1
|
Diab A, Dickerson H, Al Musaimi O. Targeting the Heart of Mycobacterium: Advances in Anti-Tubercular Agents Disrupting Cell Wall Biosynthesis. Pharmaceuticals (Basel) 2025; 18:70. [PMID: 39861133 PMCID: PMC11768153 DOI: 10.3390/ph18010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Mycobacterium tuberculosis infections continue to pose a significant global health challenge, particularly due to the rise of multidrug-resistant strains, random mycobacterial mutations, and the complications associated with short-term antibiotic regimens. Currently, five approved drugs target cell wall biosynthesis in Mycobacterium tuberculosis. This review provides a comprehensive analysis of these drugs and their molecular mechanisms. Isoniazid, thioamides, and delamanid primarily disrupt mycolic acid synthesis, with recent evidence indicating that delamanid also inhibits decaprenylphosphoryl-β-D-ribose-2-epimerase, thereby impairing arabinogalactan biosynthesis. Cycloserine remains the sole approved drug that inhibits peptidoglycan synthesis, the foundational layer of the mycobacterial cell wall. Furthermore, ethambutol interferes with arabinogalactan synthesis by targeting arabinosyl transferase enzymes, particularly embB- and embC-encoded variants. Beyond these, six promising molecules currently in Phase II clinical trials are designed to target arabinan synthesis pathways, sutezolid, TBA 7371, OPC-167832, SQ109, and both benzothiazinone derivatives BTZ043 and PBTZ169, highlighting advancements in the development of cell wall-targeting therapies.
Collapse
Affiliation(s)
- Ahmad Diab
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Henry Dickerson
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
2
|
de Chiara C, Prosser GA, Ogrodowicz R, de Carvalho LPS. Structure of the d-Cycloserine-Resistant Variant D322N of Alanine Racemase from Mycobacterium tuberculosis. ACS BIO & MED CHEM AU 2023; 3:233-239. [PMID: 37363078 PMCID: PMC10288493 DOI: 10.1021/acsbiomedchemau.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/28/2023]
Abstract
Alanine racemase (Alr) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the racemization of l-alanine to d-alanine. Alr is one of the two targets of the broad-spectrum antibiotic d-cycloserine (DCS), a structural analogue of d-alanine. Despite being an essential component of regimens used to treat multi- and extensively drug-resistant tuberculosis for almost seven decades, resistance to DCS has not been observed in patients. We previously demonstrated that DCS evades resistance due to an ultralow rate of emergence of mutations. Yet, we identified a single polymorphism (converting Asp322 to Asn) in the alr gene, which arose in 8 out of 11 independent variants identified and that confers resistance. Here, we present the crystal structure of the Alr variant D322N in both the free and DCS-inactivated forms and the characterization of its DCS inactivation mechanism by UV-visible and fluorescence spectroscopy. Comparison of these results with those obtained with wild-type Alr reveals the structural basis of the 240-fold reduced inhibition observed in Alr D322N.
Collapse
Affiliation(s)
- Cesira de Chiara
- Mycobacterial
Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Gareth A. Prosser
- Mycobacterial
Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Roksana Ogrodowicz
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London, NW1 1AT, United
Kingdom
| | - Luiz P. S. de Carvalho
- Mycobacterial
Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
- Department
of Chemistry, The Herbert Wertheim UF Scripps
Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| |
Collapse
|
3
|
Johnson CM, Fast W. On the kinetic mechanism of dimethylarginine dimethylaminohydrolase. Bioorg Med Chem 2022; 66:116816. [PMID: 35598478 DOI: 10.1016/j.bmc.2022.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Dimethylarginine dimethylaminohydrolase (DDAH, EC 3.5.3.18) catalyzes the hydrolysis of asymmetric Nω,Nω-dimethyl-l-arginine (ADMA), an endogenous inhibitor of human nitric oxide synthases. The active-site cysteine residue has been proposed to serve as the catalytic nucleophile, forming an S-alkylthiourea reaction intermediate, and serving as a target for covalent inhibitors. Inhibition can lead to ADMA accumulation and downstream inhibition of nitric oxide production. Prior studies have provided experimental evidence for formation of this covalent adduct but have not characterized it kinetically. Here, rapid quench-flow is used with ADMA and the DDAH from Pseudomonas aeruginosa to determine the rate constants for formation (k2 = 17 ± 2 s-1) and decay (k3 = 1.5 ± 0.1 s-1) of the covalent S-alkylthiourea adduct. A minimal kinetic mechanism for DDAH is proposed that supports the kinetic competence of this species as a covalent reaction intermediate and assigns the rate-limiting step in substrate turnover as hydrolysis of this intermediate. This work helps elucidate the different reactivities of S-alkylthiourea intermediates found among the mechanistically diverse pentein superfamily of guanidine-modifying enzymes and provides information useful for inhibitor development.
Collapse
Affiliation(s)
- Corey M Johnson
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA; Department of Chemistry and Biochemistry, Howard College of Arts and Sciences, Samford University, Birmingham, AL 35229, USA
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Kumar R, Singh N, Chauhan A, Kumar M, Bhatta RS, Singh SK. Mycobacterium tuberculosis survival and biofilm formation studies: effect of D-amino acids, D-cycloserine and its components. J Antibiot (Tokyo) 2022; 75:472-479. [PMID: 35650279 DOI: 10.1038/s41429-022-00534-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022]
Abstract
D-amino acids play an important role in cell wall peptidoglycan biosynthesis. Mycobacterium tuberculosis D-amino acid oxidase deletion led to reduced biofilm-forming ability. Other recent studies also suggest that the accumulation of D-amino acids blocks biofilm formation and could also disperse pre-formed biofilm. Biofilms are communities of bacterial cells protected by extracellular matrix and harbor drug-tolerant as well as persistent bacteria. In Mycobacterium tuberculosis, biofilm formation or its inhibition by D-amino acids is yet to be tested. In the present study, we used selected D-amino acids to study their role in the prevention of biofilm formation and also if D-cycloserine's activity was due to presence of D-Serine as a metabolite. It was observed that D-serine limits biofilm formation in Mycobacterium tuberculosis H37Ra (Mtb-Ra), but it shows no effect on pre-formed biofilm. Also, D-cycloserine and its metabolic product, hydroxylamine, individually and in combination, with D-Serine, limit biofilm formation in Mtb-Ra and also disrupts existing biofilm. In summary, we demonstrated that D-alanine, D-valine, D-phenylalanine, D-serine, and D-threonine had no disruptive effect on pre-formed biofilm of Mtb-Ra, either individually or in combination, and D-cycloserine and its metabolite hydroxylamine have potent anti-biofilm activity.
Collapse
Affiliation(s)
- Ram Kumar
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067, India
| | - Nirbhay Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067, India
| | - Anu Chauhan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Kumar
- Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067, India.,Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sudheer Kumar Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Nakamura R, Ogawa S, Takahashi Y, Fujishiro T. Cycloserine enantiomers inhibit PLP‐dependent cysteine desulfurase SufS via distinct mechanisms. FEBS J 2022; 289:5947-5970. [DOI: 10.1111/febs.16455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Ryosuke Nakamura
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| | - Shoko Ogawa
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| | - Yasuhiro Takahashi
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| |
Collapse
|
6
|
D-Cycloserine destruction by alanine racemase and the limit of irreversible inhibition. Nat Chem Biol 2020; 16:686-694. [PMID: 32203411 PMCID: PMC7246083 DOI: 10.1038/s41589-020-0498-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/06/2020] [Indexed: 11/08/2022]
Abstract
The broad-spectrum antibiotic D-cycloserine (DCS) is a key component of regimens used to treat multi- and extensively drug-resistant tuberculosis. DCS, a structural analog of D-alanine, binds to and inactivates two essential enzymes involved in peptidoglycan biosynthesis, alanine racemase (Alr) and D-Ala:D-Ala ligase. Inactivation of Alr is thought to proceed via a mechanism-based irreversible route, forming an adduct with the pyridoxal 5'-phosphate cofactor, leading to bacterial death. Inconsistent with this hypothesis, Mycobacterium tuberculosis Alr activity can be detected after exposure to clinically relevant DCS concentrations. To address this paradox, we investigated the chemical mechanism of Alr inhibition by DCS. Inhibition of M. tuberculosis Alr and other Alrs is reversible, mechanistically revealed by a previously unidentified DCS-adduct hydrolysis. Dissociation and subsequent rearrangement to a stable substituted oxime explains Alr reactivation in the cellular milieu. This knowledge provides a novel route for discovery of improved Alr inhibitors against M. tuberculosis and other bacteria.
Collapse
|
7
|
Favrot L, Amorim Franco TM, Blanchard JS. Biochemical Characterization of the Mycobacterium smegmatis Threonine Deaminase. Biochemistry 2018; 57:6003-6012. [PMID: 30226377 DOI: 10.1021/acs.biochem.8b00871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The biosynthesis of branched-chain amino acids or BCAAs (l-isoleucine, l-leucine, and l-valine) is essential in eubacteria, but mammals are branched-chain amino acid auxotrophs, making the enzymes in the pathway excellent targets for antibacterial drug development. The biosynthesis of l-isoleucine, l-leucine, and l-valine is very efficient, requiring only eight enzymes. Threonine dehydratase (TD), a pyridoxal 5'-phosphate (PLP)-dependent enzyme encoded by the ilvA gene, is the enzyme responsible for the conversion of l-threonine (l-Thr) to α-ketobutyrate, ammonia, and water, which is the first step in the biosynthesis of l-isoleucine. We have cloned, expressed, and biochemically characterized the reaction catalyzed by Mycobacterium smegmatis TD (abbreviated as MsIlvA) using steady-state kinetics and kinetic isotope effects. We show here that in addition to l-threonine, l-allo-threonine and l-serine are also used as substrates by TD, and all exhibit sigmoidal, non-Michaelis-Menten kinetics. Curiously, β-chloro-l-alanine was also a substrate rather than an inhibitor as expected. The enzymatic activity of TD is sensitive to the presence of allosteric regulators, including the activator l-valine or the end product feedback inhibitor of the BCAA pathway in which TD is involved, l-isoleucine. Primary deuterium kinetic isotopes are small, suggesting Cα proton abstraction is only partially rate-limiting. Solvent kinetic isotopes were significantly larger, indicating that a proton transfer occurring during the reaction is also partially rate-limiting. Finally, we demonstrate that l-cycloserine, a general inhibitor of PLP-dependent enzymes, is an excellent inhibitor of threonine deaminase.
Collapse
Affiliation(s)
- Lorenza Favrot
- Department of Biochemistry , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , United States
| | - Tathyana M Amorim Franco
- Department of Biochemistry , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , United States
| | - John S Blanchard
- Department of Biochemistry , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , United States
| |
Collapse
|
8
|
Silverman RB. Design and Mechanism of GABA Aminotransferase Inactivators. Treatments for Epilepsies and Addictions. Chem Rev 2018; 118:4037-4070. [PMID: 29569907 PMCID: PMC8459698 DOI: 10.1021/acs.chemrev.8b00009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
When the brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) diminishes below a threshold level, the excess neuronal excitation can lead to convulsions. This imbalance in neurotransmission can be corrected by inhibition of the enzyme γ-aminobutyric acid aminotransferase (GABA-AT), which catalyzes the conversion of GABA to the excitatory neurotransmitter l-glutamic acid. It also has been found that raising GABA levels can antagonize the rapid elevation and release of dopamine in the nucleus accumbens, which is responsible for the reward response in addiction. Therefore, the design of new inhibitors of GABA-AT, which increases brain GABA levels, is an important approach to new treatments for epilepsy and addiction. This review summarizes findings over the last 40 or so years of mechanism-based inactivators (unreactive compounds that require the target enzyme to catalyze their conversion to the inactivating species, which inactivate the enzyme prior to their release) of GABA-AT with emphasis on their catalytic mechanisms of inactivation, presented according to organic chemical mechanism, with minimal pharmacology, except where important for activity in epilepsy and addiction. Patents, abstracts, and conference proceedings are not covered in this review. The inactivation mechanisms described here can be applied to the inactivations of a wide variety of unrelated enzymes.
Collapse
Affiliation(s)
- Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, 60208-3113, United States
| |
Collapse
|
9
|
Amorim Franco TM, Favrot L, Vergnolle O, Blanchard JS. Mechanism-Based Inhibition of the Mycobacterium tuberculosis Branched-Chain Aminotransferase by d- and l-Cycloserine. ACS Chem Biol 2017; 12:1235-1244. [PMID: 28272868 DOI: 10.1021/acschembio.7b00142] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The branched-chain aminotransferase is a pyridoxal 5'-phosphate (PLP)-dependent enzyme responsible for the final step in the biosynthesis of all three branched-chain amino acids, l-leucine, l-isoleucine, and l-valine, in bacteria. We have investigated the mechanism of inactivation of the branched-chain aminotransferase from Mycobacterium tuberculosis (MtIlvE) by d- and l-cycloserine. d-Cycloserine is currently used only in the treatment of multidrug-drug-resistant tuberculosis. Our results show a time- and concentration-dependent inactivation of MtIlvE by both isomers, with l-cycloserine being a 40-fold better inhibitor of the enzyme. Minimum inhibitory concentration (MIC) studies revealed that l-cycloserine is a 10-fold better inhibitor of Mycobacterium tuberculosis growth than d-cycloserine. In addition, we have crystallized the MtIlvE-d-cycloserine inhibited enzyme, determining the structure to 1.7 Å. The structure of the covalent d-cycloserine-PMP adduct bound to MtIlvE reveals that the d-cycloserine ring is planar and aromatic, as previously observed for other enzyme systems. Mass spectrometry reveals that both the d-cycloserine- and l-cycloserine-PMP complexes have the same mass, and are likely to be the same aromatized, isoxazole product. However, the kinetics of formation of the MtIlvE d-cycloserine-PMP and MtIlvE l-cycloserine-PMP adducts are quite different. While the kinetics of the formation of the MtIlvE d-cycloserine-PMP complex can be fit to a single exponential, the formation of the MtIlvE l-cycloserine-PMP complex occurs in two steps. We propose a chemical mechanism for the inactivation of d- and l-cycloserine which suggests a stereochemically determined structural role for the differing kinetics of inactivation. These results demonstrate that the mechanism of action of d-cycloserine's activity against M. tuberculosis may be more complicated than previously thought and that d-cycloserine may compromise the in vivo activity of multiple PLP-dependent enzymes, including MtIlvE.
Collapse
Affiliation(s)
- Tathyana Mar Amorim Franco
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Lorenza Favrot
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S. Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
10
|
Al-Hazmi F, Al-Ghamdi A, Beall GW, Bronstein LM, Mahmoud WE. Synthesis and characterization of 4-amino-3-isoxazolidinone intercalated NiAl-LDH for nanocarrier applications. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Tamil Nadu, India
| | - Unni Jayaram
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Tamil Nadu, India
| |
Collapse
|
12
|
Kuznetsov NA, Faleev NG, Kuznetsova AA, Morozova EA, Revtovich SV, Anufrieva NV, Nikulin AD, Fedorova OS, Demidkina TV. Pre-steady-state kinetic and structural analysis of interaction of methionine γ-lyase from Citrobacter freundii with inhibitors. J Biol Chem 2014; 290:671-81. [PMID: 25398880 DOI: 10.1074/jbc.m114.586511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090
| | | | - Alexandra A Kuznetsova
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Svetlana V Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Natalya V Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Alexei D Nikulin
- the Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Olga S Fedorova
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090,
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| |
Collapse
|
13
|
Shi C, Aldrich CC. Design and synthesis of potential mechanism-based inhibitors of the aminotransferase BioA involved in biotin biosynthesis. J Org Chem 2012; 77:6051-8. [PMID: 22724679 DOI: 10.1021/jo3008435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BioA, a pyridoxal 5'-phosphate (PLP) dependent aminotransferase, catalyzes the second step of biotin biosynthesis, converting 7-keto-8-aminopelargonic acid (KAPA) into 7,8-diaminopelargonic acid (DAPA). Amiclenomycin (ACM) isolated from cultures of different Streptomyces strains is a potent mechanism-based inhibitor of BioA that operates via an aromatization mechanism, irreversibly labeling the PLP cofactor. However, ACM is plagued by inherent chemical stability. Herein we describe the synthesis of four inhibitors, inspired by ACM but containing an allylic amine as the chemical warhead, designed to both improve stability and operate via a complementary Michael addition-pathway upon enzymatic oxidation of the allylic amine substrate to an enimine. Acyclic analogue M-1 contains a terminal olefin as the pro-Michael acceptor. The synthesis of M-1 features an alkyne-zipper reaction and the Overman rearrangement as key synthetic operations. The cyclic analogues M-2/3/4 contain either an endocyclic or exocyclic olefin as the pro-Michael acceptor. These were all prepared using a common strategy employing DIBAL reduction of a precursor bicyclic lactam, followed by in situ Horner-Wadsworth-Emmons (HWE) olefination as the key synthetic steps.
Collapse
Affiliation(s)
- Ce Shi
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
14
|
Pesek JJ, Matyska MT, Dang A. Analysis of cycloserine and related compounds using aqueous normal phase chromatography/mass spectrometry. J Pharm Biomed Anal 2012; 64-65:72-6. [DOI: 10.1016/j.jpba.2012.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
|
15
|
Dounay AB, Anderson M, Bechle BM, Campbell BM, Claffey MM, Evdokimov A, Evrard E, Fonseca KR, Gan X, Ghosh S, Hayward MM, Horner W, Kim JY, McAllister LA, Pandit J, Paradis V, Parikh VD, Reese MR, Rong S, Salafia MA, Schuyten K, Strick CA, Tuttle JB, Valentine J, Wang H, Zawadzke LE, Verhoest PR. Discovery of Brain-Penetrant, Irreversible Kynurenine Aminotransferase II Inhibitors for Schizophrenia. ACS Med Chem Lett 2012; 3:187-92. [PMID: 24900455 DOI: 10.1021/ml200204m] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/16/2012] [Indexed: 12/27/2022] Open
Abstract
Kynurenine aminotransferase (KAT) II has been identified as a potential new target for the treatment of cognitive impairment associated with schizophrenia and other psychiatric disorders. Following a high-throughput screen, cyclic hydroxamic acid PF-04859989 was identified as a potent and selective inhibitor of human and rat KAT II. An X-ray crystal structure and (13)C NMR studies of PF-04859989 bound to KAT II have demonstrated that this compound forms a covalent adduct with the enzyme cofactor, pyridoxal phosphate (PLP), in the active site. In vivo pharmacokinetic and efficacy studies in rat show that PF-04859989 is a brain-penetrant, irreversible inhibitor and is capable of reducing brain kynurenic acid by 50% at a dose of 10 mg/kg (sc). Preliminary structure-activity relationship investigations have been completed and have identified the positions on this scaffold best suited to modification for further optimization of this novel series of KAT II inhibitors.
Collapse
Affiliation(s)
- Amy B. Dounay
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Marie Anderson
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Bruce M. Bechle
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Brian M. Campbell
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Michelle M. Claffey
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Artem Evdokimov
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Edelweiss Evrard
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Kari R. Fonseca
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Xinmin Gan
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Somraj Ghosh
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Matthew M. Hayward
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Weldon Horner
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Ji-Young Kim
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Laura A. McAllister
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Jayvardhan Pandit
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Vanessa Paradis
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Vinod D. Parikh
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Matthew R. Reese
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - SuoBao Rong
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Michelle A. Salafia
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Katherine Schuyten
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Christine A. Strick
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Jamison B. Tuttle
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - James Valentine
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Hong Wang
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Laura E. Zawadzke
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| | - Patrick R. Verhoest
- Pfizer Worldwide Research and Development, Neuroscience Chemistry, Eastern Point Road,
Groton, Connecticut 06340, United States
| |
Collapse
|
16
|
Shi C, Geders TW, Park SW, Wilson DJ, Boshoff HI, Orisadipe A, Barry CE, Schnappinger D, Finzel BC, Aldrich CC. Mechanism-based inactivation by aromatization of the transaminase BioA involved in biotin biosynthesis in Mycobaterium tuberculosis. J Am Chem Soc 2011; 133:18194-201. [PMID: 21988601 PMCID: PMC3222238 DOI: 10.1021/ja204036t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BioA catalyzes the second step of biotin biosynthesis, and this enzyme represents a potential target to develop new antitubercular agents. Herein we report the design, synthesis, and biochemical characterization of a mechanism-based inhibitor (1) featuring a 3,6-dihydropyrid-2-one heterocycle that covalently modifies the pyridoxal 5'-phosphate (PLP) cofactor of BioA through aromatization. The structure of the PLP adduct was confirmed by MS/MS and X-ray crystallography at 1.94 Å resolution. Inactivation of BioA by 1 was time- and concentration-dependent and protected by substrate. We used a conditional knock-down mutant of M. tuberculosis to demonstrate the antitubercular activity of 1 correlated with BioA expression, and these results provide support for the designed mechanism of action.
Collapse
Affiliation(s)
- Ce Shi
- Center for Drug Design, Academic Health Center, University of Minnesota, MN, 55455, United States
| | - Todd W. Geders
- Department of Medicinal Chemistry, University of Minnesota, MN, 55455, United States
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, United States
| | - Daniel J. Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, MN, 55455, United States
| | - Helena I. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
| | - Abayomi Orisadipe
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, United States
| | - Barry C. Finzel
- Department of Medicinal Chemistry, University of Minnesota, MN, 55455, United States
| | - Courtney C. Aldrich
- Center for Drug Design, Academic Health Center, University of Minnesota, MN, 55455, United States
| |
Collapse
|
17
|
Liu D, Pozharski E, Fu M, Silverman RB, Ringe D. Mechanism of inactivation of Escherichia coli aspartate aminotransferase by (S)-4-amino-4,5-dihydro-2-furancarboxylic acid . Biochemistry 2010; 49:10507-15. [PMID: 21033689 PMCID: PMC3013228 DOI: 10.1021/bi101325z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a potential drug to treat neurological diseases, the mechanism-based inhibitor (S)-4-amino-4,5-dihydro-2-furancarboxylic acid (S-ADFA) has been found to inhibit the γ-aminobutyric acid aminotransferase (GABA-AT) reaction. To circumvent the difficulties in structural studies of a S-ADFA-enzyme complex using GABA-AT, l-aspartate aminotransferase (l-AspAT) from Escherichia coli was used as a model PLP-dependent enzyme. Crystal structures of the E. coli aspartate aminotransferase with S-ADFA bound to the active site were obtained via cocrystallization at pH 7.5 and 8. The complex structures suggest that S-ADFA inhibits the transamination reaction by forming adducts with the catalytic lysine 246 via a covalent bond while producing 1 equiv of pyridoxamine 5'-phosphate (PMP). Based on the structures, formation of the K246-S-ADFA adducts requires a specific initial binding configuration of S-ADFA in the l-AspAT active site, as well as deprotonation of the ε-amino group of lysine 246 after the formation of the quinonoid and/or ketimine intermediate in the overall inactivation reaction.
Collapse
Affiliation(s)
- Dali Liu
- Departments of Biochemistry and Chemistry, and Rosenstiel Basic Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Edwin Pozharski
- Departments of Biochemistry and Chemistry, and Rosenstiel Basic Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Mengmeng Fu
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, the Center for Molecular Innovation and Drug Discovery and Chemistry of Life Processes Institute, Northwestern University, and Evanston, Illinois 60208-3113
| | - Richard B. Silverman
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, the Center for Molecular Innovation and Drug Discovery and Chemistry of Life Processes Institute, Northwestern University, and Evanston, Illinois 60208-3113
| | - Dagmar Ringe
- Departments of Biochemistry and Chemistry, and Rosenstiel Basic Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
18
|
Lowther J, Yard BA, Johnson KA, Carter LG, Bhat VT, Raman MCC, Clarke DJ, Ramakers B, McMahon SA, Naismith JH, Campopiano DJ. Inhibition of the PLP-dependent enzyme serine palmitoyltransferase by cycloserine: evidence for a novel decarboxylative mechanism of inactivation. MOLECULAR BIOSYSTEMS 2010; 6:1682-93. [PMID: 20445930 PMCID: PMC3670083 DOI: 10.1039/c003743e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cycloserine (CS, 4-amino-3-isoxazolidone) is a cyclic amino acid mimic that is known to inhibit many essential pyridoxal 5'-phosphate (PLP)-dependent enzymes. Two CS enantiomers are known; D-cycloserine (DCS, also known as Seromycin) is a natural product that is used to treat resistant Mycobacterium tuberculosis infections as well as neurological disorders since it is a potent NMDA receptor agonist, and L-cycloserine (LCS) is a synthetic enantiomer whose usefulness as a drug has been hampered by its inherent toxicity arising through inhibition of sphingolipid metabolism. Previous studies on various PLP-dependent enzymes revealed a common mechanism of inhibition by both enantiomers of CS; the PLP cofactor is disabled by forming a stable 3-hydroxyisoxazole/pyridoxamine 5'-phosphate (PMP) adduct at the active site where the cycloserine ring remains intact. Here we describe a novel mechanism of CS inactivation of the PLP-dependent enzyme serine palmitoyltransferase (SPT) from Sphingomonas paucimobilis. SPT catalyses the condensation of l-serine and palmitoyl-CoA, the first step in the de novo sphingolipid biosynthetic pathway. We have used a range of kinetic, spectroscopic and structural techniques to postulate that both LCS and DCS inactivate SPT by transamination to form a free pyridoxamine 5'-phosphate (PMP) and beta-aminooxyacetaldehyde that remain bound at the active site. We suggest this occurs by ring opening of the cycloserine ring followed by decarboxylation. Enzyme kinetics show that inhibition is reversed by incubation with excess PLP and that LCS is a more effective SPT inhibitor than DCS. UV-visible spectroscopic data, combined with site-directed mutagenesis, suggest that a mobile Arg(378) residue is involved in cycloserine inactivation of SPT.
Collapse
Affiliation(s)
- Jonathan Lowther
- EaStChem, School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lepore BW, Liu D, Peng Y, Fu M, Yasuda C, Manning JM, Silverman RB, Ringe D. Chiral discrimination among aminotransferases: inactivation by 4-amino-4,5-dihydrothiophenecarboxylic acid. Biochemistry 2010; 49:3138-47. [PMID: 20192272 DOI: 10.1021/bi902052x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanism-based inhibitors such as cycloserine and gabaculine can inactivate aminotransferases via reactions of the compounds with the pyridoxal phosphate cofactor forming an irreversible adduct. The reaction is chirally specific in that any one enzyme usually only recognizes one enantiomer of the inactivator. For instance, l-aspartate aminotransferase (l-AspAT) is inactivated by 4-amino-4,5-dihydro-2-thiophenecarboxylic acid (ADTA), however, only by the S-isomer. We have now shown that d-amino acid aminotransferase (d-a-AT) is irreversibly inactivated by the R-isomer of the same compound. The X-ray crystal structure (PDB code: 3LQS ) of the inactivated enzyme shows that in the product the enzyme no longer makes a Schiff base linkage to the pyridoxal 5'-phosphate (PLP) cofactor, and instead the compound has formed a derivative of the cofactor. The adduct is similar to that formed between d-cycloserine and d-a-AT or alanine racemase (Ala-Rac) in that the thiophene ring of R-ADTA is intact and seems to be aromatic. The plane of the ring is rotated by nearly 90 degrees with respect to the plane of the pyridine ring of the cofactor, in comparison with the enzyme inactivated by cycloserine. Based on the structure of the product, the mechanism of inactivation most probably involves a transamination followed by aromatization to form an aromatic thiophene ring.
Collapse
Affiliation(s)
- Bryan W Lepore
- Graduate Program in Bioorganic Chemistry, Graduate Program in Biophysics and Biochemistry, Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu D, Pozharski E, Lepore BW, Fu M, Silverman RB, Petsko GA, Ringe D. Inactivation of Escherichia coli l-Aspartate Aminotransferase by (S)-4-Amino-4,5-dihydro-2-thiophenecarboxylic Acid Reveals “A Tale of Two Mechanisms”,. Biochemistry 2007; 46:10517-27. [PMID: 17713924 DOI: 10.1021/bi700663n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a mechanism-based inactivator of PLP-enzymes, (S)-4-amino-4,5-dihydro-2-thiophenecarboxylic acid (SADTA) was cocrystallized with Escherichia coli aspartate aminotransferase (l-AspAT) at a series of pH values ranging from 6 to 8. Five structural models with high resolution (1.4-1.85 A) were obtained for l-AspAT-SADTA complexes at pH 6.0, 6.5, 7.0, 7.5, and 8.0. Electron densities of the models showed that two different adducts had formed in the active sites. One adduct was formed from SADTA covalently linked to pyridoxal 5'-phosphate (PLP) while the other adduct was formed with the inhibitor covalently linked to Lysine246,1 the active site lysine. Moreover, there is a strong indication based on the electron densities that the occurrence of the two adducts is pH dependent. We conclude that SADTA inactivates l-AspAT via two different mechanisms based on the binding direction of the inactivator. Additionally, the structural models also show pH dependence of the protein structure itself, which provided detailed mechanistic implications for l-AspAT.
Collapse
Affiliation(s)
- Dali Liu
- Department of Biochemistry and Chemistry and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang Z, Yuan H, Nikolic D, Van Breemen RB, Silverman RB. (+/-)-(1S,2R,5S)-5-Amino-2-fluorocyclohex-3-enecarboxylic acid. A potent GABA aminotransferase inactivator that irreversibly inhibits via an elimination-aromatization pathway. Biochemistry 2006; 45:14513-22. [PMID: 17128990 PMCID: PMC2570588 DOI: 10.1021/bi061592m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibition of gamma-aminobutyric acid aminotransferase (GABA-AT) increases the concentration of GABA, an inhibitory neurotransmitter in human brain, which could have therapeutic applications for a variety of neurological diseases, including epilepsy. On the basis of studies of several previously synthesized conformationally restricted GABA-AT inhibitors, (+/-)-(1S,2R,5S)-5-amino-2-fluorocyclohex-3-enecarboxylic acid (12) was designed as a mechanism-based inactivator. This compound was shown to irreversibly inhibit GABA-AT; substrate protects the enzyme from inactivation. Mechanistic experiments demonstrated the loss of one fluoride ion per active site during inactivation and the formation of N-m-carboxyphenylpyridoxamine 5'-phosphate (26), the same product generated by inactivation of GABA-AT by gabaculine (8). An elimination-aromatization mechanism is proposed to account for these results.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Chemistry, Center for Drug Discovery and Chemical Biology, Northwestern University, Evanston, Illinois 60208-3113, USA
| | | | | | | | | |
Collapse
|
22
|
Mann S, Ploux O. 7,8-Diaminoperlargonic acid aminotransferase from Mycobacterium tuberculosis, a potential therapeutic target. Characterization and inhibition studies. FEBS J 2006; 273:4778-89. [PMID: 16984394 DOI: 10.1111/j.1742-4658.2006.05479.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Diaminopelargonic acid aminotransferase (DAPA AT), which is involved in biotin biosynthesis, catalyzes the transamination of 8-amino-7-oxononanoic acid (KAPA) using S-adenosyl-l-methionine (AdoMet) as amino donor. Mycobacterium tuberculosis DAPA AT, a potential therapeutic target, has been overproduced in Escherichia coli and purified to homogeneity using a single efficient step on a nickel-affinity column. The enzyme shows an electronic absorption spectrum typical of pyridoxal 5'-phosphate-dependent enzymes and behaves as a homotetramer in solution. The pH profile of the activity at saturation shows a single ionization group with a pK(a) of 8.0, which was attributed to the active-site lysine residue. The enzyme shows a Ping Pong Bi Bi kinetic mechanism with strong substrate inhibition with the following parameters: K(mAdoMet) = 0.78 +/- 0.20 mm, K(mKAPA) = 3.8 +/- 1.0 microm, k(cat) = 1.0 +/- 0.2 min(-1), K(iKAPA) = 14 +/- 2 microm. Amiclenomycin and a new analogue, 4-(4c-aminocyclohexa-2,5-dien-1r-yl)propanol (referred to as compound 1), were shown to be suicide substrates of this enzyme, with the following inactivation parameters: K(i) = 12 +/- 2 microm, k(inact) = 0.35 +/- 0.05 min(-1), and K(i) = 20 +/- 2 microm, k(inact) = 0.56 +/- 0.05 min(-1), for amiclenomycin and compound 1, respectively. The inactivation was irreversible, and the partition ratios were 1.0 and 1.1 for amiclenomycin and compound 1, respectively, which make these inactivators particularly efficient. compound 1 (100 microg.mL(-1)) completely inhibited the growth of an E. coli C268bioA mutant strain transformed with a plasmid expressing the M. tuberculosis bioA gene, coding for DAPA AT. Reversal of the antibiotic effect was observed on the addition of biotin or DAPA. Thus, compound 1 specifically targets DAPA AT in vivo.
Collapse
Affiliation(s)
- Stéphane Mann
- Synthèse Structure et Fonction de Molécules Bioactives, Université Pierre et Marie Curie-Paris 6, UMR 7613, Paris, France
| | | |
Collapse
|
23
|
Aron ZD, Dorrestein PC, Blackhall JR, Kelleher NL, Walsh CT. Characterization of a new tailoring domain in polyketide biogenesis: the amine transferase domain of MycA in the mycosubtilin gene cluster. J Am Chem Soc 2006; 127:14986-7. [PMID: 16248612 DOI: 10.1021/ja055247g] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the expression and characterization of a truncated form of MycA from the Mycosubtilin gene cluster from Bacillus subtilis. The MycA fragment contains a new amino transferase (AMT) tailoring domain, allowing the first detailed study of a PLP-dependent enzyme operating in cis within the PKS and NRPS biosynthetic paradigm. As the AMT domain acts on covalently bound beta-ketothioesters, and is therefore a single-turnover system, electrospray ionization-Fourier transform mass spectrometry (ESI-FTMS) was used to observe the amine-transfer reaction both for amine donor substrate specificity and to regiospecifically determine enzyme-bound intermediates. We confirm the function of the AMT domain, dissect the mechanistic steps of amine transfer, identify the preferred amine source, and localize the beta-ketothioester substrate during amine transfer.
Collapse
Affiliation(s)
- Zachary D Aron
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
24
|
Mann S, Marquet A, Ploux O. Inhibition of 7,8-diaminopelargonic acid aminotransferase by amiclenomycin and analogues. Biochem Soc Trans 2005; 33:802-5. [PMID: 16042602 DOI: 10.1042/bst0330802] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cis and trans stereoisomers of amiclenomycin, a natural L-amino acid antibiotic, have been prepared using unequivocal routes. By using 1H NMR spectroscopy, the configuration of the six-membered ring of natural amiclenomycin was shown to be cis and not trans as originally proposed. Amiclenomycin and some synthetic analogues with the cis configuration irreversibly inactivate DAPA AT (7,8-diaminopelargonic acid aminotransferase), an enzyme involved in biotin biosynthesis, by forming an aromatic PLP (pyridoxal-5'-phosphate)-inhibitor adduct that is tightly bound to the active site. The following kinetic parameters for the inactivation of Escherichia coli DAPA AT by amiclenomycin were derived: K(I)=2 microM and k(inact)=0.4 min(-1). The structure of the aromatic adduct formed upon inactivation was confirmed by UV-visible spectroscopy, X-ray crystal structure determination and MS. Because Mycobacterium tuberculosis DAPA AT is a potential drug target, this enzyme was cloned, overexpressed and purified to homogeneity for biochemical characterization.
Collapse
Affiliation(s)
- S Mann
- Synthèse, Structure et Fonction de Molécules Bioactives, UMR CNRS 7613, Université Pierre et Marie Curie, boîte 182, 4, place Jussieu, 75252 Paris Cedex 05, France.
| | | | | |
Collapse
|
25
|
LeMagueres P, Im H, Ebalunode J, Strych U, Benedik MJ, Briggs JM, Kohn H, Krause KL. The 1.9 A crystal structure of alanine racemase from Mycobacterium tuberculosis contains a conserved entryway into the active site. Biochemistry 2005; 44:1471-81. [PMID: 15683232 DOI: 10.1021/bi0486583] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the crystal structure of alanine racemase from Mycobacterium tuberculosis (Alr(Mtb)) at 1.9 A resolution. In our structure, Alr(Mtb) is found to be a dimer formed by two crystallographically different monomers, each comprising 384 residues. The domain makeup of each monomer is similar to that of Bacillus and Pseudomonas alanine racemases and includes both an alpha/beta-barrel at the N-terminus and a C-terminus primarily made of beta-strands. The hinge angle between these two domains is unique for Alr(Mtb), but the active site geometry is conserved. In Alr(Mtb), the PLP cofactor is covalently bound to the protein via an internal aldimine bond with Lys42. No guest substrate is noted in its active site, although some residual electron density is observed in the enzyme's active site pocket. Analysis of the active site pocket, in the context of other known alanine racemases, allows us to propose the inclusion of conserved residues found at the entrance to the binding pocket as additional targets in ongoing structure-aided drug design efforts. Also, as observed in other alanine racemase structures, PLP adopts a conformation that significantly distorts the planarity of the extended conjugated system between the PLP ring and the internal aldimine bond.
Collapse
Affiliation(s)
- Pierre LeMagueres
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fenn TD, Holyoak T, Stamper GF, Ringe D. Effect of a Y265F Mutant on the Transamination-Based Cycloserine Inactivation of Alanine Racemase,. Biochemistry 2005; 44:5317-27. [PMID: 15807525 DOI: 10.1021/bi047842l] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The requirement for d-alanine in the peptidoglycan layer of bacterial cell walls is fulfilled in part by alanine racemase (EC 5.1.1.1), a pyridoxal 5'-phosphate (PLP)-assisted enzyme. The enzyme utilizes two antiparallel bases focused at the C(alpha) position and oriented perpendicular to the PLP ring to facilitate the equilibration of alanine enantiomers. Understanding how this two-base system is utilized and controlled to yield reaction specificity is therefore a potential means for designing antibiotics. Cycloserine is a known alanine racemase suicide substrate, although its mechanism of inactivation is based on transaminase chemistry. Here we characterize the effects of a Y265F mutant (Tyr265 acts as the catalytic base in the l-isomer case) of Bacillus stearothermophilus alanine racemase on cycloserine inactivation. The Y265F mutant reduces racemization activity 1600-fold [Watanabe, A., Yoshimura, T., Mikami, B., and Esaki, N. (1999) J. Biochem. 126, 781-786] and only leads to formation of the isoxazole end product (the result of the transaminase pathway) in the case of d-cycloserine, in contrast to results obtained using the wild-type enzyme. l-Cycloserine, on the other hand, utilizes a number of alternative pathways in the absence of Y265, emphasizing the importance of Y265 in both the inactivation and racemization pathway. In combination with the kinetics of inactivation, these results suggest roles for each of the two catalytic bases in racemization and inactivation, as well as the importance of Y265 in "steering" the chemistry to favor one pathway over another.
Collapse
Affiliation(s)
- Timothy D Fenn
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
27
|
Fu M, Silverman RB. Inactivation of gamma-aminobutyric acid aminotransferase by (S)-4-amino-4,5-dihydro-2-furancarboxylic acid does not proceed by the expected aromatization mechanism. Bioorg Med Chem Lett 2004; 14:203-6. [PMID: 14684328 DOI: 10.1016/j.bmcl.2003.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inactivation of pyridoxal 5'-phosphate (PLP)-dependent gamma-aminobutryic acid aminotransferase by (S)-4-amino-4,5-dihydro-2-furancarboxylic acid (SADFA) gives pyridoxamine 5'-phosphate, not the expected SADFA-PLP aromatization product. Inactivation appears to proceed by a Michael addition/hydrolysis mechanism instead.
Collapse
Affiliation(s)
- Mengmeng Fu
- Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA
| | | |
Collapse
|
28
|
LeMagueres P, Im H, Dvorak A, Strych U, Benedik M, Krause KL. Crystal structure at 1.45 A resolution of alanine racemase from a pathogenic bacterium, Pseudomonas aeruginosa, contains both internal and external aldimine forms. Biochemistry 2004; 42:14752-61. [PMID: 14674749 DOI: 10.1021/bi030165v] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of the catabolic alanine racemase, DadX, from the pathogenic bacterium Pseudomonas aeruginosa, reported here at 1.45 A resolution, is a dimer in which each monomer is comprised of two domains, an eight-stranded alpha/beta barrel containing the PLP cofactor and a second domain primarily composed of beta-strands. The geometry of each domain is very similar to that of Bacillus stearothermophilus alanine racemase, but the rotation between domains differs by about 15 degrees. This change does not alter the structure of the active site in which almost all residues superimpose well with a low rms difference of 0.86 A. Unexpectedly, the active site of DadX contains a guest substrate that is located where acetate and propionate have been observed in the Bacillus structures. It is modeled as d-lysine and oriented such that its terminal NZ atom makes a covalent bond with C4' of PLP. Since the internal aldimine bond between the protein lysine, Lys33, and C4' of PLP is also unambiguously observed, there appears to be an equilibrium between both internally and externally reacted forms. The PLP cofactor adopts two partially occupied conformational states that resemble previously reported internal and external aldimine complexes.
Collapse
Affiliation(s)
- Pierre LeMagueres
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | | | | | | | | | |
Collapse
|
29
|
David V, Ionescu M, Dumitrescu V. Determination of cycloserine in human plasma by high-performance liquid chromatography with fluorescence detection, using derivatization with p-benzoquinone. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 761:27-33. [PMID: 11585129 DOI: 10.1016/s0378-4347(01)00293-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new method for determining cycloserine in plasma samples is described. This method is based on the derivatization of cycloserine with p-benzoquinone, a reaction that takes place at the same time as the process of plasma deproteinization due to the presence of ethanol as solvent in the solution of the derivatization reagent. Four derivatives are obtained from this reaction. The main derivative is well correlated with the cycloserine concentration. The ratio between the volumes of the plasma sample and the reagent solution is 1:2 for a p-benzoquinone concentration of 1000 microg/mL. Elution from a C18 column was isocratic, using a mobile phase containing (v/v) 85% aqueous 0.1% formic acid solution, and 15% (v/v) of a mixture of methanol and acetonitrile (1:1), with a flow-rate of 1 mL/min, at 25 degrees C. Determinations by fluorescence detection were achieved with excitation at 381 nm and emission at 450 nm, with a detection limit of 10 ng/mL for an injection volume of 5 microL. This method was validated and applied to the determination of cycloserine in blood plasma samples of several healthy volunteers.
Collapse
Affiliation(s)
- V David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Romania.
| | | | | |
Collapse
|
30
|
Fu M, Nikolic D, Van Breemen RB, Silverman RB. Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (S)-4-Amino-4,5-dihydro-2-thiophenecarboxylic Acid. J Am Chem Soc 1999. [DOI: 10.1021/ja9915551] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengmeng Fu
- Contribution from the Department of Chemistry and Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3113 and the Department of Medicinal Chemistry, University of Illinois at Chicago, Chicago, Illinois 60612-7231
| | - Dejan Nikolic
- Contribution from the Department of Chemistry and Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3113 and the Department of Medicinal Chemistry, University of Illinois at Chicago, Chicago, Illinois 60612-7231
| | - Richard B. Van Breemen
- Contribution from the Department of Chemistry and Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3113 and the Department of Medicinal Chemistry, University of Illinois at Chicago, Chicago, Illinois 60612-7231
| | - Richard B. Silverman
- Contribution from the Department of Chemistry and Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3113 and the Department of Medicinal Chemistry, University of Illinois at Chicago, Chicago, Illinois 60612-7231
| |
Collapse
|
31
|
Jhee KH, McPhie P, Ro HS, Miles EW. Tryptophan synthase mutations that alter cofactor chemistry lead to mechanism-based inactivation. Biochemistry 1998; 37:14591-604. [PMID: 9772188 DOI: 10.1021/bi981325j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the pyridoxal phosphate binding site of the tryptophan synthase beta subunit (S377D and S377E) alter cofactor chemistry [Jhee, K.-H., et al. (1998) J. Biol. Chem. 273, 11417-11422]. We now report that the S377D, S377E, and S377A beta2 subunits form alpha2 beta2 complexes with the alpha subunit and activate the alpha subunit-catalyzed cleavage of indole 3-glycerol phosphate. The apparent Kd for dissociation of the alpha and beta subunits is unaffected by the S377A mutation but is increased up to 500-fold by the S377D and S377E mutations. Although the three mutant alpha2 beta2 complexes exhibit very low activities in beta elimination and beta replacement reactions catalyzed at the beta site in the presence of Na+, the activities and spectroscopic properties of the S377A alpha2 beta2 complex are partially repaired by addition of Cs+. The S377D and S377E alpha2 beta2 complexes, unlike the wild-type and S377A alpha2 beta2 complexes and the mutant beta2 subunits, undergo irreversible substrate-induced inactivation by L-serine or by beta-chloro-L-alanine. The rates of inactivation (kinact) are similar to the rates of catalysis (kcat). The partition ratios are very low (kcat/kinact = 0.25-3) and are affected by alpha subunit ligands and monovalent cations. The inactivation product released by alkali was shown by HPLC and by fluorescence, absorption, and mass spectroscopy to be identical to a compound previously synthesized from pyridoxal phosphate and pyruvate. We suggest that alterations in the cofactor chemistry that result from the engineered Asp377 in the active site of the beta subunit may promote the mechanism-based inactivation.
Collapse
Affiliation(s)
- K H Jhee
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892-0830, USA
| | | | | | | |
Collapse
|
32
|
Peisach D, Chipman DM, Van Ophem PW, Manning JM, Ringe D. d-Cycloserine Inactivation of d-Amino Acid Aminotransferase Leads to a Stable Noncovalent Protein Complex with an Aromatic Cycloserine-PLP Derivative. J Am Chem Soc 1998. [DOI: 10.1021/ja973353f] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Peisach
- Contribution from the Departments of Biochemistry and Chemistry and the Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, Massachusetts 02254-9110, Department of Life Sciences, Ben Gurion University, Beer-Sheva, 84105, Israel, and Department of Biology, Northeastern University, Boston, Massachusetts 02215
| | - David M. Chipman
- Contribution from the Departments of Biochemistry and Chemistry and the Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, Massachusetts 02254-9110, Department of Life Sciences, Ben Gurion University, Beer-Sheva, 84105, Israel, and Department of Biology, Northeastern University, Boston, Massachusetts 02215
| | - Peter W. Van Ophem
- Contribution from the Departments of Biochemistry and Chemistry and the Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, Massachusetts 02254-9110, Department of Life Sciences, Ben Gurion University, Beer-Sheva, 84105, Israel, and Department of Biology, Northeastern University, Boston, Massachusetts 02215
| | - James M. Manning
- Contribution from the Departments of Biochemistry and Chemistry and the Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, Massachusetts 02254-9110, Department of Life Sciences, Ben Gurion University, Beer-Sheva, 84105, Israel, and Department of Biology, Northeastern University, Boston, Massachusetts 02215
| | - Dagmar Ringe
- Contribution from the Departments of Biochemistry and Chemistry and the Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, Massachusetts 02254-9110, Department of Life Sciences, Ben Gurion University, Beer-Sheva, 84105, Israel, and Department of Biology, Northeastern University, Boston, Massachusetts 02215
| |
Collapse
|