most of the currently investigated human skin equivalents (HSEs) are constructed using mammalian collagen which can be expensive and difficult to extract. Fish skin is a waste product produced by fish processing industries and identified as a cost-efficient and sustainable source of type I collagen. In this work, we describe a method for generating highly stable HSEs based on fibrin fortified tilapia fish collagen. The fortified fish collagen (FFC) formulation is optimized to enable reproducible fabrication of full-thickness HSEs that undergo limited contraction, facilitating the incorporation of human donor-derived skin cells and formation of biomimetic dermal and epidermal layers. The morphology and barrier function of the FFC HSEs are compared with a commercial skin model and validated with immunohistochemical staining and transepithelial electrical resistance testing. Finally, the potential of a high throughput screening platform with FFC HSE is explored by scaling down its fabrication to 96-well format.
Collapse
Affiliation(s)
- Shi Hua Tan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shaoqiong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Swee Hin Teoh
- College of Materials Science and Engineering, Hunan University, People's Republic of China
| | - Carine Bonnard
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore
| | | | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore.
| |
Collapse
|
5
|
Mukherjee S, Sundarapandian A, Ayyadurai N, Shanmugam G. Collagen Mimicry with a Short Collagen Model Peptide. Macromol Rapid Commun 2024; 45:e2300573. [PMID: 37924252 DOI: 10.1002/marc.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Mimicking triple helix and fibrillar network of collagen through collagen model peptide(CMP) with short GPO tripeptide repeats is a great challenge. Herein, a minimalistic CMP comprising only five GPO repeats [(GPO)5 ] is presented. This novel approach involves the fusion of ultrashort peptide with the synergetic power of π-system and β-sheet formation to short CMP (GPO)5 . Accordingly, a hydrogel-forming, fluorenylmethoxycarbonyl (Fmoc)-functionalized ultrashort peptide (NFGAIL) is fused at the N-terminus and phenylalanine at the C-terminus of (GPO)5 (Fmoc-NFGAIL-(GPO)5 -F-COOH, FmP-5GPO). At room temperature, it forms a robust triple helix in aqueous buffer solution and has a relatively high melting point of 35 °C. The fluorenyl motif stabilizes the triple helix by aromatic π-π interactions as in its absence, triple helix is not formed. NFGAIL, which forms a β-sheet, also aids in triple helix stabilization via intermolecular hydrogen bonding and hydrophobic interactions. FmP-5GPO forms highly entangled nanofibrils with a micrometer length, which have excellent cell viability. The achievement of stable triple helix and fibrils in such a short CMP(FmP-5GPO) sequence is a challenging feat, and its significance in CMP-based biomaterials is undeniable. The present strategy highlights the potential for developing new CMP sequences through intelligent tuning of fusion peptides and GPO repeats.
Collapse
Affiliation(s)
- Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashokraj Sundarapandian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Niraikulam Ayyadurai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
6
|
Gahlawat S, Nanda V, Shreiber DI. Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders. Matrix Biol Plus 2024; 21:100139. [PMID: 38186852 PMCID: PMC10765305 DOI: 10.1016/j.mbplus.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Collagens are the most abundant structural proteins in the extracellular matrix of animals and play crucial roles in maintaining the structural integrity and mechanical properties of tissues and organs while mediating important biological processes. Fibrillar collagens have a unique triple helix structure with a characteristic repeating sequence of (Gly-X-Y)n. Variations within the repetitive sequence can cause misfolding of the triple helix, resulting in heritable connective tissue disorders. The most common variations are single-point missense mutations that lead to the substitution of a glycine residue with a bulkier amino acid (Gly → X). In this review, we will first discuss the importance of collagen's triple helix structure and how single Gly substitutions can impact its folding, structure, secretion, assembly into higher-order structures, and biological functions. We will review the role of "designer collagens," i.e., synthetic collagen-mimetic peptides and recombinant bacterial collagen as model systems to include Gly → X substitutions observed in collagen disorders and investigate their impact on structure and function utilizing in vitro studies. Lastly, we will explore how computational modeling of collagen peptides, especially molecular and steered molecular dynamics, has been instrumental in probing the effects of Gly substitutions on structure, receptor binding, and mechanical stability across multiple length scales.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
7
|
Tsai CL, Chang JW, Cheng KY, Lan YJ, Hsu YC, Lin QD, Chen TY, Shih O, Lin CH, Chiang PH, Simenas M, Kalendra V, Chiang YW, Chen CH, Jeng US, Wang SK. Comprehensive characterization of polyproline tri-helix macrocyclic nanoscaffolds for predictive ligand positioning. NANOSCALE ADVANCES 2024; 6:947-959. [PMID: 38298598 PMCID: PMC10825903 DOI: 10.1039/d3na00945a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Multivalent ligands hold promise for enhancing avidity and selectivity to simultaneously target multimeric proteins, as well as potentially modulating receptor signaling in pharmaceutical applications. Essential for these manipulations are nanosized scaffolds that precisely control ligand display patterns, which can be achieved by using polyproline oligo-helix macrocyclic nanoscaffolds via selective binding to protein oligomers and cell surface receptors. This work focuses on synthesis and structural characterization of different-sized polyproline tri-helix macrocyclic (PP3M) scaffolds. Through combined analysis of circular dichroism (CD), small- and wide-angle X-ray scattering (SWAXS), electron spin resonance (ESR) spectroscopy, and molecular modeling, a non-coplanar tri-helix loop structure with partially crossover helix ends is elucidated. This structural model aligns well with scanning tunneling microscopy (STM) imaging. The present work enhances the precision of nanoscale organic synthesis, offering prospects for controlled ligand positioning on scaffolds. This advancement paves the way for further applications in nanomedicine through selective protein interaction, manipulation of cell surface receptor functions, and developments of more complex polyproline-based nanostructures.
Collapse
Affiliation(s)
- Chia-Lung Tsai
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Je-Wei Chang
- National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan
| | - Kum-Yi Cheng
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University Taipei 106319 Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Yi-Cheng Hsu
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Qun-Da Lin
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Tzu-Yuan Chen
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan
| | - Chih-Hsun Lin
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University Taipei 106319 Taiwan
| | - Po-Hsun Chiang
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Mantas Simenas
- Faculty of Physics, Vilnius University Sauletekio 3 LT-10257 Vilnius Lithuania
| | - Vidmantas Kalendra
- Faculty of Physics, Vilnius University Sauletekio 3 LT-10257 Vilnius Lithuania
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Chun-Hsien Chen
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University Taipei 106319 Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan
- Department of Chemical Engineering, National Tsing Hua University Hsinchu 300044 Taiwan
- College of Semiconductor Research, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University Hsinchu 300044 Taiwan
| |
Collapse
|
8
|
Wang H, Tu Z, Wang H. Preparation of high content collagen peptides and study of their biological activities. Food Res Int 2023; 174:113561. [PMID: 37986438 DOI: 10.1016/j.foodres.2023.113561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
Collagen peptides play an important role in the increasing use of collagen peptides as dietary supplements in food and beverages and as bioactive ingredients in cosmetics, healthcare, and pharmaceuticals. Collagenase enzymatically cleaves gelatin to produce collagen polypeptides. However, the enzymatic activity of collagenase is very low (25900 U) and does not allow for adequate enzymatic digestion. Therefore, proteases are used to assist in enzymatic digestion. Porcine gelatin, bovine gelatin, and fish protein gum were enzymatically digested, and the content of collagen peptides in the enzymatically digested lyophilized powder was identified by high-performance liquid chromatography and mass spectrometry, and then the content of the desired collagen peptides was increased by isolation and purification, and the result of the determination was that the content of collagen peptides was the highest after enzymatic digestion and isolation and purification with the use of porcine gelatin as the raw material, and the content of the collagen peptides was about 45.47%. β-nicotinamide mononucleotide (NMN) was mixed with the prepared samples to determine its antioxidant properties and ability to promote the growth of human dermal fibroblasts. The results showed that the antioxidant capacity was enhanced with the increase of collagen polypeptide content, and NMN could promote the scavenging of DPPH• and •OH free radicals by collagen polypeptides. The ability to promote the growth of human dermal fibroblasts was enhanced with the increase of collagen polypeptide content. This paper aimed to prepare a high content of collagen polypeptides from three raw materials, porcine gelatin, bovine gelatin, and fish protein gum, and further to determine the biological activities.
Collapse
Affiliation(s)
- Houchuntai Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
9
|
Aguilar CJ, Sarwar M, Prabakar S, Zhang W, Harris PWR, Brimble MA, Kavianinia I. Harnessing the power of a photoinitiated thiol-ene "click" reaction for the efficient synthesis of S-lipidated collagen model peptide amphiphiles. Org Biomol Chem 2023; 21:9150-9158. [PMID: 37822146 DOI: 10.1039/d3ob01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A photoinitiated thiol-ene "click" reaction was used to synthesize S-lipidated collagen model peptide amphiphiles. Use of 2-iminothiolane provided an epimerization-free thiol handle required for thiol-ene based incorporation of lipid moieties onto collagen-based peptide sequences. This approach not only led to improvements in the triple helical characteristics of the resulting collagen model peptides but also increased the aqueous solubility of the peptide amphiphiles. As a result, this methodology holds significant potential for the design and advancement of functional peptide amphiphiles, offering enhanced capabilities across a wide range of applications.
Collapse
Affiliation(s)
- Clouie Justin Aguilar
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Makhdoom Sarwar
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand
| | - Sujay Prabakar
- Leather and Shoe Research Association of New Zealand, PO Box 8094, Hokowhitu, Palmerston North 4446, New Zealand
| | - Wenkai Zhang
- Leather and Shoe Research Association of New Zealand, PO Box 8094, Hokowhitu, Palmerston North 4446, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
| |
Collapse
|
10
|
Louis M, Balakrishnan A, Joseph A, Shanmughan P, Maliakel B, Illathu Madhavamenon K. Two-Stage Supramolecular Self-Assembly-Directed Collagen-Peptide-Decorated Liposomal Complexes of Curcumin Microspheres with Enhanced Solubility and Bioavailability. ACS OMEGA 2023; 8:26243-26252. [PMID: 37521668 PMCID: PMC10372937 DOI: 10.1021/acsomega.3c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
Green formulations of phytonutrients with enhanced solubility and bioavailability are of great significance in nutrition therapy. In the present contribution, we hypothesized that the collagen peptides could be a safe, natural, food-grade, and cost-effective functional agent for the surface decoration and stabilization of liposomes in powder form and hence a "green" solution for the oral delivery of phytonutrients. The present study reports a two-stage supramolecular self-assembly-directed process for the preparation of collagen peptide-decorated liposomal complexes of curcumin (CCL) [10% (w/w)] as microspheres (125 ± 25 μm) with improved solubility (1.46 × 105-fold) and sustained-release properties under gastrointestinal pH conditions. The molecular self-assembly of collagen peptides around the lipid bilayers and the various noncovalent interactions and conformational changes leading to the supramolecular assembly to act as a matrix for the encapsulation of lipid vesicles of curcumin were clear from the spectroscopic studies (UV-vis, fluorescence, FTIR, and circular dichroism). Further investigation of pharmacokinetics following a randomized double-blinded controlled trial on healthy volunteers (n = 15) demonstrated that the oral administration of 2.5 g of CCL sachet (250 mg of curcumin) enhanced the plasma concentration (Cmax: 118 vs. 4.3 ng/mL), the elimination half-life (4.2 vs. 0.7 h), and bioavailability as per the area under the curve over 12 h [AUC0-12h (CCL) = 506·8 vs. AUC0-12h (C95) = 9.47 (53-fold)], when the plasma concentration of curcumin was estimated with triple quadruple tandem mass spectrometry (UPLC-ESI-MS/MS).
Collapse
|
11
|
Different mechanical properties of the gamma-irradiated gelatin gels prepared through the different cooling processes. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Zhang J, Sui P, Yang W, Shirshin EA, Zheng M, Wei B, Xu C, Wang H. Site-specific modification of N-terminal α-amino groups of succinylated collagen. Int J Biol Macromol 2023; 225:310-317. [PMID: 36356876 DOI: 10.1016/j.ijbiomac.2022.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Polymer based protein engineering provides an attractive strategy to endow novel properties to protein and overcome the inherent limitations of both counterparts. The exquisite control of site and density of attached polymers on the proteins is crucial for the bioactivities and properties of the protein-polymer bioconjugates, but is still a challenge. Collagen is the major structural protein in extracellular matrix of animals. Based on the advancements of polymer-based protein engineering, collagen bioconjugates has been widely fabricated and applied as biomaterials. However, the site-specific synthesis of well-defined collagen-polymer bioconjugates is still not achieved. Herein, a versatile strategy for the specific modification of N-terminal α-amino groups in collagen was developed. Firstly, all reactive amino groups of tropocollagen (collagen with telopeptides) were protected by succinic anhydride. Then, the telopeptides were digested to give the active N-terminal α-amino groups, which were subsequently attached with poly(N-isopropylacrylamide) (PNIPAAm) via "grafting from" method based on the atom transfer radical polymerization (ATRP). The site-specific N-terminal PNIPAAm modified succinylated collagen was prepared and its structure, thermal responsive behaviour, and properties was explored.
Collapse
Affiliation(s)
- Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Peishan Sui
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Wendian Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Evgeny A Shirshin
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991 Moscow, Russia
| | - Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Haibo Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Bhatkalkar SG, Kumar D, Ali A, Sachar S. Influence of surfactants on biomolecular conjugation of magnetic nanoparticles. J Biomol Struct Dyn 2022; 40:12895-12907. [PMID: 34542389 DOI: 10.1080/07391102.2021.1977701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we report the physicochemical interaction among iron oxide nanoparticles (MNPs) and essential biomolecules, namely, serum albumin (BSA, HSA), collagen and deoxyribonucleic acid (DNA) in the presence of various cationic, anionic and non-ionic surfactants. Iron oxide nanoparticles are synthesized by the wet chemical process and are characterized by X-ray powder diffraction analysis (XRD), Fourier transform infrared spectroscopic, UV-Vis spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping studies . The conjugation of MNPs protein was analyzed using UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism technique and gel electrophoresis. The spectroscopic investigation illustrates the surfactant-dependent binding between MNPs and protein. Gel electrophoresis in the absence and presence of MNPs-surfactant systems has been used to study the impact on DNA structure. It was found that Tween 80 imparts better stability as well as biocompatibility to the synthesized MNPs. The findings offer extensive information on the influence of various surfactant coatings on MNP surfaces and their influence on vital biomolecules, making it useful for designing MNPs for biological applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Dinesh Kumar
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Vidyanagari, Mumbai, India
| |
Collapse
|
14
|
Peterson CM, Helterbrand MR, Hartgerink JD. Covalent Capture of a Collagen Mimetic Peptide with an Integrin-Binding Motif. Biomacromolecules 2022; 23:2396-2403. [PMID: 35446536 DOI: 10.1021/acs.biomac.2c00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Collagen mimetic peptides (CMPs) are an excellent model to study the structural and biological properties of the extracellular matrix (ECM) due to ease of synthesis and variability in sequence. To ensure that synthetic materials accurately mimic the structure and function of natural collagen in the ECM, it is necessary to conserve the triple helix. However, CMP folding is subject to equilibrium, and frequently peptides exist in solution as both monomer and triple helix. Additionally, the stability of CMPs is highly dependent on peptide length and amino acid composition, leading to suboptimal performance. Here, we report the utility of covalent capture, a method to (a) direct the folding of a supramolecular triple helix and (b) form isopeptide bonds between the helix strands, in the design of an integrin-binding peptide with a GFOGER motif. Covalent capture effectively locked the triple helix and yielded a peptide with high thermal stability and a rapid folding rate. Compared to supramolecular triple helices bearing the same GFOGER-binding site, cell adhesion was substantially increased. In vitro assays using EDTA/Mg2+ and an anti-α2β1 antibody demonstrated the preservation of the high specificity of the binding event. This covalently captured integrin-binding peptide provides a template for the future design of bioactive ECM mimics, which can overcome limitations of supramolecular approaches for potential drug and biomaterial designs.
Collapse
Affiliation(s)
- Caroline M Peterson
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Maia R Helterbrand
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Zheng H, Shi Y, Bi L, Zhang Z, Zhou Z, Shao C, Cui D, Cheng X, Tang R, Pan H, Wu Z, Fu B. Dual Functions of MDP Monomer with De- and Remineralizing Ability. J Dent Res 2022; 101:1172-1180. [PMID: 35450492 DOI: 10.1177/00220345221088214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Methacryloyloxydecyl dihydrogen phosphate (MDP) has been speculated to induce mineralization, but there has been no convincing evidence of its ability to induce intrafibrillar mineralization. Polymers play a critical role in biomimetic mineralization as stabilizers/inducers of amorphous precursors. Hence, MDP-induced biomimetic mineralization without polymer additives has not been fully verified or elucidated. By combining 3-dimensional stochastic optical reconstruction microscopy, surface zeta potentials, contact angle measurements, inductively coupled plasma-optical emission spectroscopy, transmission electron microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy with circular dichroism, we show that amphiphilic MDP can not only demineralize dentin by releasing protons as an acidic functional monomer but also infiltrate collagen fibrils (including dentin collagen), unwind the triple helical structure by breaking hydrogen bonds, and finally immobilize within collagen. MDP-bound collagen functions as a huge collagenous phosphoprotein (HCPP), in contrast to chemical phosphorylation modifications. HCPP can induce biomimetic mineralization itself without polymer additives by alternatively attracting calcium and phosphate through electrostatic attraction. Therefore, we herein propose the dual functions of amphiphilic MDP monomer with de- and remineralizing ability. MDP in the free state can demineralize dentin substrates by releasing protons, whereas MDP in the collagen-bound state as HCPP can induce intrafibrillar mineralization. The dual functions of MDP monomer with de- and remineralization properties might create a new epoch in adhesive dentistry and preventive dentistry.
Collapse
Affiliation(s)
- H Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Dental Biomaterials and Devices for Zhejiang Provincial Engineering Research Center, Hangzhou, Zhejiang Province, China
| | - Y Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Dental Biomaterials and Devices for Zhejiang Provincial Engineering Research Center, Hangzhou, Zhejiang Province, China
| | - L Bi
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Z Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Dental Biomaterials and Devices for Zhejiang Provincial Engineering Research Center, Hangzhou, Zhejiang Province, China
| | - Z Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Dental Biomaterials and Devices for Zhejiang Provincial Engineering Research Center, Hangzhou, Zhejiang Province, China
| | - C Shao
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - D Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu Province, China
| | - X Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu Province, China
| | - R Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - H Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Z Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Dental Biomaterials and Devices for Zhejiang Provincial Engineering Research Center, Hangzhou, Zhejiang Province, China
| | - B Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Dental Biomaterials and Devices for Zhejiang Provincial Engineering Research Center, Hangzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Hulgan SAH, Hartgerink JD. Recent Advances in Collagen Mimetic Peptide Structure and Design. Biomacromolecules 2022; 23:1475-1489. [PMID: 35258280 DOI: 10.1021/acs.biomac.2c00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Collagen mimetic peptides (CMPs) fold into a polyproline type II triple helix, allowing the study of the structure and function (or misfunction) of the collagen family of proteins. This Perspective will focus on recent developments in the use of CMPs toward understanding the structure and controlling the stability of the triple helix. Triple helix assembly is influenced by various factors, including the single amino acid propensity for the triple helix fold, pairwise interactions between these amino acids, and long-range effects observed across the helix, such as bend, twist, and fraying. Important progress in creating a comprehensive and predictive understanding of these factors for peptides with exclusively natural amino acids has been made. In contrast, several groups have successfully developed unnatural amino acids that are engineered to stabilize the triple helical structure. A third approach to controlling the triple helical structure includes covalent cross-linking of the triple helix to stabilize the assembly, which eliminates the problematic equilibrium of unfolding into monomers and enforces compositional control. Advances in all these areas have resulted in significant improvements to our understanding and control of this important class of protein, allowing for the design and application of more chemically complex and well-controlled collagen mimetic biomaterials.
Collapse
Affiliation(s)
- Sarah A H Hulgan
- Rice University, Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D Hartgerink
- Rice University, Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
17
|
Li MC, Liu YJ, Hsu KC, Lin TH, Lin CW, Horng JC, Wang SK. Design and synthesis of fluorinated peptides for analysis of fluorous effects on the interconversion of polyproline helices. Bioorg Chem 2021; 119:105491. [PMID: 34838334 DOI: 10.1016/j.bioorg.2021.105491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
The unique interaction between fluorine atoms has been exploited to alter protein structures and to develop synthetic and analytical applications. To expand such fluorous interaction for novel applications, polyproline peptides represent an excellent molecular nanoscaffold for controlling the presentation of perfluoroalkyl groups on their unique secondary structure. We develop approaches to synthesis fluorinated peptides to systematically investigate how the number, location and types of the fluorous groups on polyproline affect the conformation by monitoring the transition between the two major polyproline structures PPI and PPII. This work provides valuable information on how fluorous interaction affects the peptide structure and also benefits the design of functional fluorous molecules.
Collapse
Affiliation(s)
- Meng-Che Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Jie Liu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuang-Cheng Hsu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tse-Hsueh Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Wei Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
18
|
Gibney R, Ferraris E. Bioprinting of Collagen Type I and II via Aerosol Jet Printing for the Replication of Dense Collagenous Tissues. Front Bioeng Biotechnol 2021; 9:786945. [PMID: 34805132 PMCID: PMC8602098 DOI: 10.3389/fbioe.2021.786945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Collagen has grown increasingly present in bioprinting, however collagen bioprinting has mostly been limited to the extrusion printing of collagen type I to form weak collagen hydrogels. While these weak collagen hydrogels have their applications, synthetic polymers are often required to reinforce gel-laden constructs that aim to replicate dense collagenous tissues found in vivo. In this study, aerosol jet printing (AJP) was used to print and process collagen type I and II into dense constructs with a greater capacity to replicate the dense collagenous ECM found in connective tissues. Collagen type I and II was isolated from animal tissues to form solutions for printing. Collagen type I and II constructs were printed with 576 layers and measured to have average effective elastic moduli of 241.3 ± 94.3 and 196.6 ± 86.0 kPa (±SD), respectively, without any chemical modification. Collagen type II solutions were measured to be less viscous than type I and both collagen type I and II exhibited a drop in viscosity due to AJP. Circular dichroism and SDS-PAGE showed collagen type I to be more vulnerable to structural changes due to the stresses of the aerosol formation step of aerosol jet printing while the collagen type II triple helix was largely unaffected. SEM illustrated that distinct layers remained in the aerosol jet print constructs. The results show that aerosol jet printing should be considered an effective way to process collagen type I and II into stiff dense constructs with suitable mechanical properties for the replication of dense collagenous connective tissues.
Collapse
Affiliation(s)
- Rory Gibney
- Department of Mechanical Engineering, KU Leuven Campus De Nayer, Leuven, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Eleonora Ferraris
- Department of Mechanical Engineering, KU Leuven Campus De Nayer, Leuven, Belgium
| |
Collapse
|
19
|
Liu S, Wen F, Muthukumaran P, Rakshit M, Lau CS, Yu N, Suryani L, Dong Y, Teoh SH. Self-Assembled Nanofibrous Marine Collagen Matrix Accelerates Healing of Full-Thickness Wounds. ACS APPLIED BIO MATERIALS 2021; 4:7044-7058. [PMID: 35006937 DOI: 10.1021/acsabm.1c00685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is an urgent clinical need for wound dressings to treat skin injuries, particularly full-thickness wounds caused by acute and chronic wounds. Marine collagen has emerged as an attractive and safer alternative due to its biocompatibility, diversity, and sustainability. It has minimum risk of zoonotic diseases and less religious constraints as compared to mammalian collagen. In this study, we reported the development of a self-assembled nanofibrous barramundi (Lates calcarifer) collagen matrix (Nano-BCM), which showed good biocompatibility for full-thickness wound-healing applications. The collagen was extracted and purified from barramundi scales and skin. Thereafter, the physicochemical properties of collagen were systematically evaluated. The process to extract barramundi skin collagen (BC) gave an excellent 45% yield and superior purity (∼100%). More importantly, BC demonstrated structural integrity, native triple helix structure, and good thermal stability. BC demonstrated its efficacy in promoting human primary dermal fibroblast (HDF) and immortalized human keratinocytes (HaCaT) proliferation and migration. Nano-BCM has been prepared via self-assembly of collagen molecules in physiological conditions, which resembled the native extracellular matrix (ECM). The clinical therapeutic efficacy of the Nano-BCM was further evaluated in a full-thickness splinted skin wound mice model. In comparison to a clinically used wound dressing (DuoDerm), the Nano-BCM demonstrated significantly accelerated wound closure and re-epithelization. Moreover, Nano-BCM nanofibrous architecture and its ability to facilitate early inflammatory response significantly promoted angiogenesis and differentiated myofibroblast, leading to enhanced wound healing. Consequently, Nano-BCM demonstrates great potential as an economical and effective nonmammalian substitute to achieve skin regeneration.
Collapse
Affiliation(s)
- Shaoqiong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Feng Wen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, Zhejiang, People's Republic of China
| | - Padmalosini Muthukumaran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Moumita Rakshit
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Chau-Sang Lau
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore.,Academic Clinical Programme Office (Research), National Dental Centre Singapore, Singapore 168938, Singapore
| | - Na Yu
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore.,Academic Clinical Programme Office (Research), National Dental Centre Singapore, Singapore 168938, Singapore
| | - Luvita Suryani
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yibing Dong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Swee Hin Teoh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
20
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
21
|
Tian H, Ren Z, Shi L, Hao G, Chen J, Weng W. Self-assembly characterization of tilapia skin collagen in simulated body fluid with different salt concentrations. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Koga T, Kingetsu S, Higashi N. Supramolecular Nanofibers from Collagen-Mimetic Peptides Bearing Various Aromatic Groups at N-Termini via Hierarchical Self-Assembly. Int J Mol Sci 2021; 22:4533. [PMID: 33926094 PMCID: PMC8123610 DOI: 10.3390/ijms22094533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Self-assembly of artificial peptides has been widely studied for constructing nanostructured materials, with numerous potential applications in the nanobiotechnology field. Herein, we report the synthesis and hierarchical self-assembly of collagen-mimetic peptides (CMPs) bearing various aromatic groups at the N-termini, including 2-naphthyl, 1-naphtyl, anthracenyl, and pyrenyl groups, into nanofibers. The CMPs (R-(GPO)n: n > 4) formed a triple helix structure in water at 4 °C, as confirmed via CD analyses, and their conformations were more stable with increasing hydrophobicity of the terminal aromatic group and peptide chain length. The resulting pre-organized triple helical CMPs showed diverse self-assembly into highly ordered nanofibers, reflecting their slight differences in hydrophobic/hydrophilic balance and configuration of aromatic templates. TEM analysis demonstrated that 2Np-CMPn (n = 6 and 7) and Py-CMP6 provided well-developed natural collagen-like nanofibers and An-CMPn (n = 5-7) self-assembled into rod-like micelle fibers. On the other hand, 2Np-CMP5 and 1Np-CMP6 were unable to form nanofibers under the same conditions. Furthermore, the Py-CMP6 nanofiber was found to encapsulate a guest hydrophobic molecule, Nile red, and exhibited unique emission behavior based on the specific nanostructure. In addition to the ability of CMPs to bind small molecules, their controlled self-assembly enables their versatile utilization in drug delivery and wavelength-conversion nanomaterials.
Collapse
Affiliation(s)
- Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan;
| | | | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan;
| |
Collapse
|
23
|
Tsai CL, Wu SY, Hsu HK, Huang SB, Lin CH, Chan YT, Wang SK. Preparation and conformational analysis of polyproline tri-helix macrocycle nanoscaffolds of varied sizes. NANOSCALE 2021; 13:4592-4601. [PMID: 33605962 DOI: 10.1039/d0nr08184a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ligand patterns at the nanoscale are essential in modulating biological recognition and signaling through binding to receptor oligomers. Biocompatible nanoscaffolds that allow precise control of multiple ligand presentation would be of great use in manipulating cellular processes and understanding membrane receptor biology. We have previously developed tri-helix and tetra-helix macrocycle scaffolds based on the Pro9 peptide helix to control ligand arrangements that can selectively target receptor oligomers. A better understanding of the structure of these macromolecules would significantly reduce the difficulty in designing matching ligand positions for target receptors. In this work, we expand the arsenal of ligand patterns by preparing polyproline tri-helix macrocycle scaffolds of different sizes. These synthetic nanoscaffolds composed of peptide helices ranging from Pro6 to Pro12 also allowed us to systematically investigate their properties. With a combination of circular dichroism spectroscopy and ion mobility spectrometry-mass spectrometry (IMS-MS), the measurement for varied sizes of these scaffolds indicated the connecting dihedral angle between both ends of the helix affects the strain in the cyclic scaffold. The experimental collision cross section obtained from IMS-MS favors a propeller model for the helix arrangements. The results not only contribute conformational insights for the polyproline tri-helix system, but also provide precious information for the future design and synthesis of cyclic nanostructures based on peptide helices.
Collapse
Affiliation(s)
- Chia-Lung Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Shao-Yong Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Hung-Kai Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Sheng-Bo Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Cin-Hao Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan. and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan. and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
24
|
Merg AD, Touponse G, Genderen EV, Blum TB, Zuo X, Bazrafshan A, Siaw HMH, McCanna A, Brian Dyer R, Salaita K, Abrahams JP, Conticello VP. Shape-Shifting Peptide Nanomaterials: Surface Asymmetry Enables pH-Dependent Formation and Interconversion of Collagen Tubes and Sheets. J Am Chem Soc 2020; 142:19956-19968. [DOI: 10.1021/jacs.0c08174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea D. Merg
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Gavin Touponse
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | | | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alisina Bazrafshan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hew Ming Helen Siaw
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Arthur McCanna
- The Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia 30322, United States
| | - R. Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jan Pieter Abrahams
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | | |
Collapse
|
25
|
Akita M, Nishikawa Y, Shigenobu Y, Ambe D, Morita T, Morioka K, Adachi K. Correlation of proline, hydroxyproline and serine content, denaturation temperature and circular dichroism analysis of type I collagen with the physiological temperature of marine teleosts. Food Chem 2020; 329:126775. [DOI: 10.1016/j.foodchem.2020.126775] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/08/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022]
|
26
|
Lakra R, Kiran MS, Korrapati PS. Effect of magnesium ascorbyl phosphate on collagen stabilization for wound healing application. Int J Biol Macromol 2020; 166:333-341. [PMID: 33122062 DOI: 10.1016/j.ijbiomac.2020.10.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Wound healing is a complex process which requires appropriate structural support for restoration of tissue continuity and function. Collagen can act as a template for cellular activities but poor physico-chemical properties necessitates the stabilization of collagen without impairing its structure and function. This study investigates the effect of magnesium ascorbyl phosphate (MAP) on collagen with reference to physico-chemical properties. Incorporation of MAP enhanced the rate of collagen fibrillation signifying increased interaction at reduced time interval. MAP did not induce any changes in the secondary structure of collagen while there was an increase in shear viscosity with increase in shear stress at different shear rate. MAP stabilized collagen film exhibited higher denaturation temperature and showed an increase in Young's Modulus when compared with that of collagen film. In vivo studies showed complete wound closure on day 16 in case of stabilized collagen film. Mechanical properties of healed skin revealed that MAP collagen film treated rat skin completely regained its properties similar to that of normal skin thereby making them a potential candidate for wound healing application.
Collapse
Affiliation(s)
- Rachita Lakra
- Biological Materials Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India.
| |
Collapse
|
27
|
Viljanen J, Lönnblom E, Ge C, Yang J, Cheng L, Aldi S, Cai W, Kastbom A, Sjöwall C, Gjertsson I, Holmdahl R, Kihlberg J. Synthesis of an Array of Triple-Helical Peptides from Type II Collagen for Multiplex Analysis of Autoantibodies in Rheumatoid Arthritis. ACS Chem Biol 2020; 15:2605-2615. [PMID: 32909734 DOI: 10.1021/acschembio.0c00680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type II collagen (CII) is the most abundant protein in joint cartilage. Antibodies to CII appear around the clinical onset of the autoimmune disease rheumatoid arthritis (RA) in a subset of patients. They target specific epitopes on CII and can be pathogenic or protective. Assays for early detection of such autoantibodies may provide new opportunities for selecting effective treatment strategies of RA. We report the efficient and reproducible assembly of an array of covalently branched native and citrullinated triple helical peptides (THPs) from CII that contain defined autoantibody epitopes. Both monoclonal antibodies and sera from experimental mouse models show a unique reactivity toward the THPs, compared to cyclic peptides containing the epitopes, revealing the importance that the epitopes are displayed in a triple-helical conformation. Importantly, antibodies against three of the THPs that contain major CII epitopes were found to be increased in sera from patients with RA, compared to control persons. These results indicate that such synthetic THPs should be included in multiplex analysis of autoantibodies that are uniquely occurring in individuals with early RA, to provide valuable information on disease prognosis and on what type of therapy should be chosen for individual patients.
Collapse
Affiliation(s)
- Johan Viljanen
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Erik Lönnblom
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Changrong Ge
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Jie Yang
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Lei Cheng
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Silvia Aldi
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Weiwei Cai
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Alf Kastbom
- Department of Rheumatology and Department of Biochemical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Christopher Sjöwall
- Department of Rheumatology and Department of Biochemical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Inger Gjertsson
- Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Rikard Holmdahl
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
- The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), 710004 Xi’an, China
| | - Jan Kihlberg
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
28
|
Ghosh M, Bera S, Schiffmann S, Shimon LJW, Adler-Abramovich L. Collagen-Inspired Helical Peptide Coassembly Forms a Rigid Hydrogel with Twisted Polyproline II Architecture. ACS NANO 2020; 14:9990-10000. [PMID: 32806033 PMCID: PMC7450664 DOI: 10.1021/acsnano.0c03085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Collagen, the most abundant protein in mammals, possesses notable cohesion and elasticity properties and efficiently induces tissue regeneration. The Gly-Pro-Hyp canonical tripeptide repeating unit of the collagen superhelix has been well-characterized. However, to date, the shortest tripeptide repeat demonstrated to attain a helical conformation contained 3-10 peptide repeats. Here, taking a minimalistic approach, we studied a single repeating unit of collagen in its protected form, Fmoc-Gly-Pro-Hyp. The peptide formed single crystals displaying left-handed polyproline II superhelical packing, as in the native collagen single strand. The crystalline assemblies also display head-to-tail H-bond interactions and an "aromatic zipper" arrangement at the molecular interface. The coassembly of this tripeptide, with Fmoc-Phe-Phe, a well-studied dipeptide hydrogelator, produced twisted helical fibrils with a polyproline II conformation and improved hydrogel mechanical rigidity. The design of these peptides illustrates the possibility to assemble superhelical nanostructures from minimal collagen-inspired peptides with their potential use as functional motifs to introduce a polyproline II conformation into hybrid hydrogel assemblies.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Santu Bera
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarah Schiffmann
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Lihi Adler-Abramovich
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Hulgan SAH, Jalan AA, Li IC, Walker DR, Miller MD, Kosgei AJ, Xu W, Phillips GN, Hartgerink JD. Covalent Capture of Collagen Triple Helices Using Lysine–Aspartate and Lysine–Glutamate Pairs. Biomacromolecules 2020; 21:3772-3781. [DOI: 10.1021/acs.biomac.0c00878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sarah A. H. Hulgan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abhishek A. Jalan
- Department of Biochemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - I-Che Li
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Douglas R. Walker
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Mitchell D. Miller
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abigael J. Kosgei
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Weijun Xu
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - George N. Phillips
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
30
|
Su W, Ran Y, Ma L, Ma X, Yi Z, Chen G, Chen X, Deng Z, Tong Q, Li X. Micro-/Nanomechanics Dependence of Biomimetic Matrices upon Collagen-Based Fibrillar Aggregation and Arrangement. Biomacromolecules 2020; 21:3547-3560. [DOI: 10.1021/acs.biomac.0c00584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Zhiwen Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
31
|
|
32
|
Comprehensive Assessment of Nile Tilapia Skin ( Oreochromis niloticus) Collagen Hydrogels for Wound Dressings. Mar Drugs 2020; 18:md18040178. [PMID: 32218368 PMCID: PMC7230254 DOI: 10.3390/md18040178] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Collagen plays an important role in the formation of extracellular matrix (ECM) and development/migration of cells and tissues. Here we report the preparation of collagen and collagen hydrogel from the skin of tilapia and an evaluation of their potential as a wound dressing for the treatment of refractory wounds. The acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were extracted and characterized using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), differential scanning calorimetry (DSC), circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) analysis. Both ASC and PSC belong to type I collagen and have a complete triple helix structure, but PSC shows lower molecular weight and thermal stability, and has the inherent low antigenicity. Therefore, PSC was selected to prepare biomedical hydrogels using its self-aggregating properties. Rheological characterization showed that the mechanical strength of the hydrogels increased as the PSC content increased. Scanning electron microscope (SEM) analysis indicated that hydrogels could form a regular network structure at a suitable PSC content. Cytotoxicity experiments confirmed that hydrogels with different PSC content showed no significant toxicity to fibroblasts. Skin repair experiments and pathological analysis showed that the collagen hydrogels wound dressing could significantly accelerate the healing of deep second-degree burn wounds and the generation of new skin appendages, which can be used for treatment of various refractory wounds.
Collapse
|
33
|
Impact of Grafting Density on the Self-Assembly and Hydrophilicity of Succinylated Collagen. Macromol Res 2020. [DOI: 10.1007/s13233-020-8077-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Higashi N, Yoshikawa R, Koga T. Photo-responsive azobenzene interactions promote hierarchical self-assembly of collagen triple-helical peptides to various higher-order structures. RSC Adv 2020; 10:15947-15954. [PMID: 35493640 PMCID: PMC9052399 DOI: 10.1039/d0ra02906h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/02/2020] [Indexed: 01/20/2023] Open
Abstract
Collagen is an essential structural protein in animal tissues and plays key roles in cellular modulation. We investigated methods to discover collagen model peptides (CMPs) that would self-assemble into triple helices and then grow into supramolecular organizations with diverse morphological features, which would be valuable as biomaterials. This challenging undertaking was achieved by placing azobenzene groups on the ends of the CMPs, (GPO)n (n = 3–10), Azo-(GPO)n. In a dilute aqueous solution (80 μM), CD spectra indicated that the Azo-(GPO)n (n > 4) formed triple helices due to strong hydrophobic azobenzene interactions, and that helix stability was increased with the peptide segment length. The resulting triple helices induced a specific azobenzene orientation through turned and twisted configurations as shown by CD spectra. TEM observations for the same solutions disclosed the morphologies for the Azo-CMPs. Azo-(GPO)3, having the shortest peptide segment, showed no nanostructure, both Azo-(GPO)4 and Azo-(GPO)5 provided consistent well-developed nanofiber structures resembling the natural collagen fibers, and Azo-(GPO)ns (n = 6–10) grew into flexible rod-like micelle fibers. In addition, alkyl chain-attached CmAzo-(GPO)5 displayed a toroidal morphology, and Azp-deg-(GPO)5 having a hydrophilic spacer assembled into a bilayer vesicle structure. These diverse morphological features are considered to be due to the characteristics of the pre-organized triple helix units. Photo-isomerization of the azobenzene moiety brought about the disappearance of such characteristic nano-architectures. When the solution concentration was increased up to 1 wt%, only Azo-(GPO)4 and Azo-(GPO)5 spontaneously formed hydrogels exhibiting a satisfactory gel-to-sol transition upon UV irradiation. Collagen is an essential structural protein in animal tissues and plays key roles in cellular modulation.![]()
Collapse
Affiliation(s)
- Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Ryo Yoshikawa
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| |
Collapse
|
35
|
He L, Yang J, Xu C, Li S, Wei B, Zhang J, Xu Y, Wang H. Effect of pre-shearing treatment on the molecular structure, fibrillogenesis behavior and gel properties of collagen. NEW J CHEM 2020. [DOI: 10.1039/d0nj00054j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The shearing treatment of type-I collagen may be applied to other proteins or aggregated polymer systems to obtain new materials with different structures and properties.
Collapse
Affiliation(s)
- Lang He
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Jian Yang
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Sheng Li
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Benmei Wei
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Yuling Xu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Haibo Wang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| |
Collapse
|
36
|
Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 2020; 156:133-187. [PMID: 32871201 PMCID: PMC7456198 DOI: 10.1016/j.addr.2020.08.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Engineering protein and peptide-based materials for drug delivery applications has gained momentum due to their biochemical and biophysical properties over synthetic materials, including biocompatibility, ease of synthesis and purification, tunability, scalability, and lack of toxicity. These biomolecules have been used to develop a host of drug delivery platforms, such as peptide- and protein-drug conjugates, injectable particles, and drug depots to deliver small molecule drugs, therapeutic proteins, and nucleic acids. In this review, we discuss progress in engineering the architecture and biological functions of peptide-based biomaterials -naturally derived, chemically synthesized and recombinant- with a focus on the molecular features that modulate their structure-function relationships for drug delivery.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
37
|
More SH, Ganesh KN. Spiegelmeric 4
R
/
S
‐hydroxy/amino‐L/D‐prolyl collagen peptides: conformation and morphology of self‐assembled structures. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shahaji H More
- Chemistry DepartmentIndian Institute of Science Education and Research Pune Pune India
| | - Krishna N Ganesh
- Chemistry DepartmentIndian Institute of Science Education and Research Pune Pune India
- Department of ChemistryIndian Institute of Science Education and Research Tirupati Tirupati Andhra Pradesh India
| |
Collapse
|
38
|
Abstract
The combination of supramolecular aggregation of collagen model peptides with reversible covalent end‐capping of the formed triple helix in a single experimental set‐up yielded minicollagens, which were characterized by a single melting temperature. In spite of the numerous possible reaction intermediates, a specific synthetic collagen with a leading, middle and trailing strand is formed in a highly cooperative self‐assembly process.
Collapse
Affiliation(s)
- Christoph Priem
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Armin Geyer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| |
Collapse
|
39
|
Chen J, Li J, Li Z, Yi R, Shi S, Wu K, Li Y, Wu S. Physicochemical and Functional Properties of Type I Collagens in Red Stingray ( Dasyatis akajei) Skin. Mar Drugs 2019; 17:E558. [PMID: 31569390 PMCID: PMC6835876 DOI: 10.3390/md17100558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Collagen is widely used in the pharmaceutical, tissue engineering, nutraceutical, and cosmetic industries. In this study, acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were extracted from the skin of red stingray, and its physicochemical and functional properties were investigated. The yields of ASC and PSC were 33.95 ± 0.7% and 37.18 ± 0.71% (on a dry weight basis), respectively. ASC and PSC were identified as type I collagen by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis, possessing a complete triple helix structure as determined by UV absorption, Fourier transform infrared, circular dichroism, and X-ray diffraction spectroscopy. Contact angle experiments indicated that PSC was more hydrophobic than ASC. Thermal stability tests revealed that the melting temperature of PSC from red stingray skin was higher than that of PSC from duck skin, and the difference in the melting temperature between these two PSCs was 9.24 °C. Additionally, both ASC and PSC were functionally superior to some other proteins from terrestrial sources, such as scallop gonad protein, whey protein, and goose liver protein. These results suggest that PSC from red stingray skin could be used instead of terrestrial animal collagen in drugs, foods, cosmetics, and biological functional materials, and as scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Junde Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
| | - Jianying Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
- Fisheries College, Jimei University, Xiamen 361021, China.
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory, Marine Fishery Resources and Eco-environment, Jimei University, Xiamen 361021, China.
| | - Ruizao Yi
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
| | - Shenjia Shi
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
- Fisheries College, Jimei University, Xiamen 361021, China.
| | - Kunyuan Wu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
| | - Yushuang Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
| | - Sijia Wu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
| |
Collapse
|
40
|
Yang J, Wang H, He L, Wei B, Xu C, Xu Y, Zhang J, Li S. Reconstituted Fibril from Heterogenic Collagens-A New Method to Regulate Properties of Collagen Gels. Macromol Res 2019. [DOI: 10.1007/s13233-019-7160-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Kinoshita S, Mera K, Ichikawa H, Shimasaki S, Nagai M, Taga Y, Iijima K, Hattori S, Fujiwara Y, Shirakawa JI, Nagai R. Nω -(Carboxymethyl)arginine Is One of the Dominant Advanced Glycation End Products in Glycated Collagens and Mouse Tissues. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9073451. [PMID: 31583049 PMCID: PMC6754957 DOI: 10.1155/2019/9073451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/31/2019] [Accepted: 08/16/2019] [Indexed: 01/22/2023]
Abstract
Advanced glycation end products (AGEs) accumulate in proteins during aging in humans. In particular, the AGE structure Nω -(carboxymethyl)arginine (CMA) is produced by oxidation in glycated collagen, accounting for one of the major proteins detected in biological samples. In this study, we investigated the mechanism by which CMA is generated in collagen and detected CMA in collagen-rich tissues. When various protein samples were incubated with glucose, the CMA content, detected using a monoclonal antibody, increased in a time-dependent manner only in glycated collagen, whereas the formation of Nε -(carboxymethyl)lysine (CML), a major antigenic AGE, was detected in all glycated proteins. Dominant CMA formation in glycated collagen was also observed by electrospray ionization-liquid chromatography-tandem mass spectrometry (LC-MS/MS). During incubation of glucose with collagen, CMA formation was enhanced with increasing glucose concentration, whereas it was inhibited in the presence of dicarbonyl-trapping reagents and a metal chelator. CMA formation was also observed upon incubating collagen with glyoxal, and CMA was generated in a time-dependent manner when glyoxal was incubated with type I-IV collagens. To identify hotspots of CMA formation, tryptic digests of glycated collagen were applied to an affinity column conjugated with anti-CMA. Several CMA peptides that are important for recognition by integrins were detected by LC-MS/MS and amino acid sequence analyses. CMA formation on each sequence was confirmed by incubation of the synthesized peptides with glyoxal and ribose. LC-MS detected CMA in the mouse skin at a higher level than other AGEs. Furthermore, CMA accumulation was greater in the human aorta of older individuals. Overall, our study provides evidence that CMA is a representative AGE structure that serves as a useful index to reflect the oxidation and glycation of collagen.
Collapse
Affiliation(s)
- Sho Kinoshita
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Katsumi Mera
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroko Ichikawa
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Satoko Shimasaki
- Department of Food and Nutrition, Laboratory of Nutritional Science and Biochemistry, Japan Women's University, Tokyo, Japan
| | - Mime Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Tokyo, Japan
| | | | | | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun-ichi Shirakawa
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| |
Collapse
|
42
|
Kubyshkin V. Stabilization of the triple helix in collagen mimicking peptides. Org Biomol Chem 2019; 17:8031-8047. [PMID: 31464337 DOI: 10.1039/c9ob01646e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Collagen mimics are peptides designed to reproduce structural features of natural collagen. A triple helix is the first element in the hierarchy of collagen folding. It is an assembly of three parallel peptide chains stabilized by packing and interchain hydrogen bonds. In this review we summarize the existing chemical approaches towards stabilization of this structure including the most recent developments. Currently proposed methods include manipulation of the amino acid composition, application of unnatural amino acid analogues, stimuli-responsive modifications, chain tethering approaches, peptide amphiphiles, modifications that target interchain interactions and more. This ability to manipulate the triple helix as a supramolecular self-assembly contributes to our understanding of the collagen folding. It also provides essential information needed to design collagen-based biomaterials of the future.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, University of Manitoba, Dysart Rd. 144, R3T 2N2, Winnipeg, Manitoba, Canada.
| |
Collapse
|
43
|
Akita M, Kono T, Lloyd K, Mitsui T, Morioka K, Adachi K. Biochemical study of type I collagen purified from skin of warm sea teleost Mahi mahi (Coryphaena hippurus), with a focus on thermal and physical stability. J Food Biochem 2019; 43:e13013. [PMID: 31407365 DOI: 10.1111/jfbc.13013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 01/27/2023]
Abstract
Acid- and pepsin-soluble collagen were purified from the skin of mahi mahi (mmASC and mmPSC). The Pro+Hyp content of the latter (185/1,000 residues) was highest among all marine teleost fishes. Fourier transform infrared spectroscopy and Circular Dichroism (CD) analysis showed the typical structure of type I collagen. The ratio of positive over negative peak intensity calculated from the CD spectrum was approximately 1.19 in mmPSC, which is remarkably high, and indicates the stability of the triple helix. The denaturation temperatures (Td ) of mmASC and mmPSC were the highest (29.5 and 28.8°C, respectively) among the marine teleost fishes previously studied. atomic force microscope and scanning electron microscope images showed that even after pretreatment, the fibrils presented their structure and fiber orientation. These results indicate the robustness of both collagens, which can be attributed to the high value of Pro+Hyp stabilizing the helix structure of the collagen molecule. Practical applications While Mahi mahi is highly valuable for its meat, other parts such as skin is not fully utilized in seafood industry. On the contrary, it has been empirically shown that the skin of Mahi mahi has high thermal stability, thus, the skin has been used for leather products in some areas located in the tropical and subtropical zones. In this study, we focused on collagen a major component in skin and investigated the structure and the biochemical characteristics of it. Some results showed that collagen from skin has high physical stability. The collagen from skin of Mahi mahi will be a new fishery resource which could be used as a material for collagen products.
Collapse
Affiliation(s)
- Monami Akita
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan.,The United Graduate School of Agricultural Science, Ehime University, Matsuyama, Japan.,Kochi Prefectural Industrial Technology Center, Kochi, Japan
| | - Toshio Kono
- Kochi Prefectural Industrial Technology Center, Kochi, Japan
| | - Kento Lloyd
- Department of Mathematics and Physics, Aoyama-Gakuin University, Sagamihara, Japan
| | - Toshiyuki Mitsui
- Department of Mathematics and Physics, Aoyama-Gakuin University, Sagamihara, Japan
| | - Katsuji Morioka
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kohsuke Adachi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| |
Collapse
|
44
|
Merg AD, Touponse G, van Genderen E, Zuo X, Bazrafshan A, Blum T, Hughes S, Salaita K, Abrahams JP, Conticello VP. 2D Crystal Engineering of Nanosheets Assembled from Helical Peptide Building Blocks. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Andrea D. Merg
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Gavin Touponse
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | | | - Xiaobing Zuo
- X-ray Science Division Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA
| | - Alisina Bazrafshan
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Thorsten Blum
- Paul Scherrer Institut 5232 Villigen, PSI Switzerland
| | - Spencer Hughes
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Khalid Salaita
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Jan Pieter Abrahams
- Paul Scherrer Institut 5232 Villigen, PSI Switzerland
- Center for Cellular Imaging and NanoAnalytics Biozentrum University of Basel 4058 Basel Switzerland
- Leiden Institute of Biology Sylviusweg 72 2333 BE Leiden The Netherlands
| | | |
Collapse
|
45
|
Merg AD, Touponse G, van Genderen E, Zuo X, Bazrafshan A, Blum T, Hughes S, Salaita K, Abrahams JP, Conticello VP. 2D Crystal Engineering of Nanosheets Assembled from Helical Peptide Building Blocks. Angew Chem Int Ed Engl 2019; 58:13507-13512. [DOI: 10.1002/anie.201906214] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/07/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Andrea D. Merg
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Gavin Touponse
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | | | - Xiaobing Zuo
- X-ray Science Division Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA
| | - Alisina Bazrafshan
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Thorsten Blum
- Paul Scherrer Institut 5232 Villigen, PSI Switzerland
| | - Spencer Hughes
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Khalid Salaita
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Jan Pieter Abrahams
- Paul Scherrer Institut 5232 Villigen, PSI Switzerland
- Center for Cellular Imaging and NanoAnalytics Biozentrum University of Basel 4058 Basel Switzerland
- Leiden Institute of Biology Sylviusweg 72 2333 BE Leiden The Netherlands
| | | |
Collapse
|
46
|
Egli J, Siebler C, Köhler M, Zenobi R, Wennemers H. Hydrophobic Moieties Bestow Fast-Folding and Hyperstability on Collagen Triple Helices. J Am Chem Soc 2019; 141:5607-5611. [DOI: 10.1021/jacs.8b13871] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jasmine Egli
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Christiane Siebler
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Martin Köhler
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| |
Collapse
|
47
|
Modulating the collagen triple helix formation by switching: Positioning effects of depsi-defects on the assembly of [Gly-Pro-Pro]7 collagen mimetic peptides. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Melton SD, Chenoweth DM. Variation in the Yaa position of collagen peptides containing azaGlycine. Chem Commun (Camb) 2018; 54:11937-11940. [PMID: 30288510 DOI: 10.1039/c8cc06372a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the systematic investigation of amino acid variation in the Yaa position of collagen peptides containing an adjacent azaGlycine residue. We demonstrate the reliability of azaGlycine as a glycine replacement and provide a sequence independent strategy for stabilizing the triple helical assembly of collagen peptides.
Collapse
Affiliation(s)
- Samuel D Melton
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA.
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
49
|
Effect of ultra-high pressure on molecular structure and properties of bullfrog skin collagen. Int J Biol Macromol 2018; 111:200-207. [DOI: 10.1016/j.ijbiomac.2017.12.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/27/2017] [Accepted: 12/30/2017] [Indexed: 02/07/2023]
|
50
|
Delsuc N, Uchinomiya S, Ojida A, Hamachi I. A host-guest system based on collagen-like triple-helix hybridization. Chem Commun (Camb) 2018; 53:6856-6859. [PMID: 28604910 DOI: 10.1039/c7cc03055j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A strategy inspired by tweezer receptors has been employed to develop a new host-guest system. The hybridization into a collagen-like triple helix is the driving force for the recognition that occurs with high affinity and selectivity. Several systems have been screened to find the best host-guest pair and this strategy may be implemented for tag fused protein recognition.
Collapse
Affiliation(s)
- N Delsuc
- Laboratoire des Biomolécules, Département de Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005 Paris, France.
| | | | | | | |
Collapse
|