1
|
Vigneswaran A, Buschmann TA, Latham MP. Leveraging AlphaFold2 and residual dipolar couplings for side-chain methyl group assignment: A case study with S. cerevisiae Xrs2. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2025; 374:107865. [PMID: 40058108 PMCID: PMC11993329 DOI: 10.1016/j.jmr.2025.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/13/2025] [Accepted: 02/28/2025] [Indexed: 04/13/2025]
Abstract
Side-chain methyl group NMR spectroscopy provides invaluable insights into macromolecular structure, dynamics, and function, particularly for large biomolecular complexes. Accurate assignment of methyl group resonances in two-dimensional spectra is essential for structural and dynamics studies. Traditional methyl group assignment strategies rely on either transferring assignments from backbone resonance data or NOESY data and high-resolution experimental structures; however, these methods are often limited by molecular size or availability of structural information, respectively. Here, we describe the use of AlphaFold2 structural models as a basis for the manual, distance-based assignment of side-chain methyl group resonances in the folded domains of S. cerevisiae Xrs2. While AlphaFold2 models facilitated initial assignments for the methyl resonances, inaccuracies in the side-chain coordinates highlighted the need for improved structural models. By generating >500 ColabFold-derived models and filtering with methyl residual dipolar couplings (RDCs), we identified structural models with superior agreement to experimental data. These refined models enabled additional methyl group assignments while suggesting an iterative approach to simultaneously improve structure prediction and resonance assignment. Our findings outline a workflow that integrates machine learning-based structural predictions with experimental NMR data, offering a pathway for advancing methyl group assignment in systems lacking high-resolution experimental structures.
Collapse
Affiliation(s)
- Ajeak Vigneswaran
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Tanner A Buschmann
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Michael P Latham
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
2
|
Rettig J, Gölz M, Thiele CM. Synthesis and Application of a Hydrophobic Polyglutamate Bearing a Triphenylphosphine Group for the Orientation of Pharmaceutically Active Compounds and the Measurement of Residual Dipolar Couplings. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025. [PMID: 40254920 DOI: 10.1002/mrc.5522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
We present a novel homopolyglutamate-based lyotropic liquid crystal, bearing a bulky and hydrophobic triphenylphosphine side chain. We successfully applied it as an alignment medium for measuring RDCs in artemisinin, an antimalarial drug, galantamine, used to treat Alzheimer's disease, and vincamine, a cerebral vasodilator and potential anticancer agent. Our results show that this alignment medium is of high interest for elucidating compounds characterized by high complexity and relevance in the research field of small molecule pharmaceuticals.
Collapse
Affiliation(s)
- Jan Rettig
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Gölz
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
3
|
Ketzel AF, Hu Y, Li XL, Li J, Lei X, Sun H. Heterophyllin B: Combining Isotropic and Anisotropic NMR for the Conformational Analysis of a Natural Occurring Cyclic Peptide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025. [PMID: 40254898 DOI: 10.1002/mrc.5523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
Heterophyllin B is a natural occurring cyclic peptide with diverse attributed bioactivities. NMR-based conformational analysis of cyclic peptides often poses a challenge due to limited isotropic solution-state NMR data. In this study, we combined isotropic and anisotropic NMR observables including J-coupling, NOEs, amide proton temperature coefficients, and residual dipolar couplings (RDCs), which enabled the determination of a minimal conformational ensemble of heterophyllin B in methanol at density functional theory (DFT) accuracy. For conformational sampling of a cyclic peptide with a high degree of conformational freedom, we proposed a computational strategy that combines the Conformer-Rotamer Ensemble Sampling Tool (CREST) with the Commandline Energetic SOrting (CENSO). This combined computational and NMR-based approach offers a robust framework for the conformational analysis of cyclic peptides.
Collapse
Affiliation(s)
- Anton F Ketzel
- Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Strukturelle Chemische Biologie und Cheminformatik, Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Yang Hu
- Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Strukturelle Chemische Biologie und Cheminformatik, Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Xiao-Lu Li
- Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institute of Medical Science, The Second Hospital of Shangdong University, Jinan, China
| | - Jiaqian Li
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Han Sun
- Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Strukturelle Chemische Biologie und Cheminformatik, Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Rüttger F, Franke D, Probst J, Wang X, Stalke D, John M. Cross-Correlation Between 11B Quadrupole and 11B- 19F Dipole-Dipole Coupling in BF 2 Groups. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025; 63:220-226. [PMID: 39707704 PMCID: PMC11788097 DOI: 10.1002/mrc.5507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/28/2024] [Indexed: 12/23/2024]
Abstract
We investigate cross-correlation between 11B quadrupole and 11B-19F dipole-dipole coupling in two BODIPY compounds and one bis(benzoxazol)methanide in partially oriented polystyrene (PS) samples. Especially for the bis(benzoxazol)methanide, the transitions for which the two interactions interfere con- or destructively clearly show distinct linewidths.
Collapse
Affiliation(s)
- Franziska Rüttger
- Institut für Anorganische ChemieGeorg‐August‐Universität GöttingenGöttingenGermany
| | - Dominik Franke
- Institut für Anorganische ChemieGeorg‐August‐Universität GöttingenGöttingenGermany
| | - Jannik Probst
- Institut für Anorganische ChemieGeorg‐August‐Universität GöttingenGöttingenGermany
| | - Xiaobai Wang
- Institut für Anorganische ChemieGeorg‐August‐Universität GöttingenGöttingenGermany
| | - Dietmar Stalke
- Institut für Anorganische ChemieGeorg‐August‐Universität GöttingenGöttingenGermany
| | - Michael John
- Institut für Anorganische ChemieGeorg‐August‐Universität GöttingenGöttingenGermany
| |
Collapse
|
5
|
Mittal J, Phan T, Mohanty P. Optimal scaling of protein-water interactions coupled with targeted torsional refinements yields balanced force fields suitable for simulations of single-chain folded proteins, disordered polypeptides, and protein-protein complexes. RESEARCH SQUARE 2025:rs.3.rs-5932820. [PMID: 40060049 PMCID: PMC11888540 DOI: 10.21203/rs.3.rs-5932820/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
All-atom molecular dynamics (MD) simulations based on physics-based force fields, serve as an essential complement to experiments for investigating protein structure, dynamics, and interactions. Despite significant advances in force field development, achieving a consistent balance of molecular interactions that stabilize folded proteins and protein-protein complexes while simultaneously capturing the conformational dynamics of intrinsically disordered polypeptides (IDPs), remains challenging. In this work, we systematically evaluated two current state-of-the-art force fields (i) AMBER ff03ws, and (ii) AMBER ff99SBws, by comprehensively assessing their performance on both folded domains and IDPs. By selectively scaling side chain-water interactions for uncharged residues, the refined AMBER ff03w-sc force field demonstrated improved conformational stability of folded proteins while maintaining accurate representations of IDPs. However, AMBER ff03w-sc failed to correct the discrepancies in NMR-derived ps-ns timescale backbone dynamics associated with flexible loops. Interestingly, AMBER ff99SBws retained its structural stability despite the application of upscaled interactions with water for both sidechain and backbone atoms and displayed robust agreement with NMR-derived backbone dynamics. Further, a targeted refinement of glutamine backbone torsion parameters, yielded AMBER ff99SBws-STQ', which effectively resolved discrepancies associated with glutamine α-helicity predictions. Extensive validation against small angle X-ray scattering (SAXS) and NMR chemical shifts, revealed that both refined force fields accurately reproduced chain dimensions and secondary structure propensities of disordered peptides and prion-like domains. Importantly, both force fields reliably maintained the stability of protein-protein complexes over microsecond timescales. Our systematic refinement strategies provide improved accuracy and transferability for simulating diverse protein systems, from folded domains to IDPs and protein complexes.
Collapse
|
6
|
Dos Santos FG, Carvalho DS, Hallwass F, Navarro-Vázquez A. Reversibly Compressible Cross-Linked Polystyrene Gels, Compatible With Toluene-d 8 and Pyridine-d 5, for Measurement of Residual Dipolar Couplings and Residual Chemical Shift Anisotropies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025; 63:98-104. [PMID: 39496568 DOI: 10.1002/mrc.5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024]
Abstract
A chemically cross-linked version of polystyrene is presented here that allows the preparation of reversibly mechanically compressible gels as NMR weakly aligning media. The gels can be successfully swollen in aromatic solvents such as toluene-d8 and pyridine-d5, as well as in CDCl3, and provided accurate measurements of 1DCH RDCs and 13C-RCSAs.
Collapse
Affiliation(s)
- Franciane G Dos Santos
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Daiane S Carvalho
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Fernando Hallwass
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Sun L, Zhang H, Li Y. The E3 ligase HUWE1 interacts with ubiquitin non-covalently via key residues in the HECT domain. FEBS Lett 2025; 599:559-570. [PMID: 39543712 DOI: 10.1002/1873-3468.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
HUWE1, a HECT E3 ligase, is critical for processes like protein degradation and tumor development. Contrary to previous findings which suggested minimal non-covalent interactions between the HUWE1 HECT domain and ubiquitin, we identified a non-covalent interaction between the HUWE1 HECT N-lobe and ubiquitin using NMR spectroscopy, revealing a conserved ubiquitin-binding mode shared across HECT E3 ligases. Molecular dynamics simulations not only confirmed the stability of this interaction but also uncovered conformational changes in key residues, which likely influence binding affinity. Additionally, we highlighted the roles of both conserved and unique residues in ubiquitin binding. These findings advance our understanding of the interactions between the HUWE1 HECT domain and ubiquitin, and highlight potential targets for therapeutic intervention in the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Li Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Zhang
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Ketzel A, Li X, Kaupp M, Sun H, Schattenberg CJ. Benchmark of Density Functional Theory in the Prediction of 13C Chemical Shielding Anisotropies for Anisotropic Nuclear Magnetic Resonance-Based Structural Elucidation. J Chem Theory Comput 2025; 21:871-885. [PMID: 39761482 PMCID: PMC11780741 DOI: 10.1021/acs.jctc.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
Density functional theory (DFT) calculations have emerged as a powerful theoretical toolbox for interpreting and analyzing the experimental nuclear magnetic resonance (NMR) spectra of chemical compounds. While DFT has been extensively used and benchmarked for isotropic NMR observables, the evaluation of the full chemical shielding tensor, which is necessary for interpreting residual chemical shift anisotropy (RCSA), has received much less attention, despite its recent applications in the structural elucidation of organic molecules. In this study, we present a comprehensive benchmark of carbon shielding anisotropies based on coupled cluster reference tensors taken from the NS372 benchmark data set. Additionally, we investigate the representation of the DFT-predicted shielding tensors, such as the eigenvalues and eigenvectors. Moreover, we evaluated how various DFT methods influence the discrimination of possible relative configurations using recently published ΔΔRCSA data for a set of structurally diverse natural products. Our findings demonstrate that accurate interpretation of RCSAs for configurational and conformational analysis is possible with semilocal DFT methods, which also reduce computational demands compared to hybrid functionals such as the commonly used B3LYP.
Collapse
Affiliation(s)
- Anton
Florian Ketzel
- Institut
für Chemie, Strukturelle Chemische Biologie und Cheminformatik, Technische Universität Berlin, Berlin 10623, Germany
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Xiaolu Li
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- Institute
of Medical Sciences, The Second Hospital
of Shandong University, 250033 Jinan, China
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Han Sun
- Institut
für Chemie, Strukturelle Chemische Biologie und Cheminformatik, Technische Universität Berlin, Berlin 10623, Germany
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Caspar Jonas Schattenberg
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| |
Collapse
|
9
|
Beriashvili D, Folkers GE, Baldus M. Ubiquitin's Conformational Heterogeneity as Discerned by Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2024; 25:e202400508. [PMID: 39140844 PMCID: PMC11664922 DOI: 10.1002/cbic.202400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Visualizing a protein's molecular motions has been a long standing topic of research in the biophysics community. Largely this has been done by exploiting nuclear magnetic resonance spectroscopy (NMR), and arguably no protein's molecular motions have been better characterized by NMR than that of ubiquitin (Ub), a 76 amino acid polypeptide essential in ubiquitination-a key regulatory system within cells. Herein, we discuss ubiquitin's conformational plasticity as visualized, at atomic resolution, by more than 35 years of NMR work. In our discussions we point out the differences between data acquired in vitro, ex vivo, as well as in vivo and stress the need to investigate Ub's conformational plasticity in more biologically representative backgrounds.
Collapse
Affiliation(s)
- David Beriashvili
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| | - Gert E. Folkers
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| |
Collapse
|
10
|
Bo Z, Rowntree T, Johnson S, Nurmahdi H, Suckling RJ, Hill J, Korona B, Weisshuhn PC, Sheppard D, Meng Y, Liang S, Lowe ED, Lea SM, Redfield C, Handford PA. Structural and functional studies of the EGF20-27 region reveal new features of the human Notch receptor important for optimal activation. Structure 2024; 32:2325-2336.e5. [PMID: 39488203 DOI: 10.1016/j.str.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
The Notch receptor is activated by the Delta/Serrate/Lag-2 (DSL) family of ligands. The organization of the extracellular signaling complex is unknown, although structures of Notch/ligand complexes comprising the ligand-binding region (LBR), and negative regulatory region (NRR) region, have been solved. Here, we investigate the human Notch-1 epidermal growth factor-like (EGF) 20-27 region, located between the LBR and NRR, and incorporating the Abruptex (Ax) region, associated with distinctive Drosophila phenotypes. Our analyses, using crystallography, NMR and small angle X-ray scattering (SAXS), support a rigid, elongated organization for EGF20-27 with the EGF20-21 linkage showing Ca2+-dependent flexibility. In functional assays, Notch-1 variants containing Ax substitutions result in reduced ligand-dependent trans-activation. When cis-JAG1 was expressed, Notch activity differences between WT and Ca2+-binding Ax variants were less marked than seen in the trans-activation assays alone, consistent with disruption of cis-inhibition. These data indicate the importance of Ca2+-stabilized structure and suggest the balance of cis- and trans-interactions explains the effects of Drosophila Ax mutations.
Collapse
Affiliation(s)
- Zhihan Bo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas Rowntree
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hilman Nurmahdi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Richard J Suckling
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Johan Hill
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Boguslawa Korona
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Philip C Weisshuhn
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Devon Sheppard
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Yao Meng
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Shaoyan Liang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Edward D Lowe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
11
|
Wapenaar H, Clifford G, Rolls W, Pasquier M, Burdett H, Zhang Y, Deák G, Zou J, Spanos C, Taylor MRD, Mills J, Watson JA, Kumar D, Clark R, Das A, Valsakumar D, Bramham J, Voigt P, Sproul D, Wilson MD. The N-terminal region of DNMT3A engages the nucleosome surface to aid chromatin recruitment. EMBO Rep 2024; 25:5743-5779. [PMID: 39528729 PMCID: PMC11624362 DOI: 10.1038/s44319-024-00306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
DNA methyltransferase 3A (DNMT3A) plays a critical role in establishing and maintaining DNA methylation patterns in vertebrates. Here we structurally and biochemically explore the interaction of DNMT3A1 with diverse modified nucleosomes indicative of different chromatin environments. A cryo-EM structure of the full-length DNMT3A1-DNMT3L complex with a H2AK119ub nucleosome reveals that the DNMT3A1 ubiquitin-dependent recruitment (UDR) motif interacts specifically with H2AK119ub and makes extensive contacts with the core nucleosome histone surface. This interaction facilitates robust DNMT3A1 binding to nucleosomes, and previously unexplained DNMT3A disease-associated mutations disrupt this interface. Furthermore, the UDR-nucleosome interaction synergises with other DNMT3A chromatin reading elements in the absence of histone ubiquitylation. H2AK119ub does not stimulate DNMT3A DNA methylation activity, as observed for the previously described H3K36me2 mark, which may explain low levels of DNA methylation on H2AK119ub marked facultative heterochromatin. This study highlights the importance of multivalent binding of DNMT3A to histone modifications and the nucleosome surface and increases our understanding of how DNMT3A1 chromatin recruitment occurs.
Collapse
Affiliation(s)
- Hannah Wapenaar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Gillian Clifford
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Willow Rolls
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Moira Pasquier
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Hayden Burdett
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Yujie Zhang
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Gauri Deák
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Juan Zou
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Mark R D Taylor
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Jacquie Mills
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
- Cancer Research UK Scotland Institute, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
| | - James A Watson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Dhananjay Kumar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Richard Clark
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Alakta Das
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Janice Bramham
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3JR, UK
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3JR, UK.
| |
Collapse
|
12
|
Sager E, Tzvetkova P, Lingel A, Gossert AD, Luy B. Hydrogen bond formation may enhance RDC-based discrimination of enantiomers. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:639-647. [PMID: 38785031 DOI: 10.1002/mrc.5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
The distinction of enantiomers based on residual anisotropic parameters obtained by alignment in chiral poly-γ-benzyl-L-glutamate (PBLG) is among the strongest in high-resolution NMR spectroscopy. However, large variations in enantiodifferentiation among different solutes are frequently observed. One hypothesis is that the formation of hydrogen bonds between solute and PBLG is important for the distinction of enantiomers. With a small set of three almost spherical enantiomeric pairs, for which 1DCH residual dipolar couplings are measured, we address this issue in a systematic way: borneol contains a single functional group that can act as a hydrogen bond donor, camphor has a single group that may act as a hydrogen bond acceptor, and quinuclidinol can act as both hydrogen bond donor and acceptor. The results are unambiguous: although camphor shows low enantiodifferentiation with PBLG and alignment that can be predicted well by the purely steric TRAMITE approach, the distinction of enantiomers for the other enantiomeric pairs is significantly higher with alignment properties that must involve a specific interaction in addition to steric alignment.
Collapse
Affiliation(s)
- Emine Sager
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Novartis Biomedical Research, Basel, Switzerland
| | - Pavleta Tzvetkova
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | | | | | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Hou XN, Song B, Zhao C, Chu WT, Ruan MX, Dong X, Meng LS, Gong Z, Weng YX, Zheng J, Wang J, Tang C. Connecting Protein Millisecond Conformational Dynamics to Protein Thermal Stability. JACS AU 2024; 4:3310-3320. [PMID: 39211624 PMCID: PMC11350723 DOI: 10.1021/jacsau.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The stability of protein folded states is crucial for its function, yet the relationship with the protein sequence remains poorly understood. Prior studies have focused on the amino acid composition and thermodynamic couplings within a single folded conformation, overlooking the potential contribution of protein dynamics. Here, we address this gap by systematically analyzing the impact of alanine mutations in the C-terminal β-strand (β5) of ubiquitin, a model protein exhibiting millisecond timescale interconversion between two conformational states differing in the β5 position. Our findings unveil a negative correlation between millisecond dynamics and thermal stability, with alanine substitutions at seemingly flexible C-terminal residues significantly enhancing thermostability. Integrating spectroscopic and computational approaches, we demonstrate that the thermally unfolded state retains a substantial secondary structure but lacks β5 engagement, recapitulating the transition state for millisecond dynamics. Thus, alanine mutations that modulate the stabilities of the folded states with respect to the partially unfolded state impact both the dynamics and stability. Our findings underscore the importance of conformational dynamics with implications for protein engineering and design.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bin Song
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chang Zhao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Mei-Xia Ruan
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Dong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Ling-Shen Meng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zheng
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, Newyork 11794-3400, United States
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Gigli L, Silva JM, Cerofolini L, Macedo AL, Geraldes CFGC, Suturina EA, Calderone V, Fragai M, Parigi G, Ravera E, Luchinat C. Machine Learning-Enhanced Quantum Chemistry-Assisted Refinement of the Active Site Structure of Metalloproteins. Inorg Chem 2024; 63:10713-10725. [PMID: 38805564 DOI: 10.1021/acs.inorgchem.4c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Understanding the fine structural details of inhibitor binding at the active site of metalloenzymes can have a profound impact on the rational drug design targeted to this broad class of biomolecules. Structural techniques such as NMR, cryo-EM, and X-ray crystallography can provide bond lengths and angles, but the uncertainties in these measurements can be as large as the range of values that have been observed for these quantities in all the published structures. This uncertainty is far too large to allow for reliable calculations at the quantum chemical (QC) levels for developing precise structure-activity relationships or for improving the energetic considerations in protein-inhibitor studies. Therefore, the need arises to rely upon computational methods to refine the active site structures well beyond the resolution obtained with routine application of structural methods. In a recent paper, we have shown that it is possible to refine the active site of cobalt(II)-substituted MMP12, a metalloprotein that is a relevant drug target, by matching to the experimental pseudocontact shifts (PCS) those calculated using multireference ab initio QC methods. The computational cost of this methodology becomes a significant bottleneck when the starting structure is not sufficiently close to the final one, which is often the case with biomolecular structures. To tackle this problem, we have developed an approach based on a neural network (NN) and a support vector regression (SVR) and applied it to the refinement of the active site structure of oxalate-inhibited human carbonic anhydrase 2 (hCAII), another prototypical metalloprotein target. The refined structure gives a remarkably good agreement between the QC-calculated and the experimental PCS. This study not only contributes to the knowledge of CAII but also demonstrates the utility of combining machine learning (ML) algorithms with QC calculations, offering a promising avenue for investigating other drug targets and complex biological systems in general.
Collapse
Affiliation(s)
- Lucia Gigli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - José Malanho Silva
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Anjos L Macedo
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB─Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Carlos F G C Geraldes
- Department of Life Sciences, Faculty of Science and Technology, 3000-393 Coimbra, Portugal
- Coimbra Chemistry Center─Institute of Molecular Sciences (CCC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | | | - Vito Calderone
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
- Florence Data Science, University of Florence, Florence 50134, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
- Giotto Biotech, S.R.L., Sesto Fiorentino 50019, Italy
| |
Collapse
|
15
|
Baskaran K, Ploskon E, Tejero R, Yokochi M, Harrus D, Liang Y, Peisach E, Persikova I, Ramelot TA, Sekharan M, Tolchard J, Westbrook JD, Bardiaux B, Schwieters CD, Patwardhan A, Velankar S, Burley SK, Kurisu G, Hoch JC, Montelione GT, Vuister GW, Young JY. Restraint validation of biomolecular structures determined by NMR in the Protein Data Bank. Structure 2024; 32:824-837.e1. [PMID: 38490206 PMCID: PMC11162339 DOI: 10.1016/j.str.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.
Collapse
Affiliation(s)
- Kumaran Baskaran
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA.
| | - Eliza Ploskon
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Roberto Tejero
- Departamento de Quίmica Fίsica, Universidad de Valencia, Dr. Moliner, 50 46100 Burjassot, Valencia, Spain
| | - Masashi Yokochi
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan; Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Deborah Harrus
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - James Tolchard
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Benjamin Bardiaux
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, 75015 Paris, France
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ardan Patwardhan
- The Electron Microscopy Data Bank, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sameer Velankar
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, La Jolla, CA, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan; Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Jeffrey C Hoch
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Jasmine Y Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
16
|
John M, Rüttger F. Multinuclear Residual Quadrupolar Couplings for Structure and Assignment. Chemphyschem 2024; 25:e202400068. [PMID: 38465709 DOI: 10.1002/cphc.202400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
Most stable isotopes have a nuclear spin >1/2, but the quadrupole interaction poses challenge on their detection by nuclear magnetic resonance (NMR). On the other hand, the quadrupole interaction is a rich source of structural information that may be exploited for solution NMR in the form of residual quadrupolar couplings (RQCs) of weakly oriented samples. While 2H RQCs are now well established for structure verification and enantiomeric discrimination of organic molecules, we will in this article highlight some recent work on RQCs of other nuclei (especially 7Li and 11B).
Collapse
Affiliation(s)
- Michael John
- Fakultät für Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077, Göttingen
| | - Franziska Rüttger
- Fakultät für Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077, Göttingen
| |
Collapse
|
17
|
Ludzia P, Hayashi H, Robinson T, Akiyoshi B, Redfield C. NMR study of the structure and dynamics of the BRCT domain from the kinetochore protein KKT4. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:15-25. [PMID: 38453826 PMCID: PMC11081923 DOI: 10.1007/s12104-024-10163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024]
Abstract
KKT4 is a multi-domain kinetochore protein specific to kinetoplastids, such as Trypanosoma brucei. It lacks significant sequence similarity to known kinetochore proteins in other eukaryotes. Our recent X-ray structure of the C-terminal region of KKT4 shows that it has a tandem BRCT (BRCA1 C Terminus) domain fold with a sulfate ion bound in a typical binding site for a phosphorylated serine or threonine. Here we present the 1H, 13C and 15N resonance assignments for the BRCT domain of KKT4 (KKT4463-645) from T. brucei. We show that the BRCT domain can bind phosphate ions in solution using residues involved in sulfate ion binding in the X-ray structure. We have used these assignments to characterise the secondary structure and backbone dynamics of the BRCT domain in solution. Mutating the residues involved in phosphate ion binding in T. brucei KKT4 BRCT results in growth defects confirming the importance of the BRCT phosphopeptide-binding activity in vivo. These results may facilitate rational drug design efforts in the future to combat diseases caused by kinetoplastid parasites.
Collapse
Affiliation(s)
- Patryk Ludzia
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Hanako Hayashi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Timothy Robinson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
18
|
Ju D, Wu S, Li L, Xie Y. Ubiquitylation-independent cotranslational degradation of dihydrofolate reductase and ubiquitin. Biochem Biophys Res Commun 2024; 702:149651. [PMID: 38350414 DOI: 10.1016/j.bbrc.2024.149651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Nascent proteins are degraded during or immediately after synthesis, a process called cotranslational protein degradation (CTPD). Although CTPD was observed decades ago, it has never been fully explored mechanistically and functionally. We show here that dihydrofolate reductase (DHFR) and ubiquitin (Ub), two stable proteins widely used in protein degradation studies, are actually subject to CTPD. Unlike canonical posttranslational protein degradation, CTPD of DHFR and Ub does not require prior ubiquitylation. Our data also suggest that protein expression level and N-terminal folding pattern may be two critical determinants for CTPD. Thus, this study reveals that CTPD plays a role in regulating the homeostasis of long-lived proteins and provides insights into the mechanism of CTPD.
Collapse
Affiliation(s)
- Donghong Ju
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Shichao Wu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Li Li
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Youming Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
19
|
Solga D, Wieske LHE, Wilcox S, Zeilinger C, Jansen-Olliges L, Cirnski K, Herrmann J, Müller R, Erdelyi M, Kirschning A. Is Simultaneous Binding to DNA and Gyrase Important for the Antibacterial Activity of Cystobactamids? Chemistry 2024; 30:e202303796. [PMID: 38217886 DOI: 10.1002/chem.202303796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Cystobactamids are aromatic oligoamides that exert their natural antibacterial properties by inhibition of bacterial gyrases. Such aromatic oligoamides were proposed to inhibit α-helix-mediated protein-protein interactions and may serve for specific recognition of DNA. Based on this suggestion, we designed new derivatives that have duplicated cystobactamid triarene units as model systems to decipher the specific binding mode of cystobactamids to double stranded DNA. Solution NMR analyses revealed that natural cystobactamids as well as their elongated analogues show an overall bent shape at their central aliphatic unit, with an average CX-CY-CZ angle of ~110 degrees. Our finding is corroborated by the target-bound structure of close analogues, as established by cryo-EM very recently. Cystobactamid CN-861-2 binds directly to the bacterial gyrase with an affinity of 9 μM, and also exhibits DNA-binding properties with specificity for AT-rich DNA. Elongation/dimerization of the triarene subunit of native cystobactamids is demonstrated to lead to an increase in DNA binding affinity. This implies that cystobactamids' gyrase inhibitory activity necessitates not just interaction with the gyrase itself, but also with DNA via their triarene unit.
Collapse
Affiliation(s)
- Danny Solga
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Lianne H E Wieske
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, SE-752 37, Uppsala, Sweden
| | - Scott Wilcox
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, SE-752 37, Uppsala, Sweden
| | - Carsten Zeilinger
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Linda Jansen-Olliges
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Katarina Cirnski
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, SE-752 37, Uppsala, Sweden
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| |
Collapse
|
20
|
Bermejo GA, Tjandra N, Clore GM, Schwieters CD. Xplor-NIH: Better parameters and protocols for NMR protein structure determination. Protein Sci 2024; 33:e4922. [PMID: 38501482 PMCID: PMC10962493 DOI: 10.1002/pro.4922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/20/2024]
Abstract
The present work describes an update to the protein covalent geometry and atomic radii parameters in the Xplor-NIH biomolecular structure determination package. In combination with an improved treatment of selected non-bonded interactions between atoms three bonds apart, such as those involving methyl hydrogens, and a previously developed term that affects the system's gyration volume, the new parameters are tested using structure calculations on 30 proteins with restraints derived from nuclear magnetic resonance data. Using modern structure validation criteria, including several formally adopted by the Protein Data Bank, and a clear measure of structural accuracy, the results show superior performance relative to previous Xplor-NIH implementations. Additionally, the Xplor-NIH structures compare favorably against originally determined NMR models.
Collapse
Affiliation(s)
- Guillermo A. Bermejo
- Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMarylandUSA
| | - G. Marius Clore
- Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Charles D. Schwieters
- Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
21
|
Ye Y, Liang X, Wang G, Bewley MC, Hamamoto K, Liu X, Flanagan JM, Wang HG, Takahashi Y, Tian F. Identification of membrane curvature sensing motifs essential for VPS37A phagophore recruitment and autophagosome closure. Commun Biol 2024; 7:334. [PMID: 38491121 PMCID: PMC10942982 DOI: 10.1038/s42003-024-06026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
VPS37A, an ESCRT-I complex component, is required for recruiting a subset of ESCRT proteins to the phagophore for autophagosome closure. However, the mechanism by which VPS37A is targeted to the phagophore remains obscure. Here, we demonstrate that the VPS37A N-terminal domain exhibits selective interactions with highly curved membranes, mediated by two membrane-interacting motifs within the disordered regions surrounding its Ubiquitin E2 variant-like (UEVL) domain. Site-directed mutations of residues in these motifs disrupt ESCRT-I localization to the phagophore and result in defective phagophore closure and compromised autophagic flux in vivo, highlighting their essential role during autophagy. In conjunction with the UEVL domain, we postulate that these motifs guide a functional assembly of the ESCRT machinery at the highly curved tip of the phagophore for autophagosome closure. These results advance the notion that the distinctive membrane architecture of the cup-shaped phagophore spatially regulates autophagosome biogenesis.
Collapse
Affiliation(s)
- Yansheng Ye
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA.
| | - Xinwen Liang
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guifang Wang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Maria C Bewley
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Kouta Hamamoto
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Xiaoming Liu
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
22
|
Hu Q, Botuyan MV, Mer G. Identification of a conserved α-helical domain at the N terminus of human DNA methyltransferase 1. J Biol Chem 2024; 300:105775. [PMID: 38382673 PMCID: PMC10950863 DOI: 10.1016/j.jbc.2024.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
In vertebrates, DNA methyltransferase 1 (DNMT1) contributes to preserving DNA methylation patterns, ensuring the stability and heritability of epigenetic marks important for gene expression regulation and the maintenance of cellular identity. Previous structural studies have elucidated the catalytic mechanism of DNMT1 and its specific recognition of hemimethylated DNA. Here, using solution nuclear magnetic resonance spectroscopy and small-angle X-ray scattering, we demonstrate that the N-terminal region of human DNMT1, while flexible, encompasses a conserved globular domain with a novel α-helical bundle-like fold. This work expands our understanding of the structure and dynamics of DNMT1 and provides a structural framework for future functional studies in relation with this new domain.
Collapse
Affiliation(s)
- Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Department of Cancer Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
23
|
Doro-Goldsmith E, Song Q, Li XL, Li XM, Hu XY, Li HL, Liu HR, Wang BG, Sun H. Absolute Configuration of 12 S-Deoxynortryptoquivaline from Ascidian-Derived Fungus Aspergillus clavatus Determined by Anisotropic NMR and Chiroptical Spectroscopy. JOURNAL OF NATURAL PRODUCTS 2024; 87:381-387. [PMID: 38289330 PMCID: PMC10897928 DOI: 10.1021/acs.jnatprod.3c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Tryptoquivalines are highly toxic metabolites initially isolated from the fungus Aspergillus clavatus. The relative and absolute configuration of tryptoquivaline derivates was primarily established by comparison of the chemical shifts, NOE data, and ECD calculations. A de novo determination of the complete relative configuration using NMR spectroscopy was challenging due to multiple spatially separated stereocenters, including one nonprotonated carbon. In this study, we isolated a new tryptoquivaline derivative, 12S-deoxynortryptoquivaline (1), from the marine ascidian-derived fungus Aspergillus clavatus AS-107. The correct assignment of the relative configuration of 1 was accomplished using anisotropic NMR spectroscopy, while the absolute configuration was determined by comparing calculated and experimental ECD spectra. This case study highlights the effectiveness of anisotropic NMR parameters over isotropic NMR parameters in determining the relative configuration of complex natural products without the need for crystallization.
Collapse
Affiliation(s)
- Elisa Doro-Goldsmith
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- School
of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Qi Song
- CAS
and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Xiao-Lu Li
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Xiao-Ming Li
- CAS
and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Xue-Yi Hu
- CAS
and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Hong-Lei Li
- CAS
and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Hao-Ran Liu
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- Institute
of Chemistry, Technische Universität
Berlin, Straße des
17. Juni 135, Berlin 10623, Germany
| | - Bin-Gui Wang
- CAS
and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University
of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Han Sun
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- Institute
of Chemistry, Technische Universität
Berlin, Straße des
17. Juni 135, Berlin 10623, Germany
| |
Collapse
|
24
|
Baskaran K, Ploskon E, Tejero R, Yokochi M, Harrus D, Liang Y, Peisach E, Persikova I, Ramelot TA, Sekharan M, Tolchard J, Westbrook JD, Bardiaux B, Schwieters CD, Patwardhan A, Velankar S, Burley SK, Kurisu G, Hoch JC, Montelione GT, Vuister GW, Young JY. Restraint Validation of Biomolecular Structures Determined by NMR in the Protein Data Bank. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575520. [PMID: 38328042 PMCID: PMC10849500 DOI: 10.1101/2024.01.15.575520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.
Collapse
Affiliation(s)
- Kumaran Baskaran
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Eliza Ploskon
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Roberto Tejero
- Departamento de Quίmica Fίsica, Universidad de Valencia, Dr. Moliner, 50 46100-Burjassot, Valencia, Spain
| | - Masashi Yokochi
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Deborah Harrus
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Theresa A Ramelot
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - James Tolchard
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Benjamin Bardiaux
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, 75015 Paris, France
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ardan Patwardhan
- The Electron Microscopy Data Bank, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, California, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Jeffrey C Hoch
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Gaetano T Montelione
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Jasmine Y Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
25
|
Rüttger F, Stalke D, John M. Resonance and structural assignment in (car)borane clusters using 11B residual quadrupolar couplings. Chem Commun (Camb) 2023. [PMID: 38014978 DOI: 10.1039/d3cc05054h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A new NMR method for structural verification and 11B resonance assignment in (car)borane clusters is presented, based on the measurement of 11B residual quadrupolar couplings (RQCs) in a stretched polystyrene (PS) gel. The method was applied to ortho-carborane (B10C2H12), a derivative thereof with reduced symmetry, meta-carborane and decaborane (B10H14).
Collapse
Affiliation(s)
- Franziska Rüttger
- Institute of Inorganic Chemistry, Georg-August-University of Göttingen, Germany.
| | - Dietmar Stalke
- Institute of Inorganic Chemistry, Georg-August-University of Göttingen, Germany.
| | - Michael John
- Institute of Inorganic Chemistry, Georg-August-University of Göttingen, Germany.
| |
Collapse
|
26
|
Thore S, Raoelijaona F, Talenton V, Fribourg S, Mackereth CD. Molecular details of the CPSF73-CPSF100 C-terminal heterodimer and interaction with Symplekin. Open Biol 2023; 13:230221. [PMID: 37989222 PMCID: PMC10688271 DOI: 10.1098/rsob.230221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/27/2023] [Indexed: 11/23/2023] Open
Abstract
Eukaryotic pre-mRNA is processed by a large multiprotein complex to accurately cleave the 3' end, and to catalyse the addition of the poly(A) tail. Within this cleavage and polyadenylation specificity factor (CPSF) machinery, the CPSF73/CPSF3 endonuclease subunit directly contacts both CPSF100/CPSF2 and the scaffold protein Symplekin to form a subcomplex known as the core cleavage complex or mammalian cleavage factor. Here we have taken advantage of a stable CPSF73-CPSF100 minimal heterodimer from Encephalitozoon cuniculi to determine the solution structure formed by the first and second C-terminal domain (CTD1 and CTD2) of both proteins. We find a large number of contacts between both proteins in the complex, and notably in the region between CTD1 and CTD2. A similarity is also observed between CTD2 and the TATA-box binding protein (TBP) domains. Separately, we have determined the structure of the terminal CTD3 domain of CPSF73, which also belongs to the TBP domain family and is connected by a flexible linker to the rest of CPSF73. Biochemical assays demonstrate a key role for the CTD3 of CPSF73 in binding Symplekin, and structural models of the trimeric complex from other species allow for comparative analysis and support an overall conserved architecture.
Collapse
Affiliation(s)
- Stéphane Thore
- Inserm, CNRS, ARNA Laboratory, Univ. Bordeaux, U1212, UMR 5320, 33000 Bordeaux, France
| | - Finaritra Raoelijaona
- Inserm, CNRS, ARNA Laboratory, Univ. Bordeaux, U1212, UMR 5320, 33000 Bordeaux, France
| | - Vincent Talenton
- Inserm, CNRS, ARNA Laboratory, Univ. Bordeaux, Institut Européen de Chimie et Biologie, U1212, UMR 5320, 33600 Pessac, France
| | - Sébastien Fribourg
- Inserm, CNRS, ARNA Laboratory, Univ. Bordeaux, U1212, UMR 5320, 33000 Bordeaux, France
| | - Cameron D. Mackereth
- Inserm, CNRS, ARNA Laboratory, Univ. Bordeaux, Institut Européen de Chimie et Biologie, U1212, UMR 5320, 33600 Pessac, France
| |
Collapse
|
27
|
Schneider T, Sawade K, Berner F, Peter C, Kovermann M. Specifying conformational heterogeneity of multi-domain proteins at atomic resolution. Structure 2023; 31:1259-1274.e10. [PMID: 37557171 DOI: 10.1016/j.str.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
The conformational landscape of multi-domain proteins is inherently linked to their specific functions. This also holds for polyubiquitin chains that are assembled by two or more ubiquitin domains connected by a flexible linker thus showing a large interdomain mobility. However, molecular recognition and signal transduction are associated with particular conformational substates that are populated in solution. Here, we apply high-resolution NMR spectroscopy in combination with dual-scale MD simulations to explore the conformational space of K6-, K29-, and K33-linked diubiquitin molecules. The conformational ensembles are evaluated utilizing a paramagnetic cosolute reporting on solvent exposure plus a set of complementary NMR parameters. This approach unravels a conformational heterogeneity of diubiquitins and explains the diversity of structural models that have been determined for K6-, K29-, and K33-linked diubiquitins in free and ligand-bound states so far. We propose a general application of the approach developed here to demystify multi-domain proteins occurring in nature.
Collapse
Affiliation(s)
- Tobias Schneider
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Kevin Sawade
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Graduate School Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Frederic Berner
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
28
|
Nouri S, Boudet J, Dreher-Teo H, Allain FHT, Glockshuber R, Salmon L, Giese C. Elongated Bacterial Pili as a Versatile Alignment Medium for NMR Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202305120. [PMID: 37248171 DOI: 10.1002/anie.202305120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
In NMR spectroscopy, residual dipolar couplings (RDCs) have emerged as one of the most exquisite probes of biological structure and dynamics. The measurement of RDCs relies on the partial alignment of the molecule of interest, for example by using a liquid crystal as a solvent. Here, we establish bacterial type 1 pili as an alternative liquid-crystalline alignment medium for the measurement of RDCs. To achieve alignment at pilus concentrations that allow for efficient NMR sample preparation, we elongated wild-type pili by recombinant overproduction of the main structural pilus subunit. Building on the extraordinary stability of type 1 pili against spontaneous dissociation and unfolding, we show that the medium is compatible with challenging experimental conditions such as high temperature, the presence of detergents, organic solvents or very acidic pH, setting it apart from most established alignment media. Using human ubiquitin, HIV-1 TAR RNA and camphor as spectroscopic probes, we demonstrate the applicability of the medium for the determination of RDCs of proteins, nucleic acids and small molecules. Our results show that type 1 pili represent a very useful alternative to existing alignment media and may readily assist the characterization of molecular structure and dynamics by NMR.
Collapse
Affiliation(s)
- Sirine Nouri
- Centre de RMN à Très Hauts Champs, CNRS, ENSL, UCBL, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Julien Boudet
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Hiang Dreher-Teo
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Loïc Salmon
- Centre de RMN à Très Hauts Champs, CNRS, ENSL, UCBL, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Christoph Giese
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| |
Collapse
|
29
|
Fowler NJ, Albalwi MF, Lee S, Hounslow AM, Williamson MP. Improved methodology for protein NMR structure calculation using hydrogen bond restraints and ANSURR validation: The SH2 domain of SH2B1. Structure 2023; 31:975-986.e3. [PMID: 37311460 DOI: 10.1016/j.str.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Protein structures calculated using NMR data are less accurate and less well-defined than they could be. Here we use the program ANSURR to show that this deficiency is at least in part due to a lack of hydrogen bond restraints. We describe a protocol to introduce hydrogen bond restraints into the structure calculation of the SH2 domain from SH2B1 in a systematic and transparent way and show that the structures generated are more accurate and better defined as a result. We also show that ANSURR can be used as a guide to know when the structure calculation is good enough to stop.
Collapse
Affiliation(s)
- Nicholas J Fowler
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK.
| | - Marym F Albalwi
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Subin Lee
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Andrea M Hounslow
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Mike P Williamson
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK.
| |
Collapse
|
30
|
Soni K, Jagtap PKA, Martínez-Lumbreras S, Bonnal S, Geerlof A, Stehle R, Simon B, Valcárcel J, Sattler M. Structural basis for specific RNA recognition by the alternative splicing factor RBM5. Nat Commun 2023; 14:4233. [PMID: 37454201 PMCID: PMC10349855 DOI: 10.1038/s41467-023-39961-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis-regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10.
Collapse
Affiliation(s)
- Komal Soni
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Pravin Kumar Ankush Jagtap
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Santiago Martínez-Lumbreras
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sophie Bonnal
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain
| | - Arie Geerlof
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Ralf Stehle
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Juan Valcárcel
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
31
|
Li EH, Spaman LE, Tejero R, Janet Huang Y, Ramelot TA, Fraga KJ, Prestegard JH, Kennedy MA, Montelione GT. Blind assessment of monomeric AlphaFold2 protein structure models with experimental NMR data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107481. [PMID: 37257257 PMCID: PMC10659763 DOI: 10.1016/j.jmr.2023.107481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Recent advances in molecular modeling of protein structures are changing the field of structural biology. AlphaFold-2 (AF2), an AI system developed by DeepMind, Inc., utilizes attention-based deep learning to predict models of protein structures with high accuracy relative to structures determined by X-ray crystallography and cryo-electron microscopy (cryoEM). Comparing AF2 models to structures determined using solution NMR data, both high similarities and distinct differences have been observed. Since AF2 was trained on X-ray crystal and cryoEM structures, we assessed how accurately AF2 can model small, monomeric, solution protein NMR structures which (i) were not used in the AF2 training data set, and (ii) did not have homologous structures in the Protein Data Bank at the time of AF2 training. We identified nine open-source protein NMR data sets for such "blind" targets, including chemical shift, raw NMR FID data, NOESY peak lists, and (for 1 case) 15N-1H residual dipolar coupling data. For these nine small (70-108 residues) monomeric proteins, we generated AF2 prediction models and assessed how well these models fit to these experimental NMR data, using several well-established NMR structure validation tools. In most of these cases, the AF2 models fit the NMR data nearly as well, or sometimes better than, the corresponding NMR structure models previously deposited in the Protein Data Bank. These results provide benchmark NMR data for assessing new NMR data analysis and protein structure prediction methods. They also document the potential for using AF2 as a guiding tool in protein NMR data analysis, and more generally for hypothesis generation in structural biology research.
Collapse
Affiliation(s)
- Ethan H Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Laura E Spaman
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Roberto Tejero
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Yuanpeng Janet Huang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Keith J Fraga
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
32
|
Shen Y, Bax A. Synergism between x-ray crystallography and NMR residual dipolar couplings in characterizing protein dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:040901. [PMID: 37448874 PMCID: PMC10338066 DOI: 10.1063/4.0000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The important role of structural dynamics in protein function is widely recognized. Thermal or B-factors and their anisotropy, seen in x-ray analysis of protein structures, report on the presence of atomic coordinate heterogeneity that can be attributed to motion. However, their quantitative evaluation in terms of protein dynamics by x-ray ensemble refinement remains challenging. NMR spectroscopy provides quantitative information on the amplitudes and time scales of motional processes. Unfortunately, with a few exceptions, the NMR data do not provide direct insights into the atomic details of dynamic trajectories. Residual dipolar couplings, measured by solution NMR, are very precise parameters reporting on the time-averaged bond-vector orientations and may offer the opportunity to derive correctly weighted dynamic ensembles of structures for cases where multiple high-resolution x-ray structures are available. Applications to the SARS-CoV-2 main protease, Mpro, and ubiquitin highlight this complementarity of NMR and crystallography for quantitative assessment of internal motions.
Collapse
Affiliation(s)
- Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
33
|
Yang L, Guo S, Liao C, Hou C, Jiang S, Li J, Ma X, Shi L, Ye L, He X. Spatial Layouts of Low-Entropy Hydration Shells Guide Protein Binding. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300022. [PMID: 37483413 PMCID: PMC10362119 DOI: 10.1002/gch2.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Indexed: 07/25/2023]
Abstract
Protein-protein binding enables orderly biological self-organization and is therefore considered a miracle of nature. Protein‒protein binding is driven by electrostatic forces, hydrogen bonding, van der Waals force, and hydrophobic interactions. Among these physical forces, only hydrophobic interactions can be considered long-range intermolecular attractions between proteins due to the electrostatic shielding of surrounding water molecules. Low-entropy hydration shells around proteins drive hydrophobic attraction among them that essentially coordinate protein‒protein binding. Here, an innovative method is developed for identifying low-entropy regions of hydration shells of proteins by screening off pseudohydrophilic groups on protein surfaces and revealing that large low-entropy regions of the hydration shells typically cover the binding sites of individual proteins. According to an analysis of determined protein complex structures, shape matching between a large low-entropy hydration shell region of a protein and that of its partner at the binding sites is revealed as a universal law. Protein‒protein binding is thus found to be mainly guided by hydrophobic collapse between the shape-matched low-entropy hydration shells that is verified by bioinformatics analyses of hundreds of structures of protein complexes, which cover four test systems. A simple algorithm is proposed to accurately predict protein binding sites.
Collapse
Affiliation(s)
- Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
- School of AerospaceMechanical and Mechatronic EngineeringThe University of SydneyNSW2006Australia
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Chenchen Liao
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin150080P. R. China
| | - Chengyu Hou
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin150080P. R. China
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Jiacheng Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Liping Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Lin Ye
- School of System Design and Intelligent ManufacturingSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
- Shenzhen STRONG Advanced Materials Research Institute Co., LtdShenzhen518035P. R. China
| |
Collapse
|
34
|
Madhurima K, Nandi B, Munshi S, Naganathan AN, Sekhar A. Functional regulation of an intrinsically disordered protein via a conformationally excited state. SCIENCE ADVANCES 2023; 9:eadh4591. [PMID: 37379390 PMCID: PMC10306299 DOI: 10.1126/sciadv.adh4591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
A longstanding goal in the field of intrinsically disordered proteins (IDPs) is to characterize their structural heterogeneity and pinpoint the role of this heterogeneity in IDP function. Here, we use multinuclear chemical exchange saturation (CEST) nuclear magnetic resonance to determine the structure of a thermally accessible globally folded excited state in equilibrium with the intrinsically disordered native ensemble of a bacterial transcriptional regulator CytR. We further provide evidence from double resonance CEST experiments that the excited state, which structurally resembles the DNA-bound form of cytidine repressor (CytR), recognizes DNA by means of a "folding-before-binding" conformational selection pathway. The disorder-to-order regulatory switch in DNA recognition by natively disordered CytR therefore operates through a dynamical variant of the lock-and-key mechanism where the structurally complementary conformation is transiently accessed via thermal fluctuations.
Collapse
Affiliation(s)
- Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| | - Bodhisatwa Nandi
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| | - Sneha Munshi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| |
Collapse
|
35
|
Blueggel M, Kroening A, Kracht M, van den Boom J, Dabisch M, Goehring A, Kaschani F, Kaiser M, Bayer P, Meyer H, Beuck C. The UBX domain in UBXD1 organizes ubiquitin binding at the C-terminus of the VCP/p97 AAA-ATPase. Nat Commun 2023; 14:3258. [PMID: 37277335 DOI: 10.1038/s41467-023-38604-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The AAA+ ATPase p97/VCP together with different sets of substrate-delivery adapters and accessory cofactor proteins unfolds ubiquitinated substrates to facilitate degradation by the proteasome. The UBXD1 cofactor is connected to p97-associated multisystem proteinopathy but its biochemical function and structural organization on p97 has remained largely elusive. Using a combination of crosslinking mass spectrometry and biochemical assays, we identify an extended UBX (eUBX) module in UBXD1 related to a lariat in another cofactor, ASPL. Of note, the UBXD1-eUBX intramolecularly associates with the PUB domain in UBXD1 close to the substrate exit pore of p97. The UBXD1 PUB domain can also bind the proteasomal shuttling factor HR23b via its UBL domain. We further show that the eUBX domain has ubiquitin binding activity and that UBXD1 associates with an active p97-adapter complex during substrate unfolding. Our findings suggest that the UBXD1-eUBX module receives unfolded ubiquitinated substrates after they exit the p97 channel and before hand-over to the proteasome. The interplay of full-length UBXD1 and HR23b and their function in the context of an active p97:UBXD1 unfolding complex remains to be studied in future work.
Collapse
Affiliation(s)
- Mike Blueggel
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Alexander Kroening
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Kracht
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Matthias Dabisch
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Anna Goehring
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
36
|
Shen Y, Robertson AJ, Bax A. Validation of X-ray Crystal Structure Ensemble Representations of SARS-CoV-2 Main Protease by Solution NMR Residual Dipolar Couplings. J Mol Biol 2023; 435:168067. [PMID: 37330294 PMCID: PMC10270724 DOI: 10.1016/j.jmb.2023.168067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Considerable debate has focused on whether sampling of molecular dynamics trajectories restrained by crystallographic data can be used to develop realistic ensemble models for proteins in their natural, solution state. For the SARS-CoV-2 main protease, Mpro, we evaluated agreement between solution residual dipolar couplings (RDCs) and various recently reported multi-conformer and dynamic-ensemble crystallographic models. Although Phenix-derived ensemble models showed only small improvements in crystallographic Rfree, substantially improved RDC agreement over fits to a conventionally refined 1.2-Å X-ray structure was observed, in particular for residues with above average disorder in the ensemble. For a set of six lower resolution (1.55-2.19 Å) Mpro X-ray ensembles, obtained at temperatures ranging from 100 to 310 K, no significant improvement over conventional two-conformer representations was found. At the residue level, large differences in motions were observed among these ensembles, suggesting high uncertainties in the X-ray derived dynamics. Indeed, combining the six ensembles from the temperature series with the two 1.2-Å X-ray ensembles into a single 381-member "super ensemble" averaged these uncertainties and substantially improved agreement with RDCs. However, all ensembles showed excursions that were too large for the most dynamic fraction of residues. Our results suggest that further improvements to X-ray ensemble refinement are feasible, and that RDCs provide a sensitive benchmark in such endeavors. Remarkably, a weighted ensemble of 350 PDB Mpro X-ray structures provided slightly better cross-validated agreement with RDCs than any individual ensemble refinement, implying that differences in lattice confinement also limit the fit of RDCs to X-ray coordinates.
Collapse
Affiliation(s)
- Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angus J Robertson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. https://twitter.com/angusjrobertson
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Zhao Y, Qin H, Yang YL, Li JQ, Qin SY, Zhang AQ, Lei X. Weakly aligned Ti 3C 2T x MXene liquid crystals: measuring residual dipolar coupling in multiple co-solvent systems. NANOSCALE 2023; 15:7820-7828. [PMID: 37051680 DOI: 10.1039/d3nr00204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Residual Dipolar Coupling (RDC), acquired relying on weakly alignment media, is highly valuable for the structural elucidation of organic molecules. Arising from the striking features of no background signals and low critical concentrations, two-dimensional (2D) liquid crystals (LCs) show the clear advantages of acting as alignment media to measure RDCs. So far, creating multisolvent compatible 2D LC media through a simple and versatile method is still formidably challenging. Herein, we report the rapid creation of aligned media based on the Ti3C2Tx MXene, which self-aligned in multiple co-solvents including CH3OH-H2O, DMSO-H2O, DMF-H2O, and acetone-H2O. We demonstrated the applicability of these aligned media for the RDC measurement of small organic molecules with different polarities and solubilities. Notably, Ti3C2Tx MXene LCs without chemical modification enabled RDC measurements on aromatic molecules. The straightforward preparation of Ti3C2Tx media and its compatibility with multiple solvents will push RDC measurement as a routine methodology for structural elucidation. It may also facilitate the investigation of solvation effects on conformational dynamics.
Collapse
Affiliation(s)
- You Zhao
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Huan Qin
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Yan-Ling Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Jia-Qian Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Si-Yong Qin
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Ai-Qing Zhang
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
38
|
Zhu JJ, Zhang NJ, Wei T, Chen HF. Enhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Autoencoder. Int J Mol Sci 2023; 24:ijms24086896. [PMID: 37108059 PMCID: PMC10138423 DOI: 10.3390/ijms24086896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) account for more than 50% of the human proteome and are closely associated with tumors, cardiovascular diseases, and neurodegeneration, which have no fixed three-dimensional structure under physiological conditions. Due to the characteristic of conformational diversity, conventional experimental methods of structural biology, such as NMR, X-ray diffraction, and CryoEM, are unable to capture conformational ensembles. Molecular dynamics (MD) simulation can sample the dynamic conformations at the atomic level, which has become an effective method for studying the structure and function of IDPs. However, the high computational cost prevents MD simulations from being widely used for IDPs conformational sampling. In recent years, significant progress has been made in artificial intelligence, which makes it possible to solve the conformational reconstruction problem of IDP with fewer computational resources. Here, based on short MD simulations of different IDPs systems, we use variational autoencoders (VAEs) to achieve the generative reconstruction of IDPs structures and include a wider range of sampled conformations from longer simulations. Compared with the generative autoencoder (AEs), VAEs add an inference layer between the encoder and decoder in the latent space, which can cover the conformational landscape of IDPs more comprehensively and achieve the effect of enhanced sampling. Through experimental verification, the Cα RMSD between VAE-generated and MD simulation sampling conformations in the 5 IDPs test systems was significantly lower than that of AE. The Spearman correlation coefficient on the structure was higher than that of AE. VAE can also achieve excellent performance regarding structured proteins. In summary, VAEs can be used to effectively sample protein structures.
Collapse
Affiliation(s)
- Jun-Jie Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning-Jie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Center for Bioinformation Technology, Shanghai 200240, China
| |
Collapse
|
39
|
Hirschmann M, Soltwedel O, Ritzert P, von Klitzing R, Thiele CM. Light-Controlled Lyotropic Liquid Crystallinity of Polyaspartates Exploited as Photo-Switchable Alignment Medium. J Am Chem Soc 2023; 145:3615-3623. [PMID: 36749116 DOI: 10.1021/jacs.2c12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two polyaspartates bearing ortho-fluorinated azobenzenes (pFAB) as photo-responsive groups in the side chain were synthesized: PpFABLA (1) and co-polyaspartate PpFABLA-co-PBLA [11, 75%(n/n) PpFABLA content]. As a consequence of the E/Z-isomerization of the side chain, PpFABLA (1) undergoes a visible-light-induced reversible coil-helix transition in solution: Green light (525 nm) affords the coil, and violet light (400 nm) affords the helix. pFAB significantly increases the thermal stability of the Z-isomer at 20 °C (t1/2 = 66 d for the Z-isomer) and effectively counters the favored back formation of the helix. At 20%(w/w) polymer concentration, the helical polymer forms a lyotropic liquid crystal (LLC) that further orients unidirectionally inside a magnetic field, while the coil polymer results in an isotropic solution. The high viscosity of the polymer solution stabilizes the coexistence of liquid crystalline and isotropic domains, which were obtained with spatial control by partial light irradiation. When used as an alignment medium, PpFABLA (1) enables (i) the measurement of dipolar couplings without the need for a separate isotropic reference and (ii) the differentiation of enantiomers. PpFABLA-co-PBLA (11) preserves the helical structure, by intention, independently of the E/Z-isomerization of the side chain: Both photo-isomers of PpFABLA-co-PBLA (11) form a helix that─at a concentration of 16%(w/w)─form an LLC. Despite the absence of a change in the secondary structure, the E/Z-isomerization of the side chain changes the morphology of the liquid crystal and leads to different sets of dipolar coupling for the same probe molecule.
Collapse
Affiliation(s)
- Max Hirschmann
- Clemens-Schöpf-Institute, Technical University of Darmstadt (TUDa), Alarich-Weiss-Straße 4, DE 64287 Darmstadt, Germany
| | - Olaf Soltwedel
- Institute for Condensed Matter Physics, Technical University of Darmstadt (TUDa), Hochschulstraße 8, DE 64289 Darmstadt, Germany
| | - Philipp Ritzert
- Institute for Condensed Matter Physics, Technical University of Darmstadt (TUDa), Hochschulstraße 8, DE 64289 Darmstadt, Germany
| | - Regine von Klitzing
- Institute for Condensed Matter Physics, Technical University of Darmstadt (TUDa), Hochschulstraße 8, DE 64289 Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institute, Technical University of Darmstadt (TUDa), Alarich-Weiss-Straße 4, DE 64287 Darmstadt, Germany
| |
Collapse
|
40
|
Gallo M, Luti S, Baroni F, Baccelli I, Cilli EM, Cicchi C, Leri M, Spisni A, Pertinhez TA, Pazzagli L. Plant Defense Elicitation by the Hydrophobin Cerato-Ulmin and Correlation with Its Structural Features. Int J Mol Sci 2023; 24:2251. [PMID: 36768573 PMCID: PMC9916430 DOI: 10.3390/ijms24032251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Cerato-ulmin (CU) is a 75-amino-acid-long protein that belongs to the hydrophobin family. It self-assembles at hydrophobic-hydrophilic interfaces, forming films that reverse the wettability properties of the bound surface: a capability that may confer selective advantages to the fungus in colonizing and infecting elm trees. Here, we show for the first time that CU can elicit a defense reaction (induction of phytoalexin synthesis and ROS production) in non-host plants (Arabidopsis) and exerts its eliciting capacity more efficiently when in its soluble monomeric form. We identified two hydrophobic clusters on the protein's loops endowed with dynamical and physical properties compatible with the possibility of reversibly interconverting between a disordered conformation and a β-strand-rich conformation when interacting with hydrophilic or hydrophobic surfaces. We propose that the plasticity of those loops may be part of the molecular mechanism that governs the protein defense elicitation capability.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Fabio Baroni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-901, Brazil
| | - Costanza Cicchi
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Manuela Leri
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | | | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| |
Collapse
|
41
|
Li EH, Spaman L, Tejero R, Huang YJ, Ramelot TA, Fraga KJ, Prestegard JH, Kennedy MA, Montelione GT. Blind Assessment of Monomeric AlphaFold2 Protein Structure Models with Experimental NMR Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525096. [PMID: 36712039 PMCID: PMC9882346 DOI: 10.1101/2023.01.22.525096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent advances in molecular modeling of protein structures are changing the field of structural biology. AlphaFold-2 (AF2), an AI system developed by DeepMind, Inc., utilizes attention-based deep learning to predict models of protein structures with high accuracy relative to structures determined by X-ray crystallography and cryo-electron microscopy (cryoEM). Comparing AF2 models to structures determined using solution NMR data, both high similarities and distinct differences have been observed. Since AF2 was trained on X-ray crystal and cryoEM structures, we assessed how accurately AF2 can model small, monomeric, solution protein NMR structures which (i) were not used in the AF2 training data set, and (ii) did not have homologous structures in the Protein Data Bank at the time of AF2 training. We identified nine open source protein NMR data sets for such "blind" targets, including chemical shift, raw NMR FID data, NOESY peak lists, and (for 1 case) 15 N- 1 H residual dipolar coupling data. For these nine small (70 - 108 residues) monomeric proteins, we generated AF2 prediction models and assessed how well these models fit to these experimental NMR data, using several well-established NMR structure validation tools. In most of these cases, the AF2 models fit the NMR data nearly as well, or sometimes better than, the corresponding NMR structure models previously deposited in the Protein Data Bank. These results provide benchmark NMR data for assessing new NMR data analysis and protein structure prediction methods. They also document the potential for using AF2 as a guiding tool in protein NMR data analysis, and more generally for hypothesis generation in structural biology research. Highlights AF2 models assessed against NMR data for 9 monomeric proteins not used in training.AF2 models fit NMR data almost as well as the experimentally-determined structures. RPF-DP, PSVS , and PDBStat software provide structure quality and RDC assessment. RPF-DP analysis using AF2 models suggests multiple conformational states.
Collapse
Affiliation(s)
- Ethan H. Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Laura Spaman
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Roberto Tejero
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Yuanpeng Janet Huang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Theresa A. Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Keith J. Fraga
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Michael A. Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 USA
| | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
42
|
Gauto DF, Lebedenko OO, Becker LM, Ayala I, Lichtenecker R, Skrynnikov NR, Schanda P. Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD. J Struct Biol X 2022; 7:100079. [PMID: 36578472 PMCID: PMC9791609 DOI: 10.1016/j.yjsbx.2022.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Probing the dynamics of aromatic side chains provides important insights into the behavior of a protein because flips of aromatic rings in a protein's hydrophobic core report on breathing motion involving a large part of the protein. Inherently invisible to crystallography, aromatic motions have been primarily studied by solution NMR. The question how packing of proteins in crystals affects ring flips has, thus, remained largely unexplored. Here we apply magic-angle spinning NMR, advanced phenylalanine 1H-13C/2H isotope labeling and MD simulation to a protein in three different crystal packing environments to shed light onto possible impact of packing on ring flips. The flips of the two Phe residues in ubiquitin, both surface exposed, appear remarkably conserved in the different crystal forms, even though the intermolecular packing is quite different: Phe4 flips on a ca. 10-20 ns time scale, and Phe45 are broadened in all crystals, presumably due to µs motion. Our findings suggest that intramolecular influences are more important for ring flips than intermolecular (packing) effects.
Collapse
Affiliation(s)
- Diego F. Gauto
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France
- ICSN, CNRS UPR2301, Univ. Paris-Saclay, Gif-sur-Yvette, France
| | - Olga O. Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Lea Marie Becker
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Isabel Ayala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France
| | - Roman Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | - Paul Schanda
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
43
|
Okuno Y, Schwieters CD, Yang Z, Clore GM. Theory and Applications of Nitroxide-based Paramagnetic Cosolutes for Probing Intermolecular and Electrostatic Interactions on Protein Surfaces. J Am Chem Soc 2022; 144:21371-21388. [DOI: 10.1021/jacs.2c10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yusuke Okuno
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Charles D. Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Zhilin Yang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
44
|
Krishnarjuna B, Ravula T, Faison EM, Tonelli M, Zhang Q, Ramamoorthy A. Polymer-Nanodiscs as a Novel Alignment Medium for High-Resolution NMR-Based Structural Studies of Nucleic Acids. Biomolecules 2022; 12:1628. [PMID: 36358983 PMCID: PMC9687133 DOI: 10.3390/biom12111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Residual dipolar couplings (RDCs) are increasingly used for high-throughput NMR-based structural studies and to provide long-range angular constraints to validate and refine structures of various molecules determined by X-ray crystallography and NMR spectroscopy. RDCs of a given molecule can be measured in an anisotropic environment that aligns in an external magnetic field. Here, we demonstrate the first application of polymer-based nanodiscs for the measurement of RDCs from nucleic acids. Polymer-based nanodiscs prepared using negatively charged SMA-EA polymer and zwitterionic DMPC lipids were characterized by size-exclusion chromatography, 1H NMR, dynamic light-scattering, and 2H NMR. The magnetically aligned polymer-nanodiscs were used as an alignment medium to measure RDCs from a 13C/15N-labeled fluoride riboswitch aptamer using 2D ARTSY-HSQC NMR experiments. The results showed that the alignment of nanodiscs is stable for nucleic acids and nanodisc-induced RDCs fit well with the previously determined solution structure of the riboswitch. These results demonstrate that SMA-EA-based lipid-nanodiscs can be used as a stable alignment medium for high-resolution structural and dynamical studies of nucleic acids, and they can also be applicable to study various other biomolecules and small molecules in general.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edgar M. Faison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Hu K, Lee W, Montelione GT, Sgourakis NG, Vögeli B. Editorial: Computational approaches for interpreting experimental data and understanding protein structure, dynamics and function relationships. Front Mol Biosci 2022; 9:1018149. [PMID: 36262477 PMCID: PMC9576191 DOI: 10.3389/fmolb.2022.1018149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kaifeng Hu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
- *Correspondence: Woonghee Lee,
| | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Nikolaos G. Sgourakis
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
46
|
Poulin-Ponnelle C, Duvail M, Dumas T, Berthon C. Contribution of Molecular Dynamics in pNMR for the Structural Determination of An V and An VI Complexes in Solution. Inorg Chem 2022; 61:15895-15909. [PMID: 36166623 DOI: 10.1021/acs.inorgchem.2c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we propose to use classical molecular dynamics (MD) coupled with 1H NMR spectroscopy to study the conformations of different actinyl AnVI (An = U, Np, and Pu) and AnV (An = Np) complexes with tetra-ethyl dyglicolamide (TEDGA) ligands in order to have a better representation of such complexes in solution. Molecular dynamics simulations showed its effectiveness in interpreting the experiments by the calculation of geometric factors needed for the determination of magnetic properties of these complexes. We demonstrated that different conformations of the AnV and AnVI complexes with TEDGA exist in solution with different coordination modes, which is experimentally confirmed by 1H NMR and EXAFS spectroscopies. Furthermore, MD simulations provide additional insights into the structures of complexes in solution since conformations with fast exchanges, which are not accessible from NMR experiments, have been observed by MD simulations.
Collapse
Affiliation(s)
| | - Magali Duvail
- ICSM, Univ. Montpellier, CEA, CNRS, ENSCM, Bagnols sur Cèze 30207, France
| | - Thomas Dumas
- LILA, Univ. Montpellier, CEA, Bagnols sur Cèze 30207, France
| | - Claude Berthon
- LILA, Univ. Montpellier, CEA, Bagnols sur Cèze 30207, France
| |
Collapse
|
47
|
Electrostatic and steric effects underlie acetylation-induced changes in ubiquitin structure and function. Nat Commun 2022; 13:5435. [PMID: 36114200 PMCID: PMC9481602 DOI: 10.1038/s41467-022-33087-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/26/2022] [Indexed: 12/29/2022] Open
Abstract
Covalent attachment of ubiquitin (Ub) to proteins is a highly versatile posttranslational modification. Moreover, Ub is not only a modifier but itself is modified by phosphorylation and lysine acetylation. However, the functional consequences of Ub acetylation are poorly understood. By generation and comprehensive characterization of all seven possible mono-acetylated Ub variants, we show that each acetylation site has a particular impact on Ub structure. This is reflected in selective usage of the acetylated variants by different E3 ligases and overlapping but distinct interactomes, linking different acetylated variants to different cellular pathways. Notably, not only electrostatic but also steric effects contribute to acetylation-induced changes in Ub structure and, thus, function. Finally, we provide evidence that p300 acts as a position-specific Ub acetyltransferase and HDAC6 as a general Ub deacetylase. Our findings provide intimate insights into the structural and functional consequences of Ub acetylation and highlight the general importance of Ub acetylation. Ubiquitin is not only a posttranslational modifier but itself is subject to modifications, such as acetylation. Characterization of distinct acetylated ubiquitin variants reveals that each acetylation site has a particular impact on ubiquitin structure and its protein-protein interaction properties.
Collapse
|
48
|
Karschin N, Becker S, Griesinger C. Interdomain Dynamics via Paramagnetic NMR on the Highly Flexible Complex Calmodulin/Munc13-1. J Am Chem Soc 2022; 144:17041-17053. [PMID: 36082939 PMCID: PMC9501808 DOI: 10.1021/jacs.2c06611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paramagnetic NMR constraints are very useful to study protein interdomain motion, but their interpretation is not always straightforward. On the example of the particularly flexible complex Calmodulin/Munc13-1, we present a new approach to characterize this motion with pseudocontact shifts and residual dipolar couplings. Using molecular mechanics, we sampled the conformational space of the complex and used a genetic algorithm to find ensembles that are in agreement with the data. We used the Bayesian information criterion to determine the ideal ensemble size. This way, we were able to make an accurate, unambiguous, reproducible model of the interdomain motion of Calmodulin/Munc13-1 without prior knowledge about the domain orientation from crystallography.
Collapse
Affiliation(s)
- Niels Karschin
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Christian Griesinger
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen D-37075, Germany
| |
Collapse
|
49
|
O’Brien TE, Ioffe LB, Su Y, Fushman D, Neven H, Babbush R, Smelyanskiy V. Quantum computation of molecular structure using data from challenging-to-classically-simulate nuclear magnetic resonance experiments. PRX QUANTUM : A PHYSICAL REVIEW JOURNAL 2022; 3:030345. [PMID: 36624758 PMCID: PMC9825292 DOI: 10.1103/prxquantum.3.030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We propose a quantum algorithm for inferring the molecular nuclear spin Hamiltonian from time-resolved measurements of spin-spin correlators, which can be obtained via nuclear magnetic resonance (NMR). We focus on learning the anisotropic dipolar term of the Hamiltonian, which generates dynamics that are challenging to classically simulate in some contexts. We demonstrate the ability to directly estimate the Jacobian and Hessian of the corresponding learning problem on a quantum computer, allowing us to learn the Hamiltonian parameters. We develop algorithms for performing this computation on both noisy near-term and future fault-tolerant quantum computers. We argue that the former is promising as an early beyond-classical quantum application since it only requires evolution of a local spin Hamiltonian. We investigate the example of a protein (ubiquitin) confined on a membrane as a benchmark of our method. We isolate small spin clusters, demonstrate the convergence of our learning algorithm on one such example, and then investigate the learnability of these clusters as we cross the ergodic to non-ergodic phase transition by suppressing the dipolar interaction. We see a clear correspondence between a drop in the multifractal dimension measured across many-body eigenstates of these clusters, and a transition in the structure of the Hessian of the learning cost function (from degenerate to learnable). Our hope is that such quantum computations might enable the interpretation and development of new NMR techniques for analyzing molecular structure.
Collapse
Affiliation(s)
| | - Lev B. Ioffe
- Google Quantum AI, Venice, CA 90291, United States
| | - Yuan Su
- Google Quantum AI, Venice, CA 90291, United States
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, United States
| | | | - Ryan Babbush
- Google Quantum AI, Venice, CA 90291, United States
| | | |
Collapse
|
50
|
Ujma J, Jhingree J, Norgate E, Upton R, Wang X, Benoit F, Bellina B, Barran P. Protein Unfolding in Freeze Frames: Intermediate States are Revealed by Variable-Temperature Ion Mobility-Mass Spectrometry. Anal Chem 2022; 94:12248-12255. [PMID: 36001095 PMCID: PMC9453741 DOI: 10.1021/acs.analchem.2c03066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gas phase is an idealized laboratory for the study of protein structure, from which it is possible to examine stable and transient forms of mass-selected ions in the absence of bulk solvent. With ion mobility-mass spectrometry (IM-MS) apparatus built to operate at both cryogenic and elevated temperatures, we have examined conformational transitions that occur to the monomeric proteins: ubiquitin, lysozyme, and α-synuclein as a function of temperature and in source activation. We rationalize the experimental observations with a temperature-dependent framework model and comparison to known conformers. Data from ubiquitin show unfolding transitions that proceed through diverse and highly elongated intermediate states, which converge to more compact structures. These findings contrast with data obtained from lysozyme─a protein where (un)-folding plasticity is restricted by four disulfide linkages, although this is alleviated in its reduced form. For structured proteins, collision activation of the protein ions in-source enables subsequent "freezing" or thermal annealing of unfolding intermediates, whereas disordered proteins restructure substantially at 250 K even without activation, indicating that cold denaturation can occur without solvent. These data are presented in the context of a toy model framework that describes the relative occupancy of the available conformational space.
Collapse
Affiliation(s)
- Jakub Ujma
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jacquelyn Jhingree
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Emma Norgate
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rosie Upton
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Xudong Wang
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Florian Benoit
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Bruno Bellina
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|