1
|
Disturbance of the Conformation of DNA Hairpin Containing the 5′-GT-3′ Binding Site Caused by Zn(II)bleomycin-A5 Studied through NMR Spectroscopy. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The antibiotics known as bleomycins constitute a family of natural products clinically employed for the treatment of a wide spectrum of cancers. These antibiotics have the ability to chelate a metal center, most commonly Fe(II), and cause site-specific DNA cleavage upon oxidation. Bleomycin therapy is a successful course of treatment for some types of cancers. However, the risk of pulmonary fibrosis as an undesirable side effect, limits the use of the antibiotics in cancer chemotherapy. Bleomycins are differentiated by their C-terminal, or tail, regions, which have been shown to closely interact with DNA. Pulmonary toxicity has been correlated to the chemical structure of the bleomycin C-termini through biochemical studies performed in mice. In the present study, we examined the binding of Zn(II)Bleomycin-A5 to a DNA hairpin of sequence 5′-CCAGTATTTTTACTGG-3′, containing the 5′-GT-3′ binding site. The results were compared to those from a previous study that examined the binding of Zn(II)Bleomycin-A2 and Zn(II)Peplomycin to the same DNA hairpin. We provide evidence that, as shown for DNA hairpins containing the 5′-GC-3′ binding site, Zn(II)BLM-A5 causes the most significant structural changes to the oligonucleotide.
Collapse
|
2
|
Zhang J, Shukla V, Boger DL. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes, 1-Aza-1,3-Butadienes, Cyclopropenone Ketals, and Related Systems. A Retrospective. J Org Chem 2019; 84:9397-9445. [PMID: 31062977 DOI: 10.1021/acs.joc.9b00834] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A summary of the investigation and applications of the inverse electron demand Diels-Alder reaction is provided that have been conducted in our laboratory over a period that now spans more than 35 years. The work, which continues to provide solutions to complex synthetic challenges, is presented in the context of more than 70 natural product total syntheses in which the reactions served as a key strategic step in the approach. The studies include the development and use of the cycloaddition reactions of heterocyclic azadienes (1,2,4,5-tetrazines; 1,2,4-, 1,3,5-, and 1,2,3-triazines; 1,2-diazines; and 1,3,4-oxadiazoles), 1-aza-1,3-butadienes, α-pyrones, and cyclopropenone ketals. Their applications illustrate the power of the methodology, often provided concise and nonobvious total syntheses of the targeted natural products, typically were extended to the synthesis of analogues that contain deep-seated structural changes in more comprehensive studies to explore or optimize their biological properties, and highlight a wealth of opportunities not yet tapped.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Vyom Shukla
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
3
|
Follett SE, Murray SA, Ingersoll AD, Reilly TM, Lehmann TE. Structural changes of Zn(II)bleomycin complexes when bound to DNA hairpins containing the 5'-GT-3' and 5'-GC-3' binding sites studied through NMR spectroscopy. MAGNETOCHEMISTRY 2018; 4. [PMID: 30464999 DOI: 10.3390/magnetochemistry4010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bleomycins are antitumor antibiotics that can chelate a metal center and cause site-specific DNA cleavage at 5'-Gpyrimidine-3' regions of DNA. These antibiotics are successful in the treatment of various cancers, but are known to cause pulmonary fibrosis to patients under bleomycin regimes. Substantial research has resulted in the development of over 300 bleomycin analogs, aiming to improve the therapeutic index of the drug. Previous studies have proposed that the lung toxicity caused by bleomycin is related to the C-terminal regions of these drugs, which have been shown to closely interact with DNA in metal-bleomycin-DNA complexes. Some of the research studying metallo-bleomycin-DNA interactions have suggested three different binding modes of the metal form of the drug to DNA, including total and/or partial intercalation, and minor groove binding. However, there is still lack of consensus regarding this matter, and solid conclusions on the subject have not yet been established. Previously we investigated the diverse levels of disruption caused to DNA hairpins containing 5'-GC-3' and 5'-GT-3' binding sites, which are consequence of the binding of bleomycins with different C-termini. The results of these investigation indicate that both the DNA-binding site and the bleomycin C-termini have an impact on the final conformations of drug and target. The present study focuses on the structural alterations exhibited by Zn(II)bleomycin-A2, -B2, -A5 and Zn(II)peplomycin upon binding to DNA hairpins containing 5'-GC-3' and 5'-GT-3' binding sites. Evidence that each Zn(II)bleomycin is structurally affected depending on both its C-terminus and the DNA-binding site present in the hairpin is provided.
Collapse
Affiliation(s)
- Shelby E Follett
- Department of Chemistry, University of Wyoming, Laramie, WY, United Sates of America
| | - Sally A Murray
- Department of Chemistry, University of Wyoming, Laramie, WY, United Sates of America
| | - Azure D Ingersoll
- Department of Chemistry, University of Wyoming, Laramie, WY, United Sates of America
| | - Teresa M Reilly
- Department of Chemical Engineering, University of Wyoming, Laramie, WY, United Sates of America
| | - Teresa E Lehmann
- Department of Chemistry, University of Wyoming, Laramie, WY, United Sates of America
| |
Collapse
|
4
|
Boger DL. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface. J Org Chem 2017; 82:11961-11980. [PMID: 28945374 PMCID: PMC5712263 DOI: 10.1021/acs.joc.7b02088] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/24/2023]
Abstract
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and
The Skaggs Research Institute, The Scripps
Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Follett SE, Ingersoll AD, Murray SA, Reilly TM, Lehmann TE. Interaction of Zn(II)bleomycin-A 2 and Zn(II)peplomycin with a DNA hairpin containing the 5'-GT-3' binding site in comparison with the 5'-GC-3' binding site studied by NMR spectroscopy. J Biol Inorg Chem 2017; 22:1039-1054. [PMID: 28748309 PMCID: PMC5985968 DOI: 10.1007/s00775-017-1482-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/13/2017] [Indexed: 11/29/2022]
Abstract
Bleomycins are a group of glycopeptide antibiotics synthesized by Streptomyces verticillus that are widely used for the treatment of various neoplastic diseases. These antibiotics have the ability to chelate a metal center, mainly Fe(II), and cause site-specific DNA cleavage. Bleomycins are differentiated by their C-terminal regions. Although this antibiotic family is a successful course of treatment for some types of cancers, it is known to cause pulmonary fibrosis. Previous studies have identified that bleomycin-related pulmonary toxicity is linked to the C-terminal region of these drugs. This region has been shown to closely interact with DNA. We examined the binding of Zn(II)peplomycin and Zn(II)bleomycin-A2 to a DNA hairpin of sequence 5'-CCAGTATTTTTACTGG-3', containing the binding site 5'-GT-3', and compared the results with those obtained from our studies of the same MBLMs bound to a DNA hairpin containing the binding site 5'-GC-3'. We provide evidence that the DNA base sequence has a strong impact in the final structure of the drug-target complex.
Collapse
Affiliation(s)
- Shelby E Follett
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Azure D Ingersoll
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Sally A Murray
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Teresa M Reilly
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Teresa E Lehmann
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
6
|
Lehmann TE, Murray SA, Ingersoll AD, Reilly TM, Follett SE, Macartney KE, Harpster MH. NMR study of the effects of some bleomycin C-termini on the structure of a DNA hairpin with the 5'-GC-3' binding site. J Biol Inorg Chem 2016; 22:121-136. [PMID: 27858165 DOI: 10.1007/s00775-016-1413-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
Abstract
The antibiotics known as bleomycins constitute a family of natural products clinically employed for the treatment of a wide spectrum of cancers. The drug acts as an antitumor agent by virtue of the ability of a metal complex of the antibiotic to cleave DNA. Bleomycins are differentiated by their C-terminal regions. Previous structural studies involving metal-bleomycin-DNA triads have allowed the identification of the bithiazole-(C-terminus substituent) segment in this molecule as the one that most closely interacts with DNA. Three different modes of binding of metallo-bleomycins to DNA (partial or total intercalation of the bithiazole unit between DNA bases, or binding to the minor groove) have been proposed in the literature. The therapeutic use of bleomycin is frequently associated with the development of pulmonary fibrosis. The severity of this side effect has been attributed to the C-terminus of the antibiotic by some researchers. The degree of pulmonary toxicity of bleomycin-A2 and -A5, were found to be higher than those of bleomycin-B2 and peplomycin. Since the introduction of Blenoxane to clinical medicine in 1972, attempts have been made at modifying the basic bleomycin structure at the C-terminus to improve its therapeutic index. However, the pharmacological and toxicological importance of particular C-termini on bleomycin remains unclear. The present study was designed to determine the effect of Zn(II)bleomycin-A2, -A5, -B2, and Zn(II)peplomycin on the structure of a DNA hairpin containing the 5'-GC-3' binding site. We provide evidence that different Zn(II)bleomycins affect the structure of the tested DNA segment in different fashions.
Collapse
Affiliation(s)
- Teresa E Lehmann
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA.
| | - Sally A Murray
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Azure D Ingersoll
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Teresa M Reilly
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Shelby E Follett
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Kevin E Macartney
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Mark H Harpster
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| |
Collapse
|
7
|
Chung LH, Murray V. The mitochondrial DNA sequence specificity of the anti-tumour drug bleomycin using end-labeled DNA and capillary electrophoresis and a comparison with genome-wide DNA sequencing. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1008:87-97. [DOI: 10.1016/j.jchromb.2015.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022]
|
8
|
Tang C, Paul A, Alam MP, Roy B, Wilson WD, Hecht SM. A short DNA sequence confers strong bleomycin binding to hairpin DNAs. J Am Chem Soc 2014; 136:13715-26. [PMID: 25188011 PMCID: PMC4183661 DOI: 10.1021/ja505733u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Bleomycins A5 and B2 were used to study the
structural features in hairpin DNAs conducive to strong BLM–DNA
interaction. Two members of a 10-hairpin DNA library previously found
to bind most tightly to these BLMs were subsequently noted to share
the sequence 5′-ACGC (complementary strand sequence 5′-GCGT).
Each underwent double-strand cleavage at five sites within, or near,
an eight base pair region of the DNA duplex which had been randomized
to create the original library. A new hairpin DNA library was selected
based on affinity for immobilized Fe(III)·BLM A5.
Two of the 30 newly identified DNAs also contained the sequence 5′-ACGC/5′-GCGT.
These DNAs bound to the Fe(II)·BLMs more tightly than any DNA
characterized previously. Surface plasmon resonance confirmed tight
Fe(III)·BLM B2 binding and gave an excellent fit for
a 1:1 binding model, implying the absence of significant secondary
binding sites. Fe(II)·BLM A5 was used to assess sites
of double-strand DNA cleavage. Both hairpin DNAs underwent double-strand
cleavage at five sites within or near the original randomized eight
base region. For DNA 12, four of the five double-strand
cleavages involved independent single-strand cleavage reactions; DNA 13 underwent double-strand DNA cleavage by independent single-strand
cleavages at all five sites. DNA 14, which bound Fe·BLM
poorly, was converted to a strong binder (DNA 15) by
insertion of the sequence 5′-ACGC/5′-GCGT. These findings
reinforce the idea that tighter DNA binding by Fe·BLM leads to
increased double-strand cleavage by a novel mechanism and identify
a specific DNA motif conducive to strong BLM binding and cleavage.
Collapse
Affiliation(s)
- Chenhong Tang
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Total syntheses of (-)-pyrimidoblamic acid and P-3A are disclosed. Central to the convergent approach is a powerful inverse electron demand Diels-Alder reaction between substituted electron-deficient 1,2,3-triazines and a highly functionalized and chiral primary amidine, which forms the pyrimidine cores and introduces all necessary stereochemistry in a single step. Intrinsic in the convergent approach is the potential it provides for the late stage divergent synthesis of modified analogs bearing deep-seated changes in either the pyrimidine cores or the highly functionalized C2 side chain common to both natural products. The examination of the key cycloaddition reaction revealed that the inherent 1,2,3-triazine mode of cycloaddition (C4/N1 vs C5/N2) as well as the amidine regioselectivity were unaffected by introduction of two electron-withdrawing groups (-CO2R) at C4 and C6 of the 1,2,3-triazine even if C5 is unsubstituted (Me or H), highlighting the synthetic potential of the powerful pyrimidine synthesis.
Collapse
Affiliation(s)
- Adam S Duerfeldt
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
10
|
Lehmann T, Topchiy E. Contributions of NMR to the understanding of the coordination chemistry and DNA interactions of metallo-bleomycins. Molecules 2013; 18:9253-77. [PMID: 23917114 PMCID: PMC6270211 DOI: 10.3390/molecules18089253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 11/20/2022] Open
Abstract
Bleomycins are a family of glycopeptide antibiotics that have the ability to bind and degrade DNA when bound to key metal ions, which is believed to be responsible for their antitumor activity. Knowledge of the structures of metallo-bleomycins is vital to further characterize their mechanism of action. To this end, numerous structural studies on metallo-bleomycins have been conducted. NMR spectroscopy has had a key role in most of these studies, and has led to very important findings involving the coordination chemistry of metallo-bleomycins, and the details of many metallo-bleomycin-DNA spatial correlations for this important drug. This paper reviews the most important contributions of NMR to the bleomycin field.
Collapse
Affiliation(s)
- Teresa Lehmann
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA.
| | | |
Collapse
|
11
|
Cai X, Zaleski PA, Cagir A, Hecht SM. Deglycobleomycin A6 analogues modified in the methylvalerate moiety. Bioorg Med Chem 2011; 19:3831-44. [DOI: 10.1016/j.bmc.2011.04.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
|
12
|
Giroux RA, Hecht SM. Characterization of Bleomycin Cleavage Sites in Strongly Bound Hairpin DNAs. J Am Chem Soc 2010; 132:16987-96. [DOI: 10.1021/ja107228c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachel A. Giroux
- Center for BioEnergetics, Biodesign Institute and Department of Chemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign Institute and Department of Chemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
13
|
Ma Q, Akiyama Y, Xu Z, Konishi K, Hecht SM. Identification and Cleavage Site Analysis of DNA Sequences Bound Strongly by Bleomycin. J Am Chem Soc 2009; 131:2013-22. [DOI: 10.1021/ja808629s] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qian Ma
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Yoshitsugu Akiyama
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Zhidong Xu
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Kazuhide Konishi
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Sidney M. Hecht
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
14
|
Abstract
Since the elucidation of the structure of double helical DNA, the construction of small molecules that recognize and react at specific DNA sites has been an area of considerable interest. In particular, the study of transition metal complexes that bind DNA with specificity has been a burgeoning field. This growth has been due in large part to the useful properties of metal complexes, which possess a wide array of photophysical attributes and allow for the modular assembly of an ensemble of recognition elements. Here we review recent experiments in our laboratory aimed at the design and study of octahedral metal complexes that bind DNA non-covalently and target reactions to specific sites. Emphasis is placed both on the variety of methods employed to confer site-specificity and upon the many applications for these complexes. Particular attention is given to the family of complexes recently designed that target single base mismatches in duplex DNA through metallo-insertion.
Collapse
Affiliation(s)
- Brian M. Zeglis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125 USA Fax: 626-577-4976; Tel: 626-395-6075; E-mail:
| | - Valerie C. Pierre
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125 USA Fax: 626-577-4976; Tel: 626-395-6075; E-mail:
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125 USA Fax: 626-577-4976; Tel: 626-395-6075; E-mail:
| |
Collapse
|
15
|
Corradini R, Sforza S, Tedeschi T, Marchelli R. Chirality as a tool in nucleic acid recognition: principles and relevance in biotechnology and in medicinal chemistry. Chirality 2007; 19:269-94. [PMID: 17345563 DOI: 10.1002/chir.20372] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The understanding of the interaction of chiral species with DNA or RNA is very important for the development of new tools in biology and of new drugs. Several cases in which chirality is a crucial point in determining the DNA binding mode are reviewed and discussed, with the aim of illustrating how chirality can be considered as a tool for improving the understanding of mechanisms and the effectiveness of nucleic acid recognition. The review is divided into two parts: the former describes examples of chiral species interacting with DNA: intercalators, metal complexes, and groove binders; the latter part is dedicated to chirality in DNA analogs, with discussion of phosphate stereochemistry and chirality of ribose substitutes, in particular of peptide nucleic acids (PNAs) for which a number of works have been published recently dealing with the effect of chirality in DNA recognition. The discussion is intended to show how enantiomeric recognition originates at the molecular level, by exploiting the enormous progresses recently achieved in the field of structural characterization of complexes formed by nucleic acid with their ligands by crystallographic and spectroscopic methods. Examples of application of the DNA binding molecules described and the role of chirality in DNA recognition relevant for biotechnology or medicinal chemistry are reported.
Collapse
Affiliation(s)
- Roberto Corradini
- Dipartimento di Chimica Organica e Industriale, Università di Parma, I-4310 Parma, Italy.
| | | | | | | |
Collapse
|
16
|
Burger RM, Usov OM, Grigoryants VM, Scholes CP. Cryogenic Photolysis of Activated Bleomycin to Ferric Bleomycin. J Phys Chem B 2006; 110:20702-9. [PMID: 17034262 DOI: 10.1021/jp064906o] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activated bleomycin (ABLM) is a drug--Fe(III)-hydroperoxide complex kinetically competent in DNA attack (via H4' abstraction). This intermediate is relatively stable, but its spontaneous conversion to ferric bleomycin (Fe(III).BLM) is poorly characterized because no observable intermediate product accumulates. Light was shown to trigger ABLM attack on DNA in liquid at -30 degrees C, so ABLM was irradiated (at its 350 nm ligand-to-metal charge-transfer transition) at 77 K to stabilize possible intermediates. ABLM photolysis (quantum yield, Phi = 0.005) generates two kinds of product: Fe(III).BLM (with no detectable intermediate) and one or more minor (1-2%) radical O-Fe-BLM byproduct, photostable at 77 K. Adding DNA, even without its target H4', increases the quantum yield of ABLM conversion >10-fold while suppressing the observed radical yield. Since cryogenic solid-phase reactions can entail only constrained local rearrangement, the reaction(s) converting ABLM to Fe(III).BLM must be similarly constrained.
Collapse
Affiliation(s)
- Richard M Burger
- Public Health Research Institute, 225 Warren Street, Newark, New Jersey 07103-3535, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Bleomycins are a family of glycopeptide antibiotics that have potent antitumour activity against a range of lymphomas, head and neck cancers and germ-cell tumours. The therapeutic efficacy of the bleomycins is limited by development of lung fibrosis. The cytotoxic and mutagenic effects of the bleomycins are thought to be related to their ability to mediate both single-stranded and double-stranded DNA damage, which requires the presence of specific cofactors (a transition metal, oxygen and a one-electron reductant). Progress in understanding the mechanisms involved in the therapeutic efficacy of the bleomycins and the unwanted toxicity and elucidation of the biosynthetic pathway of the bleomycins sets the stage for developing a more potent, less toxic therapeutic agent.
Collapse
Affiliation(s)
- Jingyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
18
|
Neidig ML, Solomon EI. Structure–function correlations in oxygen activating non-heme iron enzymes. Chem Commun (Camb) 2005:5843-63. [PMID: 16317455 DOI: 10.1039/b510233m] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A large group of mononuclear non-heme iron enzymes exist which activate dioxygen to catalyze key biochemical transformations, including many of medical, pharmaceutical and environmental significance. These enzymes utilize high-spin Fe(II) active sites and additional reducing equivalents from cofactors or substrates to react with O2 to yield iron-oxygen intermediates competent to transform substrate to product. While Fe(II) sites have been difficult to study due to the lack of dominant spectroscopic features, a spectroscopic methodology has been developed which allows the elucidation of the geometric and electronic structures of these active sites and provides molecular level insight into the mechanisms of catalysis. This review provides a summary of this methodology with emphasis on its application to the determination of important active site structure-function correlations in mononuclear non-heme iron enzymes. These studies provide key insight into the mechanisms of oxygen activation, active site features that contribute to differences in reactivity and, combined with theoretical calculations and model studies, the nature of oxygen intermediates active in catalysis.
Collapse
|
19
|
Cagir A, Tao ZF, Sucheck SJ, Hecht SM. Solid-phase synthesis and biochemical evaluation of conformationally constrained analogues of deglycobleomycin A5. Bioorg Med Chem 2003; 11:5179-87. [PMID: 14604681 DOI: 10.1016/j.bmc.2003.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deglycobleomycin binds to and degrades the self-complementary oligonucleotide d(CGCTAGCG)(2) in a sequence selective fashion. A previous modeling study [J. Am. Chem. Soc. 120, (1998), 7450] had shown that, during binding to double stranded DNA, the conformation of the methylvalerate domain of deglycoBLM approximated that of S-proline. In the belief that an analogue of deglycoBLM structurally constrained to mimic the DNA-bound conformation might exhibit facilitated DNA binding and cleavage, an analogue of deglycoBLM was prepared in which the methylvalerate moiety was replaced by S-proline. This deglycoBLM analogue, as well as the related analogue containing R-proline, was synthesized on a TentaGel resin. Both of the analogues were found to be capable of binding Fe(2+) and activating O(2) for transfer to styrene. However, both deglycoBLM analogues exhibited diminished abilities to effect the relaxation of supercoiled plasmid DNA, and neither mediated sequence selective DNA cleavage.
Collapse
Affiliation(s)
- Ali Cagir
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22901, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Although most antibiotics do not need metal ions for their biological activities, there are a number of antibiotics that require metal ions to function properly, such as bleomycin (BLM), streptonigrin (SN), and bacitracin. The coordinated metal ions in these antibiotics play an important role in maintaining proper structure and/or function of these antibiotics. Removal of the metal ions from these antibiotics can cause changes in structure and/or function of these antibiotics. Similar to the case of "metalloproteins," these antibiotics are dubbed "metalloantibiotics" which are the title subjects of this review. Metalloantibiotics can interact with several different kinds of biomolecules, including DNA, RNA, proteins, receptors, and lipids, rendering their unique and specific bioactivities. In addition to the microbial-originated metalloantibiotics, many metalloantibiotic derivatives and metal complexes of synthetic ligands also show antibacterial, antiviral, and anti-neoplastic activities which are also briefly discussed to provide a broad sense of the term "metalloantibiotics."
Collapse
Affiliation(s)
- Li-June Ming
- Department of Chemistry and Institute for Biomolecular Science, University of South Florida, Tampa, Florida 33620-5250, USA.
| |
Collapse
|
21
|
Rishel MJ, Thomas CJ, Tao ZF, Vialas C, Leitheiser CJ, Hecht SM. Conformationally constrained analogues of bleomycin A5. J Am Chem Soc 2003; 125:10194-205. [PMID: 12926941 DOI: 10.1021/ja030057w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bleomycin (BLM) group antitumor antibiotics are glycopeptide-derived natural products shown to cause sequence selective lesions in DNA. Prior studies have indicated that the linker region, composed of the methylvalerate and threonine residues, may be responsible for a conformational bend in the agent required for efficient DNA cleavage. We have synthesized a number of conformationally constrained methylvalerate analogues and incorporated them into deglycobleomycin A(5) congeners using our recently reported procedure for the solid phase construction of (deglyco)bleomycin and its analogues. These analogues were designed to probe the effects of conformational constraint of the native valerate moiety. Initial experiments indicated that the constrained molecules, none of which mimic the conformation proposed for the natural valerate linker, possessed DNA cleavage activity, albeit with potencies less than that of (deglyco)BLM and lacking sequence selectivity. Further experiments demonstrated that these analogues failed to produce alkali-labile lesions in DNA or sequence selective oxidative damage in RNA. However, two of the conformationally constrained deglycoBLM analogues were shown to mediate RNA cleavage in the absence of added Fe(2+). The ability of the analogues to mediate the oxygenation of small molecules was also assayed, and it was shown that they were as competent in the transfer of oxygen to low molecular weight substrates as the parent compound.
Collapse
Affiliation(s)
- Michael J Rishel
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | | | |
Collapse
|
22
|
Papakyriakou A, Katsaros N. NMR and Molecular Modelling Studies on the Solution Structure of the In
III
−Bleomycin A2 Complex. Eur J Inorg Chem 2003. [DOI: 10.1002/ejic.200300072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Athanasios Papakyriakou
- Institute of Physical Chemistry, NCSR “Demokritos” 15310 Ag. Paraskevi Attikis, Greece, Fax: (internat.) + 30‐210/6511766
| | - Nikos Katsaros
- Institute of Physical Chemistry, NCSR “Demokritos” 15310 Ag. Paraskevi Attikis, Greece, Fax: (internat.) + 30‐210/6511766
| |
Collapse
|
23
|
Papakyriakou A, Mouzopoulou B, Katsaros N. The solution structure of the Ga(III)-bleomycin A2 complex resolved by NMR and molecular modeling; interaction with d(CCAGGCCTGG). J Biol Inorg Chem 2003; 8:549-559. [PMID: 12632272 DOI: 10.1007/s00775-003-0448-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Accepted: 01/23/2003] [Indexed: 10/18/2022]
Abstract
The solution structure of the Ga(III)-bleomycin A2 complex (GaBLM) has been determined using 2D NMR methods in combination with molecular dynamics calculations. Complete assignment of the amide and amine protons, observation of 80 NOEs and measurement of 15 (3)JH(-H) coupling constants provided us with a well-defined structure using a restrained simulated annealing protocol. On the basis of distance and dihedral angle constraints agreement, along with potential energy considerations, the favored model is a five-coordinate complex with the primary amine of beta-aminoalanine holding the axial position of a distorted tetragonal pyramid. The disaccharide moiety of GaBLM is not a ligand, sharing the same side of the equatorial plane with the axial amine ligand. Titration of the self-complementary oligonucleotide d(CCAGGCCTGG) with GaBLM results in the formation of only one 1:1 complex in slow exchange on the NMR time scale. Our data indicate that the bithiazole moiety intercalates between the C6*G15 and C7*G14 base pairs, in a similar mode to that reported by earlier studies. Structural implications and comparisons to other metallo-bleomycins are discussed.
Collapse
Affiliation(s)
- Athanasios Papakyriakou
- Institute of Physical Chemistry, NCSR "Demokritos", 153-10 Ag. Paraskevi Attikis, Athens, Greece
| | - Barbara Mouzopoulou
- Institute of Physical Chemistry, NCSR "Demokritos", 153-10 Ag. Paraskevi Attikis, Athens, Greece
| | - Nikos Katsaros
- Institute of Physical Chemistry, NCSR "Demokritos", 153-10 Ag. Paraskevi Attikis, Athens, Greece.
| |
Collapse
|
24
|
Papakyriakou A, Bratsos I, Katsaros N. Structural studies on metallobleomycins: The interaction of Pt(II) and Pd(II) with bleomycin. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2003. [DOI: 10.2298/jsc0305339p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two of the most successful chemotherapeutic agents used in the treatment of several neoplasias are bleomycin and cisplatin. Both drugs attack the DNA leading to the cancer cells death via different mechanisms. In view of the fact that the combination with each other leads to enhanced activity with less sever side effects, we have undertaken NMR studies on the complexes formed between bleomycin and PtII, PdII, cisplatin and transplatin. Herein we present a brief review of the studies on metallobleomycins which were carried out by our lab and others, as an outline of the results obtained using NMR in combination to circular dichroism spectroscopy. Our data indicate that in most cases and under several conditions studied, both metal ions form similar complexes with BLM while more than one species are present in the solution. Structural implications and comparisons with other metallobleomycins are being discussed. .
Collapse
Affiliation(s)
- Athanasios Papakyriakou
- Institute of Physical Chemistry, NCSR 'Demokritos' 153-10 Ag. Paraskevi Attikis, Athens, Greece
| | - Ioannis Bratsos
- Institute of Physical Chemistry, NCSR 'Demokritos' 153-10 Ag. Paraskevi Attikis, Athens, Greece
| | - Nikos Katsaros
- Institute of Physical Chemistry, NCSR 'Demokritos' 153-10 Ag. Paraskevi Attikis, Athens, Greece
| |
Collapse
|
25
|
Coordination of {RuII(NO+)}3+ and {RuII(H2O)}2+ to bleomycin: most favored [RuII(L)(BLM-A2)] structure according to 1H NMR and molecular mechanics methods. Inorganica Chim Acta 2003. [DOI: 10.1016/s0020-1693(02)01174-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Wolkenberg SE, Boger DL. Mechanisms of in situ activation for DNA-targeting antitumor agents. Chem Rev 2002; 102:2477-95. [PMID: 12105933 DOI: 10.1021/cr010046q] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Scott E Wolkenberg
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
27
|
Thomas CJ, McCormick MM, Vialas C, Tao ZF, Leitheiser CJ, Rishel MJ, Wu X, Hecht SM. Alteration of the selectivity of DNA cleavage by a deglycobleomycin analogue containing a trithiazole moiety. J Am Chem Soc 2002; 124:3875-84. [PMID: 11942824 DOI: 10.1021/ja011820u] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bleomycin (BLM) group of antitumor antibiotics effects DNA cleavage in a sequence-selective manner. Previous studies have indicated that the metal-binding and bithiazole moieties of BLM are both involved in the binding of BLM to DNA. The metal-binding domain is normally the predominant structural element in determining the sequence selectivity of DNA binding, but it has been shown that replacement of the bithiazole moiety with a strong DNA binder can alter the sequence selectivity of DNA binding and cleavage. To further explore the mechanism by which BLM and DNA interact, a trithiazole-containing deglycoBLM analogue was synthesized and tested for its ability to relax supercoiled DNA and cleave linear duplex DNA in a sequence-selective fashion. Also studied was cleavage of a novel RNA substrate. Solid-phase synthesis of the trithiazole deglycoBLM A(5) analogue was achieved using a TentaGel resin containing a Dde linker and elaborated from five key intermediates. The ability of the resulting BLM analogue to relax supercoiled DNA was largely unaffected by introduction of the additional thiazole moiety. Remarkably, while no new sites of DNA cleavage were observed for this analogue, there was a strong preference for cleavage at two 5'-GT-3' sites when a 5'-(32)P end-labeled DNA duplex was used as a substrate. The alteration of sequence selectivity of cleavage was accompanied by some decrease in the potency of DNA cleavage, albeit without a dramatic diminution. In common with BLM, the trithiazole analogue of deglycoBLM A(5) effected both hydrolytic cleavage of RNA in the absence of added metal ion and oxidative cleavage in the presence of Fe(2+) and O(2). In comparison with BLM A(5), the relative efficiencies of hydrolytic cleavage at individual sites were altered.
Collapse
Affiliation(s)
- Craig J Thomas
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rojo J, Morales JC, Penadés S. Carbohydrate-Carbohydrate Interactions in Biological and Model Systems. HOST-GUEST CHEMISTRY 2002. [DOI: 10.1007/3-540-45010-6_2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Kurosaki H, Hayashi K, Goto M, Shionoya M, Kimura E. Synthesis and characterization of the zinc(II) complex of a bleomycin analogue: a unique polymeric 2-[((2-(4-imidazoyl)ethyl)amino)carbony]-6-[((2-amino-2-methylpropyl)amino)methyl]pyridine zinc(II) nitrate complex. INORG CHEM COMMUN 2000. [DOI: 10.1016/s1387-7003(00)00025-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Abstract
A family of non-coding sequences in the mRNA (iso-IREs [iron-responsive elements]) regulate synthesis of key proteins in animal iron and oxidative metabolism such as ferritin and mitochondrial aconitase. Differential recognition between iso-IREs and iso-IRPs (iron regulatory proteins) regulates the translation or degradation of the IRE-containing mRNAs. IREs are hairpin loop structures with an internal loop/bulge or bulge that influence the binding of the iso-IRPs. The iso-IRPs have sequence homology to the aconitases and at least one IRP can be converted to an aconitase. Signals that target the iso-IRE/iso-IRP interactions in mRNA include environmental iron, O2, nitric oxide, H2O2, ascorbate, growth factors, and protein kinase C-dependent IRP phosphorylation. Iso-IRE structural specificity suggests a means of pharmacologically targeting mRNA function with chemicals such as Fe-bleomycin and other transition metal complexes that could be extended to other mRNAs with specific structures. With the iso-IRE/iso-IRP system, nature has evolved coordinated combinatorial control of iron and oxygen metabolism that may exemplify control of mRNAs in other metabolic pathways, viral reproduction, and oncogenesis.
Collapse
Affiliation(s)
- E C Theil
- Children's Hospital Oakland Research Institute, CA 94609, USA.
| |
Collapse
|
31
|
Claussen CA, Long EC. Nucleic Acid recognition by metal complexes of bleomycin. Chem Rev 1999; 99:2797-816. [PMID: 11749501 DOI: 10.1021/cr980449z] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C A Claussen
- Department of Chemistry, Purdue School of Science, Indiana University Purdue University-Indianapolis, Indianapolis, Indiana 46202-3274
| | | |
Collapse
|
32
|
Kurosaki H, Hayashi K, Ishikawa Y, Goto M, Inada K, Taniguchi I, Shionoya M, Kimura E. New Robust Bleomycin Analogues: Synthesis, Spectroscopy, and Crystal Structures of the Copper(II) Complexes. Inorg Chem 1999; 38:2824-2832. [PMID: 11671027 DOI: 10.1021/ic980510i] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two new bleomycin analogues, 2-[((2-(4-imidazolyl)ethyl)amino)carbonyl]-6-[((2-amino-2-methylpropyl)amino)methyl]pyridine = L(3)() and 2-[((2-(4-imidazolyl)ethyl)amino)carbonyl]-6-[((2-amino-1,1,2-trimethylpropyl)amino)methyl]pyridine = L(4)(), were synthesized in order to create air-stable ligands of their Cu(I) (and Fe(II)) complexes. The protonation constants (log K(n)()) of the ligands at 25 degrees C and I = 0.1 M NaNO(3) were 9.9, 6.9, and 5.2 for L(3)() and 10.0, 6.7, and 3.9 for L(4)(). The complexation of the triprotonated L(3)() and L(4)() with Cu(II) started at pH < 5 to yield 4-coordinate [Cu(II)(H(-)(1)L).H(+)](2+) complexes, 4 and 6, respectively, followed by formation of square-pyramidal [Cu(II)(H(-)(1)L)](+) complexes, 5 and 7, with pK(a) values of 5.6 for 5 and 5.9 for 7. The complexation constants, log K(Cu)()II(H)()-1(L), were 8.9 for [Cu(II)(H(-)(1)L(3))](+), 5, and 8.6 for [Cu(II)(H(-)(1)L(4))](+), 7, respectively. The structures of [Cu(II)(H(-)(1)L(3))]ClO(4) (5.ClO(4)) and [Cu(II)(H(-)(1)L(4))]BF(4) (7.BF(4)) were determined by X-ray crystallography. Crystal data for 5.ClO(4): monoclinic, space group P2(1)/n (No. 14), a = 13.978(6) Å, b = 8.103(3) Å, c = 18.037(5) Å, beta = 98.61(3) degrees, V = 2019(1) Å(3), Z = 4, R = 0.053, and R(w) = 0.044 for 2996 [I > 3sigma(I)] reflections. Crystal data for 7.BF(4): monoclinic, space group P2(1)/n (No. 14), a = 16.092 (4) Å, b = 7.974(4) Å, c = 16.819(2) Å, beta = 99.64(1) degrees, V = 2127(1) Å(3), Z = 4, R = 0.040, and R(w) = 0.025 for 1633 [I > 4sigma(I)] reflections. The coordination geometry around the copper was a distorted square-pyramid in 5, while that of 7 was the intermediate between a trigonal-bipyramid and a square-pyramid. The distortion is influenced strongly by the number of the methyl group. The EPR spectral data for both copper(II) complexes were consistent with the retention of the solid-state structure in frozen DMF/MeOH (1:1) solution at 77 K. The visible absorption spectra of 10% DMF/aqueous solutions (pH 9.5) of 5 and 7 at I = 0.1 M NaNO(3) showed absorption maxima at 646 nm with a shoulder at ca. 900 nm for 5 and at 658 and 888 nm for 7. The red-shift of 7 by ca. 12 nm relative to 5 reflects the distortion toward the trigonal-bipyramidal geometry of 7 in solution. Both complexes displayed irreversible redox behavior in DMF at I = 0.1 M tetra(n-butyl)ammonium tetrafluoroborate. The anodic and cathodic peak potentials obtained by cyclic voltammetry for 5 and 7 were -0.14 and -0.76 V for 5 and -0.17 and -0.80 for 7 vs Ag/AgCl. The cathodic potentials of copper(II) complexes were shifted toward the anodic direction by ca. 20-60 mV compared to the nonsubstituted 5-coordinate, [Cu(II)(H(-)(1)L(1))](+) complex, 16 (-0.82 V vs Ag/AgCl). The Cu(I) complexes (9and 10) are air-oxidized to the corresponding Cu(II) complexes, 5 and 7, respectively.
Collapse
Affiliation(s)
- Hiromasa Kurosaki
- Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862, Japan, Department of Applied Chemistry and Biochemistry, Kumamoto University, Kurokami 2-39-1, Kumamoto 860, Japan, Institute for Molecular Science, Myodaiji, Okazaki 444, Japan, and Department of Medicinal Chemistry, School of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Boger DL, Ramsey TM, Cai H, Hoehn ST, Stubbe J. Definition of the Effect and Role of the Bleomycin A2 Valerate Substituents: Preorganization of a Rigid, Compact Conformation Implicated in Sequence-Selective DNA Cleavage. J Am Chem Soc 1998. [DOI: 10.1021/ja9816640] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dale L. Boger
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Timothy M. Ramsey
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Hui Cai
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Silvia T. Hoehn
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - JoAnne Stubbe
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
35
|
Boger DL, Ramsey TM, Cai H, Hoehn ST, Stubbe J. A Systematic Evaluation of the Bleomycin A2 l-Threonine Side Chain: Its Role in Preorganization of a Compact Conformation Implicated in Sequence-Selective DNA Cleavage. J Am Chem Soc 1998. [DOI: 10.1021/ja9816638] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dale L. Boger
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Timothy M. Ramsey
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Hui Cai
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Silvia T. Hoehn
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - JoAnne Stubbe
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|