1
|
Stadler J, Vogel M, Steudtner R, Drobot B, Kogiomtzidis AL, Weiss M, Walther C. The chemical journey of Europium(III) through winter rye (Secale cereale L.) - Understanding through mass spectrometry and chemical microscopy. CHEMOSPHERE 2023; 313:137252. [PMID: 36403807 DOI: 10.1016/j.chemosphere.2022.137252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
A combination of biochemical preparation methods with microscopic, spectroscopic, and mass spectrometric analysis techniques as contemplating state of the art application, was used for direct visualization, localization, and chemical identification of europium in plants. This works illustrates the chemical journey of europium (Eu(III)) through winter rye (Secale cereale L.), providing insight into the possibilities of speciation for Rare Earth Elements (REE) and trivalent f-elements. Kinetic experiments of contaminated plants show a maximum europium concentration in Secale cereale L. after four days. Transport of the element through the vascular bundle was confirmed with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDS). For chemical speciation, plants were grown in a liquid nutrition medium, whereby Eu(III) species distribution could be measured by mass spectrometry and luminescence measurements. Both techniques confirm the occurrence of Eu malate species in the nutrition medium, and further analysis of the plant was performed. Luminescence results indicate a change in Eu(III) species distribution from root tip to plant leaves. Microscopic analysis show at least three different Eu(III) species with potential binding to organic and inorganic phosphate groups and a Eu(III) protein complex. With plant root extraction, further europium species could be identified by using Electrospray Ionization Mass Spectrometry (ESI MS). Complexation with malate, citrate, a combined malate-citrate ligand, and aspartate was confirmed mostly in a 1:1 stoichiometry (Eu:ligand). The combination of the used analytical techniques opens new possibilities in direct species analysis, especially regarding to the understanding of rare earth elements (REE) uptake in plants. This work provides a contribution in better understanding of plant mechanisms of the f-elements and their species uptake.
Collapse
Affiliation(s)
- Julia Stadler
- Institute of Radioecology and Radiation Protection, Leibniz University Hannover, 30419, Hannover, Germany.
| | - Manja Vogel
- VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V., Bautzner Landstraße 400, 01328, Dresden, Germany; HZDR Innovation GmbH, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Anna L Kogiomtzidis
- Institute of Radioecology and Radiation Protection, Leibniz University Hannover, 30419, Hannover, Germany
| | - Martin Weiss
- Institute of Radioecology and Radiation Protection, Leibniz University Hannover, 30419, Hannover, Germany
| | - Clemens Walther
- Institute of Radioecology and Radiation Protection, Leibniz University Hannover, 30419, Hannover, Germany
| |
Collapse
|
2
|
Pritzi M, Pascher TF, Grutza ML, Kurz P, Ončák M, Beyer MK. Decomposition of Halogenated Molybdenum Sulfide Dianions [Mo 3S 7X 6] 2- (X = Cl, Br, I). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1753-1760. [PMID: 35904429 PMCID: PMC9460775 DOI: 10.1021/jasms.2c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 05/26/2023]
Abstract
Molybdenum sulfides are considered a promising and inexpensive alternative to platinum as a catalyst for the hydrogen evolution reaction. In this study, we perform collision-induced dissociation experiments in the gas phase with the halogenated molybdenum sulfides [Mo3S7Cl6]2-, [Mo3S7Br6]2-, and [Mo3S7I6]2-. We show that the first fragmentation step for all three dianions is charge separation via loss of a halide ion. As a second step, further halogen loss competes with the dissociation of a disulfur molecule, whereas the former becomes energetically more favorable and the latter becomes less favorable from chlorine via bromine to iodine. We show that the leaving S2 group is composed of sulfur atoms from two bridging groups. These decomposition pathways differ drastically from the pure [Mo3S13]2- clusters. The obtained insight into preferred dissociation pathways of molybdenum sulfides illustrate possible reaction pathways during the activation of these substances in a catalytic environment.
Collapse
Affiliation(s)
- Marco Pritzi
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Tobias F. Pascher
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Marie-Luise Grutza
- Institut
für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Philipp Kurz
- Institut
für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Milan Ončák
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Pritzi M, Pascher TF, Grutza ML, Kurz P, Ončák M, Beyer MK. Rearrangement and decomposition pathways of bare and hydrogenated molybdenum oxysulfides in the gas phase. Phys Chem Chem Phys 2022; 24:16576-16585. [PMID: 35775378 DOI: 10.1039/d2cp01189a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum sulfides and molybdenum oxysulfides are considered a promising and cheap alternative to platinum as a catalyst for the hydrogen evolution reaction (HER). To better understand possible rearrangements during catalyst activation, we perform collision induced dissociation experiments in the gas phase with eight different molybdenum oxysulfides, namely [Mo2O2S6]2-, [Mo2O2S6]-, [Mo2O2S5]2-, [Mo2O2S5]-, [Mo2O2S4]-, [HMo2O2S6]-, [HMo2O2S5]- and [HMo2O2S4]-, on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. We identify fragmentation channels of the molybdenum oxysulfides and their interconnections. Together with quantum chemical calculations, the results show that [Mo2O2S4]- is a particularly stable species against further dissociation, which is reached from all starting species with relatively low collision energies. Most interestingly, H atom loss is the only fragmentation channel observed for [HMo2O2S4]- at low collision energies, which relates to potential HER activity, since two such H atom binding sites on a surface may act together to release H2. The calculations reveal that multiple isomers are often very close in energy, especially for the hydrogenated species, i.e., atomic hydrogen can bind at various sites of the clusters. S2 groups play a decisive role in hydrogen adsorption. These are further features with potential relevance for HER catalysis.
Collapse
Affiliation(s)
- Marco Pritzi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | - Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | - Marie-Luise Grutza
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Philipp Kurz
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria.
| |
Collapse
|
4
|
Çetin YA, Martorell B, Serratosa F, Aguilera-Porta N, Calatayud M. Analyzing the TiO 2surface reactivity based on oxygen vacancies computed by DFT and DFTB methods. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:314004. [PMID: 35576919 DOI: 10.1088/1361-648x/ac7025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide is a key material in many fields, including technological, industrial and biomedical applications. Many of these applications are related to the surface reactivity of TiO2and involve its reducibility properties. Recently titania has been banned as a food additive due to its (nano)toxicity, and the release of reactive oxygen species plays a crucial role in many toxicological mechanisms. Determining chemical descriptors that account for the extension of reduction is necessary to understand such processes and necessary for predicting the reactivity of an unknown system. In the present work, we compute a set of chemical descriptors for selected surfaces of anatase and rutile TiO2. The aim is twofold: we want to provide chemically meaningful information on the surface reactivity, and benchmark the descriptors for twoab initioschemes. To do so, we compute the oxygen vacancy formation energy, and the corresponding electronic structure, in four slab models with two different computational schemes (DFT+Uand DFTB). In this way, we characterize the robustness of the dataset, with the purpose of scaling up to more realistic model systems such as nanoparticles or explicit solvent, which are too computationally demanding for state-of-the-art density functional theory approaches.
Collapse
Affiliation(s)
- Yarkın Aybars Çetin
- Departament d'Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, Av. Països Catalans, Campus Sescelades, 26, 43007, Tarragona, Catalunya, Spain
| | - Benjamí Martorell
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, Campus Sescelades, 26, 43007, Tarragona, Catalunya, Spain
| | - Francesc Serratosa
- Departament d'Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, Av. Països Catalans, Campus Sescelades, 26, 43007, Tarragona, Catalunya, Spain
| | - Neus Aguilera-Porta
- Laboratoire de Chimie Théorique, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Monica Calatayud
- Laboratoire de Chimie Théorique, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
5
|
Raubenheimer HG, Mapolie SF. Acid and base strength variations: rationalization for cyclic amine bases and acidic aqua cations. Dalton Trans 2021; 50:17864-17878. [PMID: 34792051 DOI: 10.1039/d1dt02940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective highlights and evaluates recent key developments in the thermodynamic approach used to analyze trends in acid and base strength variation. According to this approach, acid and base strength ranking can be interpreted by using thermodynamic or thermochemical cycles. Each cycle generally consists of three independent but well-defined steps. The modus operandi described here entails the identification of the dominant step and the rationalization of its free energy/enthalpy/energy change along a selected series in terms of known structural chemical concepts. Developments in this approach are described by focusing on two related series of bases and two series of acids. In the case of the former the protonation of a series of N-heterocyclic amine bases together with their methyl-substituted analogs receives particular attention while in the case of acids, the acidic properties of aqua dications of elements in period 4 and group 2 are probed. It is illustrated how significant progress in computational chemistry and mass spectrometric techniques can be employed to compare 'inherent' basicity or acidity in the selected families of compounds by using simple gas-phase energy cycles. Unique, dual functions for both electronegativity (element and orbital) and charge density (for aqua cations) indicators are identified and used to evaluate these cycles. Solvent effects (in aqueous solution) are accommodated by including dehydration and hydration changes in appropriately-extended, three-step free energy cycles. It is further suggested that the dominant step in the extended thermodynamic cycle for monomeric aqua cations is the transfer of M(H2O)n2+ complex hydrates from the gas-phase to bulk water. Charge density of the aqua cations again features prominently in proposed rationalizations. Finally, this article also sheds light on salient relationships that exist between empirically and quantum-chemically estimated enthalpy and entropy changes for the aforementioned transfer process.
Collapse
Affiliation(s)
- Helgard G Raubenheimer
- Department of Chemistry and Polymer Science, University of Stellenbosch, 7602, Matieland, South Africa.
| | - Selwyn F Mapolie
- Department of Chemistry and Polymer Science, University of Stellenbosch, 7602, Matieland, South Africa.
| |
Collapse
|
6
|
Asymmetric Solvation of the Zinc Dimer Cation Revealed by Infrared Multiple Photon Dissociation Spectroscopy of Zn 2+(H 2O) n ( n = 1-20). Int J Mol Sci 2021; 22:ijms22116026. [PMID: 34199627 PMCID: PMC8199724 DOI: 10.3390/ijms22116026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Investigating metal-ion solvation—in particular, the fundamental binding interactions—enhances the understanding of many processes, including hydrogen production via catalysis at metal centers and metal corrosion. Infrared spectra of the hydrated zinc dimer (Zn2+(H2O)n; n = 1–20) were measured in the O–H stretching region, using infrared multiple photon dissociation (IRMPD) spectroscopy. These spectra were then compared with those calculated by using density functional theory. For all cluster sizes, calculated structures adopting asymmetric solvation to one Zn atom in the dimer were found to lie lower in energy than structures adopting symmetric solvation to both Zn atoms. Combining experiment and theory, the spectra show that water molecules preferentially bind to one Zn atom, adopting water binding motifs similar to the Zn+(H2O)n complexes studied previously. A lower coordination number of 2 was observed for Zn2+(H2O)3, evident from the highly red-shifted band in the hydrogen bonding region. Photodissociation leading to loss of a neutral Zn atom was observed only for n = 3, attributed to a particularly low calculated Zn binding energy for this cluster size.
Collapse
|
7
|
Chang J, Liu B, Grundy JS, Shao H, Manica R, Li Z, Liu Q, Xu Z. Probing Specific Adsorption of Electrolytes at Kaolinite-Aqueous Interfaces by Atomic Force Microscopy. J Phys Chem Lett 2021; 12:2406-2412. [PMID: 33661011 DOI: 10.1021/acs.jpclett.0c03521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adsorption of electrolytes (ions) at solid-liquid interfaces alters the physical and chemical properties of materials and hence plays a critical role in manufacturing and processing of nanomaterials featuring large surface or interfacial areas of desired structures and morphology. Many experiments and theoretical calculations using various electrical double layer (EDL) models have been conducted to understand how and where ions adsorb at charged surfaces in a liquid. However, conclusions from previous research remain inconclusive because of model-dependent approaches to studying ion adsorption at diverse solid-liquid interfaces. In this study, atomic force microscopy is used to image in liquids the surface lattice structure of two kaolinite basal planes in the presence and absence of monovalent and divalent cations. Distinct adsorption of ions through different mechanisms (such as electrostatic attraction and specific adsorption) is identified through atomic resolution imaging without the assumption of an EDL structure.
Collapse
Affiliation(s)
- Jing Chang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2 V4, Canada
| | - Bo Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2 V4, Canada
| | - James S Grundy
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2 V4, Canada
| | - Huaizhi Shao
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu China
| | - Rogerio Manica
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2 V4, Canada
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi China
| | - Qingxia Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2 V4, Canada
| | - Zhenghe Xu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2 V4, Canada
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Marks JH, Miliordos E, Duncan MA. Infrared spectroscopy of RG-Co +(H 2O) complexes (RG = Ar, Ne, He): The role of rare gas "tag" atoms. J Chem Phys 2021; 154:064306. [PMID: 33588546 DOI: 10.1063/5.0041069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RGn-Co+(H2O) cation complexes (RG = Ar, Ne, He) are generated in a supersonic expansion by pulsed laser vaporization. Complexes are mass-selected using a time-of-flight spectrometer and studied with infrared laser photodissociation spectroscopy, measuring the respective mass channels corresponding to the elimination of the rare gas "tag" atom. Spectral patterns and theory indicate that the structures of the ions with a single rare gas atom have this bound to the cobalt cation opposite the water moiety in a near-C2v arrangement. The O-H stretch vibrations of the complex are shifted compared to those of water because of the metal cation charge-transfer interaction; these frequencies also vary systematically with the rare gas atom attached. The efficiencies of photodissociation also vary with the rare gas atoms because of their widely different binding energies to the cobalt cation. The spectrum of the argon complex could only be measured when at least three argon atoms were attached. In the case of the helium complex, the low binding energy allows the spectra to be measured for the low-frequency H-O-H scissors bending mode and for the O-D stretches of the deuterated analog. The partially resolved rotational structure for the antisymmetric O-H and O-D stretches reveals the temperature of these complexes (6 K) and establishes the electronic ground state. The helium complex has the same 3B1 ground state as the tag-free complex studied previously by Metz and co-workers ["Dissociation energy and electronic and vibrational spectroscopy of Co+(H2O) and its isotopomers," J. Phys. Chem. A 117, 1254 (2013)], but the A rotational constant is contaminated by vibrational averaging from the bending motion of the helium.
Collapse
Affiliation(s)
- Joshua H Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
9
|
Carnegie PD, Marks JH, Brathwaite AD, Ward TB, Duncan MA. Microsolvation in V +(H 2O) n Clusters Studied with Selected-Ion Infrared Spectroscopy. J Phys Chem A 2020; 124:1093-1103. [PMID: 31961153 DOI: 10.1021/acs.jpca.9b11275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gas-phase ion-molecule clusters of the form V+(H2O)n (n = 1-30) are produced by laser vaporization in a supersonic expansion. These ions are analyzed and mass-selected with a time-of-flight mass spectrometer and investigated with infrared laser photodissociation spectroscopy. The small clusters (n ≤ 7) are studied with argon tagging, while the larger clusters are studied via the elimination of water molecules. The vibrational spectra for the small clusters include only free O-H stretching vibrations, while larger clusters exhibit redshifted hydrogen bonding vibrations. The spectral patterns reveal that the coordination around V+ ions is completed with four water molecules. A symmetric square-planar structure forms for the n = 4 ion, and this becomes the core ion in larger structures. Clusters up to n = 8 have mostly two-dimensional structures, but hydrogen bonding networks evolve to three-dimensional structures in larger clusters. The free O-H vibration of acceptor-acceptor-donor (AAD)-coordinated surface molecules converges to a frequency near that of bulk water by the cluster size of n = 30. However, the splitting of this vibration for AAD- versus AD-coordinated molecules is still different compared to other singly charged or doubly charged cation-water clusters. This indicates that cation identity and charge-site location in the cluster can produce discernable spectral differences for clusters in this size range.
Collapse
Affiliation(s)
- Prosser D Carnegie
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Joshua H Marks
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Antonio D Brathwaite
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Timothy B Ward
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Michael A Duncan
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
10
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation. ChemistryOpen 2019; 8:1453-1459. [PMID: 31871848 PMCID: PMC6916659 DOI: 10.1002/open.201900282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Indexed: 11/29/2022] Open
Abstract
The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II) n (HCO2)2n+1 -, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n >2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I) m (HCO2) m+1 -, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2 - and Cu(II)(HCO2)3 -, respectively, is unreactive towards oxygen.
Collapse
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
11
|
Plattner M, Baloglou A, Ončák M, van der Linde C, Beyer MK. Structural Properties of Gas-Phase Molybdenum Oxide Clusters [Mo 4O 13] 2-, [HMo 4O 13] -, and [CH 3Mo 4O 13] - Studied by Collision-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1946-1955. [PMID: 31420847 PMCID: PMC6805806 DOI: 10.1007/s13361-019-02294-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 05/31/2023]
Abstract
Molybdenum oxide-based catalysts are widely used for the ammoxidation of toluene, methanation of CO, or hydrodeoxygenation. As a first step towards a gas-phase model system, we investigate here structural properties of mass-selected [Mo4O13]2-, [HMo4O13]-, and [CH3Mo4O13]- by a combination of collision-induced dissociation (CID) experiments and quantum chemical calculations. According to calculations, the common structural motif is an eight-membered ring composed of four MoO2 units and four O atoms. The 13th O atom is located above the center of the ring and connects two to four Mo centers. For [Mo4O13]2- and [HMo4O13]-, dissociation requires opening or rearrangement of the ring structure, which is quite facile for the doubly charged [Mo4O13]2-, but energetically more demanding for [HMo4O13]-. In the latter case, the hydrogen atom is found to stay preferentially with the negatively charged fragments [HMo2O7]- or [HMoO4]-. The doubly charged species [Mo4O13]2- loses one MoO3 unit at low energies while Coulomb explosion into the complementary fragments [Mo2O6]- and [Mo2O7]- dominates at elevated collision energies. [CH3Mo4O13]- affords rearrangements of the methyl group with low barriers, preferentially eliminating formaldehyde, while the ring structure remains intact. [CH3Mo4O13]- also reacts efficiently with water, leading to methanol or formaldehyde elimination.
Collapse
Affiliation(s)
- Manuel Plattner
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Aristeidis Baloglou
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
12
|
Lamsabhi AM, Mó O, Yáñez M, Salpin JY. Combined Experimental and Theoretical Survey of the Gas-Phase Reactions of Serine-Ca 2+ Adducts. J Phys Chem A 2019; 123:6241-6250. [PMID: 31268328 DOI: 10.1021/acs.jpca.9b03977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The association of Ca2+ to serine and the subsequent gas-phase unimolecular reactivity of the [Ca(Ser)]2+ (Ser = Serine) adduct was investigated throughout the use of tandem mass spectrometry techniques and B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) density functional theory calculations. In a first step, the structure and relative stability of all possible conformers of serine were obtained and analyzed, as well as the most stable [serine-Ca]2+ adducts. For the analysis of the different potential energy surfaces associated with the gas-phase unimolecular reactivity of these adducts, only those that differ by less than 100 kJ·mol-1 from the global minimum were taken into account. In agreement with previous studies, the serine-Ca2+ global minimum corresponds to a charge-solvated structure in which Ca is tricoordinated to neutral serine. The major peaks observed in the nanoelectrospray-MS/MS spectrum of [Ca(Ser)]2+ adduct correspond to both Coulomb explosions, yielding either CaOH+ + [C3,H6,N,O2]+ or [C2,H4,O,N]+ + [Ca(C,H3,O2)]+, and to the loss of neutrals, namely, CH2O and H2O. Our theoretical survey of the energy profile allow us to conclude that, although all the aforementioned fragmentation processes can have their origin at the global minimum, similar fragmentations involving low-lying conformers, both zwitterionic and nonzwitterionic, compete and should be considered to account for the observed reactivity. We have also found that in some specific cases post-transition state dynamics similar to the ones described before in the literature for formamide-Ca2+ reactions, may also play a role.
Collapse
Affiliation(s)
- Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Facultad de Ciencias and Institute of Advanced Chemical Sciences (IadChem) , Universidad Autónoma de Madrid , Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid , Spain
| | - Otilia Mó
- Departamento de Química, Módulo 13, Facultad de Ciencias and Institute of Advanced Chemical Sciences (IadChem) , Universidad Autónoma de Madrid , Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid , Spain
| | - Manuel Yáñez
- Departamento de Química, Módulo 13, Facultad de Ciencias and Institute of Advanced Chemical Sciences (IadChem) , Universidad Autónoma de Madrid , Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid , Spain
| | - Jean-Yves Salpin
- LAMBE, Univ Evry, CNRS, CEA , Université Paris-Saclay , F-91025 Evry-Courcouronnes , France.,LAMBE, UCP , Université Paris-Seine , F-91025 Evry-Courcouronnes , France
| |
Collapse
|
13
|
Baloglou A, Ončák M, Grutza ML, van der Linde C, Kurz P, Beyer MK. Structural Properties of Gas Phase Molybdenum Sulfide Clusters [Mo 3S 13] 2-, [HMo 3S 13] -, and [H 3Mo 3S 13] + as Model Systems of a Promising Hydrogen Evolution Catalyst. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:8177-8186. [PMID: 30984322 PMCID: PMC6453024 DOI: 10.1021/acs.jpcc.8b08324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Indexed: 05/31/2023]
Abstract
Amorphous molybdenum sulfide (MoS x ) is a potent catalyst for the hydrogen evolution reaction (HER). Since mechanistic investigations on amorphous solids are particularly difficult, we use a bottom-up approach and study the [Mo3S13]2- nanocluster and its protonated forms. The mass selected pure [Mo3S13]2- as well as singly and triply protonated [HMo3S13]- and [H3Mo3S13]+ ions, respectively, were investigated by a combination of collision induced dissociation (CID) experiments and quantum chemical calculations. A rich variety of H x S y elimination channels was observed, giving insight into the structural flexibility of the clusters. In particular, it was calculated that the observed clusters tend to keep the Mo3 ring structure found in the bulk and that protons adsorb primarily on terminal disulfide units of the cluster. Mo-H bonds are formed only for quasi-linear species with Mo centers featuring empty coordination sites. Protonation leads to increased cluster stability against CID. The rich variety of CID dissociation products for the triply protonated [H3Mo3S13]+ ion, however, suggests that it has a large degree of structural flexibility, with roaming H/SH moieties, which could be a key feature of MoS x to facilitate HER catalysis via a Volmer-Heyrovsky mechanism.
Collapse
Affiliation(s)
- Aristeidis Baloglou
- Institut
für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut
für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Marie-Luise Grutza
- Institut
für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Christian van der Linde
- Institut
für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Philipp Kurz
- Institut
für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Martin K. Beyer
- Institut
für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
León-Pimentel CI, Amaro-Estrada JI, Hernández-Cobos J, Saint-Martin H, Ramírez-Solís A. Aqueous solvation of Mg(ii) and Ca(ii): A Born-Oppenheimer molecular dynamics study of microhydrated gas phase clusters. J Chem Phys 2018; 148:144307. [PMID: 29655339 DOI: 10.1063/1.5021348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hydration features of [Mg(H2O)n]2+ and [Ca(H2O)n]2+ clusters with n = 3-6, 8, 18, and 27 were studied by means of Born-Oppenheimer molecular dynamics simulations at the B3LYP/6-31+G** level of theory. For both ions, it is energetically more favorable to have all water molecules in the first hydration shell when n ≤ 6, but stable lower coordination average structures with one water molecule not directly interacting with the ion were found for Mg2+ at room temperature, showing signatures of proton transfer events for the smaller cation but not for the larger one. A more rigid octahedral-type structure for Mg2+ than for Ca2+ was observed in all simulations, with no exchange of water molecules to the second hydration shell. Significant thermal effects on the average structure of clusters were found: while static optimizations lead to compact, spherically symmetric hydration geometries, the effects introduced by finite-temperature dynamics yield more prolate configurations. The calculated vibrational spectra are in agreement with infrared spectroscopy results. Previous studies proposed an increase in the coordination number (CN) from six to eight water molecules for [Ca(H2O)n]2+ clusters when n ≥ 12; however, in agreement with recent measurements of binding energies, no transition to a larger CN was found when n > 8. Moreover, the excellent agreement found between the calculated extended X-ray absorption fine structure spectroscopy spectra for the larger cluster and the experimental data of the aqueous solution supports a CN of six for Ca2+.
Collapse
Affiliation(s)
- C I León-Pimentel
- Instituto de Ciencias Físicas, Universidad Autónoma de México, Apdo. Postal 48-3, Cuernavaca, Morelos 62251, Mexico
| | - J I Amaro-Estrada
- Instituto de Ciencias Físicas, Universidad Autónoma de México, Apdo. Postal 48-3, Cuernavaca, Morelos 62251, Mexico
| | - J Hernández-Cobos
- Instituto de Ciencias Físicas, Universidad Autónoma de México, Apdo. Postal 48-3, Cuernavaca, Morelos 62251, Mexico
| | - H Saint-Martin
- Instituto de Ciencias Físicas, Universidad Autónoma de México, Apdo. Postal 48-3, Cuernavaca, Morelos 62251, Mexico
| | - A Ramírez-Solís
- Departamento de Física, Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| |
Collapse
|
15
|
Ward TB, Miliordos E, Carnegie PD, Xantheas SS, Duncan MA. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters. J Chem Phys 2017; 146:224305. [DOI: 10.1063/1.4984826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. B. Ward
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA
| | - E. Miliordos
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, USA
| | - P. D. Carnegie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA
| | - S. S. Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, USA
| | - M. A. Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA
| |
Collapse
|
16
|
Raymond O, Henderson W, Brothers PJ, Plieger PG. Electrospray-Ionisation Mass-Spectrometric (ESI-MS) Investigation of Beryllium Hydrolysis in Acidic Solutions of Beryllium Sulfate. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Onyekachi Raymond
- Chemistry, School of Science; University of Waikato; Private Bag 3105 Hamilton New Zealand
| | - William Henderson
- Chemistry, School of Science; University of Waikato; Private Bag 3105 Hamilton New Zealand
| | | | - Paul G. Plieger
- Chemistry, Institute of Fundamental Science; Massey University; Turitea Campus Palmerston North New Zealand
| |
Collapse
|
17
|
Manolakos S, Sinatra F, Albers L, Hufford K, Alberti J, Nazarov E, Evans-Nguyen T. Differential Mobility Spectrometry for Inorganic Filtration in Nuclear Forensics. Anal Chem 2016; 88:11399-11405. [DOI: 10.1021/acs.analchem.6b01441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Spiros Manolakos
- Draper Laboratory, 3802 Spectrum Boulevard,
Suite 201, Tampa, Florida 33612, United States
| | - Francy Sinatra
- Draper Laboratory, 3802 Spectrum Boulevard,
Suite 201, Tampa, Florida 33612, United States
| | - Leila Albers
- Draper Laboratory, 3802 Spectrum Boulevard,
Suite 201, Tampa, Florida 33612, United States
| | - Kevin Hufford
- Draper Laboratory, 3802 Spectrum Boulevard,
Suite 201, Tampa, Florida 33612, United States
| | - James Alberti
- Draper Laboratory, 3802 Spectrum Boulevard,
Suite 201, Tampa, Florida 33612, United States
| | - Erkinjon Nazarov
- Draper Laboratory, 3802 Spectrum Boulevard,
Suite 201, Tampa, Florida 33612, United States
| | - Theresa Evans-Nguyen
- Draper Laboratory, 3802 Spectrum Boulevard,
Suite 201, Tampa, Florida 33612, United States
- The University of South Florida, Department
of Chemistry, 4202 East
Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| |
Collapse
|
18
|
Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations. Proc Natl Acad Sci U S A 2016; 113:4629-33. [PMID: 27071120 DOI: 10.1073/pnas.1601651113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Solar emission produces copious nitrosonium ions (NO(+)) in the D layer of the ionosphere, 60 to 90 km above the Earth's surface. NO(+) is believed to transfer its charge to water clusters in that region, leading to the formation of gaseous nitrous acid (HONO) and protonated water cluster. The dynamics of this reaction at the ionospheric temperature (200-220 K) and the associated mechanistic details are largely unknown. Using ab initio molecular dynamics (AIMD) simulations and transition-state search, key structures of the water hydrates-tetrahydrate NO(+)(H2O)4 and pentahydrate NO(+)(H2O)5-are identified and shown to be responsible for HONO formation in the ionosphere. The critical tetrahydrate NO(+)(H2O)4 exhibits a chain-like structure through which all of the lowest-energy isomers must go. However, most lowest-energy isomers of pentahydrate NO(+)(H2O)5 can be converted to the HONO-containing product, encountering very low barriers, via a chain-like or a three-armed, star-like structure. Although these structures are not the global minima, at 220 K, most lowest-energy NO(+)(H2O)4 and NO(+)(H2O)5 isomers tend to channel through these highly populated isomers toward HONO formation.
Collapse
|
19
|
Wende T, Heine N, Yacovitch TI, Asmis KR, Neumark DM, Jiang L. Probing the microsolvation of a quaternary ion complex: gas phase vibrational spectroscopy of (NaSO4−)2(H2O)n=0–6, 8. Phys Chem Chem Phys 2016; 18:267-77. [DOI: 10.1039/c5cp05762k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report infrared multiple photon dissociation spectra of cryogenically-cooled (NaSO4−)2(H2O)n dianions (n = 0–6, 8) in the fingerprint spectral region, which provide evidence for a remarkable stability of the quaternary ion complex upon microhydration.
Collapse
Affiliation(s)
- Torsten Wende
- Fritz-Haber-Institut der Max-Planck-Gesellschaft
- Germany
| | - Nadja Heine
- Fritz-Haber-Institut der Max-Planck-Gesellschaft
- Germany
| | | | - Knut R. Asmis
- Fritz-Haber-Institut der Max-Planck-Gesellschaft
- Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- D-04103 Leipzig
| | - Daniel M. Neumark
- Department of Chemistry
- University of California, Berkeley
- USA
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
| | - Ling Jiang
- Fritz-Haber-Institut der Max-Planck-Gesellschaft
- Germany
- State Key Laboratory of Molecular Reaction Dynamics
- Collaborative Innovation Center of Chemistry for Energy and Materials
- Dalian Institute of Chemical Physics
| |
Collapse
|
20
|
Li Q, Yao L, Xia W, Lin S. Calculation of anharmonic effects in the unimolecular dissociation of M 2+(H 2O) 2(M = Be, Mg, and Ca). Mol Phys 2015. [DOI: 10.1080/00268976.2015.1036148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Zeng Z, Hou GL, Song J, Feng G, Xu HG, Zheng WJ. Microsolvation of LiBO2 in water: anion photoelectron spectroscopy and ab initio calculations. Phys Chem Chem Phys 2015; 17:9135-47. [PMID: 25758204 DOI: 10.1039/c5cp00020c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The microsolvation of LiBO2 in water was investigated by conducting anion photoelectron spectroscopy and ab initio studies on the LiBO2(H2O)n(-) (n = 0-5) clusters. By comparing calculations with experiments, the structures of these clusters and their corresponding neutrals were assigned, and their structural evolutions were revealed. During the anionic structural evolution with n increasing to 5, hydroxyborate and metaborate channels were identified and the metaborate channel is more favorable. For the hydroxyborate structures, the anionic Li(+)-BO2(-) ion pair reacts with a water molecule to produce the LiBO(OH)2(-) moiety and three water molecules tend to dissolve this moiety. In the metaborate channel, two types of solvent-separated ion pair (SSIP) geometries were determined as the ring-type and linear-type. The transition from the contact ion pair (CIP) to the ring-type of SSIP starts at n = 3, while that to the linear-type of SSIP occurs at n = 4. In neutral LiBO2(H2O)n clusters, the first water molecule prefers to react with the Li(+)-BO2(-) ion pair to generate the LiBO(OH)2 moiety, analogous to the bulk crystal phase of α-LiBO2 with two O atoms substituted by two OH groups. The Li-O distance in the LiBO(OH)2 moiety increases with the increasing number of water molecules and elongates abruptly at n = 4. Our studies provide new insight into the initial dissolution of LiBO2 salt in water at the molecular level and may be correlated to the bulk state.
Collapse
Affiliation(s)
- Zhen Zeng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
22
|
Wheeler OW, Carl DR, Hofstetter TE, Armentrout PB. Hydration Enthalpies of Ba2+(H2O)x, x = 1–8: A Threshold Collision-Induced Dissociation and Computational Investigation. J Phys Chem A 2015; 119:3800-15. [DOI: 10.1021/acs.jpca.5b01087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oscar W. Wheeler
- Department of Chemistry, University of Utah, 315 South 1400
East, Room 2020, Salt Lake
City, Utah 84112, United States
| | - Damon R. Carl
- Department of Chemistry, University of Utah, 315 South 1400
East, Room 2020, Salt Lake
City, Utah 84112, United States
| | - Theresa E. Hofstetter
- Department of Chemistry, University of Utah, 315 South 1400
East, Room 2020, Salt Lake
City, Utah 84112, United States
| | - P. B. Armentrout
- Department of Chemistry, University of Utah, 315 South 1400
East, Room 2020, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
23
|
Lam TW, Zhang H, Siu CK. Reductions of oxygen, carbon dioxide, and acetonitrile by the magnesium(II)/magnesium(I) couple in aqueous media: theoretical insights from a nano-sized water droplet. J Phys Chem A 2015; 119:2780-92. [PMID: 25738586 DOI: 10.1021/jp511490n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reductions of O2, CO2, and CH3CN by the half-reaction of the Mg(II)/Mg(I) couple (Mg(2+) + e(-) → Mg(+•)) confined in a nanosized water droplet ([Mg(H2O)16](•+)) have been examined theoretically by means of density functional theory based molecular dynamics methods. The present works have revealed many intriguing aspects of the reaction dynamics of the water clusters within several picoseconds or even in subpicoseconds. The reduction of O2 requires an overall doublet spin state of the system. The reductions of CO2 and CH3CN are facilitated by their bending vibrations and the electron-transfer processes complete within 0.5 ps. For all reactions studied, the radical anions, i.e., O2(•-), CO2(•-), and CH3CN(•-), are initially formed on the cluster surface. O2(•-) and CO2(•-) can integrate into the clusters due to their high hydrophilicity. They are either solvated in the second solvation shell of Mg(2+) as a solvent-separated ion pair (ssip) or directly coordinated to Mg(2+) as a contact-ion pair (cip) having the (1)η-[MgO2](•+) and (1)η-[MgOCO](•+) coordination modes. The (1)η-[MgO2](•+) core is more crowded than the (1)η-[MgOCO](•+) core. The reaction enthalpies of the formation of ssip and cip of [Mg(CO2)(H2O)16](•+) are -36 ± 4 kJ mol(-1) and -30 ± 9 kJ mol(-1), respectively, which were estimated based on the average temperature changes during the ion-molecule reaction between CO2 and [Mg(H2O)16](•+). The values for the formation of ssip and cip of [Mg(O2)(H2O)16](•+) are estimated to be -112 ± 18 kJ mol(-1) and -128 ± 28 kJ mol(-1), respectively. CH3CN(•-) undergoes protonation spontaneously to form the hydrophobic [CH3CN, H](•). Both CH3CN and [CH3CN, H](•) cannot efficiently penetrate into the clusters with activation barriers of 22 kJ mol(-1) and ∼40 kJ mol(-1), respectively. These results provide fundamental insights into the solvation dynamics of the Mg(2+)/Mg(•+) couple on the molecular level.
Collapse
Affiliation(s)
- Tim-Wai Lam
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Han Zhang
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Chi-Kit Siu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| |
Collapse
|
24
|
DiTucci MJ, Heiles S, Williams ER. Role of Water in Stabilizing Ferricyanide Trianion and Ion-Induced Effects to the Hydrogen-Bonding Water Network at Long Distance. J Am Chem Soc 2015; 137:1650-7. [DOI: 10.1021/ja5119545] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew J. DiTucci
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Sven Heiles
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
25
|
Armentrout PB, Sweeney AF. Hydrated copper ion chemistry: guided ion beam and computational investigation of Cu2+(H2O)n (n = 7-10) complexes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:497-516. [PMID: 26307731 DOI: 10.1255/ejms.1334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cross sections for the threshold collision-induced dissociation of Cu(2+)(H(2)O)(n), where n = 8 - 10, are measured using a guided ion beam tandem mass spectrometer. The primary dissociation pathway is found to be loss of a single water molecule followed by the sequential loss of additional water molecules until n = 8, at which point charge separation to form CuOH(+)(H(2)O)(4) (+) H(+)(H(2)O)(3) is observed to occur at a slightly lower energy than loss of a water molecule. Competition from charge separation prohibits the formation of appreciable amounts of the n = 7 or smaller complexes as reactants in the source. These findings indicate that Cu(2+) has a critical size of 8. Analysis of the data using statistical modeling techniques that account for energy distributions and lifetime effects yields primary and sequential bond dissociation energies (BDEs) for loss of one and two water molecules from n = 8 - 10 complexes as well as the barrier for charge separation from n = 8. More speculative analysis extends the thermochemistry obtained down to n = 5 and 6. Theoretical BDEs are determined from quantum chemical calculations using structures optimized at the B3LYP/6 311(+)G(d,p) level along with the lowest-energy isomers suggested by single point energies at the MP2(full), M06, B3LYP, and B3P86 levels of theory using a 6- 311(+)G(2d,2p) basis set. BDEs at 0K are converted to 298 K thermodynamic values using a rigid rotor/harmonic oscillator approximation. Experimental and theoretical entropies of activation suggest that a third solvent shell forms at n = 9, in accord with previous findings. The present work represents the first experimentally determined hydration enthalpies for the Cu(2+)(H(2)O)n system.
Collapse
Affiliation(s)
- Peter B Armentrout
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, Utah 84112, United States.
| | - Andrew F Sweeney
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, Utah 84112, United States.
| |
Collapse
|
26
|
Butler M, Mañez PA, Cabrera GM, Maître P. Gas phase structure and reactivity of doubly charged microhydrated calcium(II)-catechol complexes probed by infrared spectroscopy. J Phys Chem A 2014; 118:4942-54. [PMID: 24963704 DOI: 10.1021/jp503789j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Doubly charged microhydrated adducts formed from catechol and calcium(II) were produced in the gas phase using electrospray ionization (ESI) appearing as the most important ions in the mass spectra recorded. The gas phase structures of [Ca(catechol)2(H2O)](2+) and [Ca(catechol)2(H2O)2](2+) have been assayed by IR multiphoton dissociation (IRMPD) spectroscopy, recording their vibrational spectra in the 3450-3750 cm(-1) range (OH stretching region) and in the 900-1700 cm(-1) fingerprint spectral region. The agreement between experimental and calculated IR spectra of the selected cluster ions confirmed the suitability of the proposed geometries. In addition, quantum chemical calculations at the B3LYP/6-311+G(d,p) level of theory were performed for [Ca(catechol)2(H2O)](2+) to gain insight into the major routes of dissociation. The results suggest that loss of the water molecule is the lowest energy fragmentation channel followed by charge separation products and neutral loss of one catechol molecule, in agreement with the product ions observed upon collision-induced dissociation (CID).
Collapse
Affiliation(s)
- Matias Butler
- Departamento de Química Orgánica, UMyMFOR-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Pabellón II, 3° piso, C1428EHA, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
27
|
Johnson CJ, Dzugan LC, Wolk AB, Leavitt CM, Fournier JA, McCoy AB, Johnson MA. Microhydration of contact ion pairs in M(2+)OH(-)(H2O)(n=1-5) (M = Mg, Ca) clusters: spectral manifestations of a mobile proton defect in the first hydration shell. J Phys Chem A 2014; 118:7590-7. [PMID: 24874345 DOI: 10.1021/jp504139j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vibrational predissociation spectra of D2-"tagged" Mg(2+)OH(-)(H2O)n=1-6 and Ca(2+)OH(-)(H2O)n=1-5 clusters are reported to explore how the M(2+)OH(-) contact ion pairs respond to stepwise formation of the first hydration shell. In both cases, the hydroxide stretching frequency is found to red-shift strongly starting with addition of the third water molecule, quickly becoming indistinguishable from nonbonded OH groups associated with solvent water molecules by n = 5. A remarkably broad feature centered around 3200 cm(-1) and spanning up to ∼1000 cm(-1) appears for the n ≥ 4 clusters that we assign to a single-donor ionic hydrogen bond between a proximal first solvent shell water molecule and the embedded hydroxide ion. The extreme broadening is rationalized with a theoretical model that evaluates the range of local OH stretching frequencies predicted for the heavy particle configurations available in the zero-point vibrational wave function describing the low-frequency modes. The implication of this treatment is that extreme broadening in the vibrational spectrum need not arise from thermal fluctuations in the ion ensemble, but can rather reflect combination bands based on the OH stretching fundamental that involve many quanta of low-frequency modes whose displacements strongly modulate the OH stretching frequency.
Collapse
Affiliation(s)
- Christopher J Johnson
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Jin T, Zhang B, Song J, Jiang L, Qiu Y, Zhuang W. Infrared Signature of the Early Stage Microsolvation in the NaSO4–(H2O)1–5 Clusters: A Simulation Study. J Phys Chem A 2014; 118:9157-62. [DOI: 10.1021/jp5028299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tan Jin
- College of Photonic
and Electronic Engineering, Fujian Normal University, Fuzhou 350007, Fujian, People’s Republic of China
- State Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, People’s Republic of China
| | - BingBing Zhang
- State Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, People’s Republic of China
- College of Chemistry
and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, People’s Republic of China
| | - Jian Song
- Department
of Physics, Henan Normal University, Xinxiang 453007, Henan, People’s Republic of China
| | - Ling Jiang
- State Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, People’s Republic of China
| | - Yishen Qiu
- College of Photonic
and Electronic Engineering, Fujian Normal University, Fuzhou 350007, Fujian, People’s Republic of China
| | - Wei Zhuang
- State Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, People’s Republic of China
| |
Collapse
|
29
|
Unimolecular and hydrolysis channels for the detachment of water from microsolvated alkaline earth dication (Mg2+, Ca2+, Sr2+, Ba2+) clusters. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1450-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Jiang L, Sun ST, Heine N, Liu JW, Yacovitch TI, Wende T, Liu ZF, Neumark DM, Asmis KR. Large amplitude motion in cold monohydrated dihydrogen phosphate anions H2PO4−(H2O): infrared photodissociation spectroscopy combined with ab initio molecular dynamics simulations. Phys Chem Chem Phys 2014; 16:1314-8. [DOI: 10.1039/c3cp54250e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Miliordos E, Xantheas SS. Elucidating the mechanism behind the stabilization of multi-charged metal cations in water: a case study of the electronic states of microhydrated Mg2+, Ca2+ and Al3+. Phys Chem Chem Phys 2014; 16:6886-92. [DOI: 10.1039/c3cp53636j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Ricks AM, Brathwaite AD, Duncan MA. IR spectroscopy of gas phase V(CO2)n+ clusters: solvation-induced electron transfer and activation of CO2. J Phys Chem A 2013; 117:11490-8. [PMID: 24144326 DOI: 10.1021/jp4089035] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ion-molecule complexes of vanadium and CO2, i.e., V(CO2)n(+), produced by laser vaporization are mass selected and studied with infrared laser photodissociation spectroscopy. Vibrational bands for the smaller clusters (n < 7) are consistent with CO2 ligands bound to the metal cation via electrostatic interactions and/or attaching as inert species in the second coordination sphere. All IR bands for these complexes are consistent with intact CO2 molecules weakly perturbed by cation binding. However, multiple new IR bands occur only in larger complexes (n ≥ 7), indicating the formation of an intracluster reaction product whose nominal mass is the same as that of V(CO2)n(+) complexes. Computational studies and the comparison of predicted spectra for different possible reaction products allow identification of an oxalate-type C2O4 anion species in the cluster. The activation of CO2 producing this product occurs via a solvation-induced metal→ligand electron transfer reaction.
Collapse
Affiliation(s)
- Allen M Ricks
- Department of Chemistry University of Georgia , Athens, Georgia 30602
| | | | | |
Collapse
|
33
|
Bandyopadhyay B, Reishus KN, Duncan MA. Infrared spectroscopy of solvation in small Zn+ (H2O)n complexes. J Phys Chem A 2013; 117:7794-803. [PMID: 23875934 DOI: 10.1021/jp4046676] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Singly charged zinc-water cations are produced in a pulsed supersonic expansion source using laser vaporization. Zn(+)(H2O)n (n = 1-4) complexes are mass selected and studied with infrared laser photodissociation spectroscopy, employing the method of argon tagging. Density functional theory (DFT) computations are used to obtain the structures and vibrational frequencies of these complexes and their isomers. Spectra in the O-H stretching region show sharp bands corresponding to the symmetric and asymmetric stretches, whose frequencies are lower than those in the isolated water molecule. Zn(+)(H2O)nAr complexes with n = 1-3 have O-H stretches only in the higher frequency region, indicating direct coordination to the metal. The Zn(+)(H2O)2-4Ar complexes have multiple bands here, indicating the presence of multiple low energy isomers differing in the attachment position of argon. The Zn(+)(H2O)4Ar cluster uniquely exhibits a broad band in the hydrogen bonded stretch region, indicating the presence of a second sphere water molecule. The coordination of the Zn(+)(H2O)n complexes is therefore completed with three water molecules.
Collapse
|
34
|
Chen X, Stace AJ. Gas Phase Measurements of the Stabilization and Solvation of Metal Dications in Clusters of Ammonia and Methanol. J Phys Chem A 2013; 117:5015-22. [DOI: 10.1021/jp4014064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaojing Chen
- Department
of Physical Chemistry, School of Chemistry, University of Nottingham, University Park, Nottingham
NG7 2RD, U.K
| | - Anthony J. Stace
- Department
of Physical Chemistry, School of Chemistry, University of Nottingham, University Park, Nottingham
NG7 2RD, U.K
| |
Collapse
|
35
|
Rutkowski PX, Michelini MDC, Gibson JK. Proton Transfer in Th(IV) Hydrate Clusters: A Link to Hydrolysis of Th(OH)22+ to Th(OH)3+ in Aqueous Solution. J Phys Chem A 2013; 117:451-9. [DOI: 10.1021/jp309658x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Philip X. Rutkowski
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - John K. Gibson
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
36
|
LEI XL, PAN BC. THE GEOMETRIES AND PROTON TRANSFER OF HYDRATED DIVALENT LEAD ION CLUSTERS [Pb(H2O)n]2+(n = 1–17). JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633612500769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The low-lying candidates of hydrated divalent lead ion clusters [ Pb(H2O) n]2+ with up to n = 17 have been extensively studied by using density functional theory (DFT) at B3LYP level. The optimized structures show that for n = 5–13 the lowest-energy structures prefer tetracoordinate with hemi-directed geometries, while the best candidates with n = 14–17 are hexacoordinate with holo-directed geometries, which is just consistent with the experimental observation. Furthermore, the origin of hemi-directed and holo-directed geometries has been revealed. It is found that in the hemi-directed geometries, the lone pair orbital has p character and fewer electrons are transferred from the water molecules to the Pb2+ ion. Contrarily, in the holo-directed geometries, the lone pair orbital has little or no p character and more electrons are transferred to the Pb2+ ion. On the other hand, the proton transfer reactions of the [ Pb(H2O) n]2+(n = 2, 4, 8) complexes have been examined, from which the predicted products of these complexes are in good agreement with the experimental observation.
Collapse
Affiliation(s)
- X. L. LEI
- Department of Physics and Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Department of Physics, Xinjiang Normal University Xinjiang, Urumqi 830054, P. R. China
| | - B. C. PAN
- Department of Physics and Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
37
|
Analyzing coordination preferences of Mg2+ complexes: insights from computational and database study. Struct Chem 2012. [DOI: 10.1007/s11224-012-0113-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Hofstetter TE, Armentrout PB. Threshold Collision-Induced Dissociation and Theoretical Studies of Hydrated Fe(II): Binding Energies and Coulombic Barrier Heights. J Phys Chem A 2012; 117:1110-23. [DOI: 10.1021/jp3044829] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Theresa E. Hofstetter
- Department
of Chemistry, University of Utah, 315 S. 1400 E. Rm 2020, Salt Lake City, Utah 84112,
United States
| | - P. B. Armentrout
- Department
of Chemistry, University of Utah, 315 S. 1400 E. Rm 2020, Salt Lake City, Utah 84112,
United States
| |
Collapse
|
39
|
Reactivity of [Ba(H2O)n⩽2]2+ with neutral molecules in the gas-phase: An experimental and DFT study. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Carl DR, Armentrout PB. Experimental Investigation of the Complete Inner Shell Hydration Energies of Ca2+: Threshold Collision-Induced Dissociation of Ca2+(H2O)x Complexes (x = 2–8). J Phys Chem A 2012; 116:3802-15. [DOI: 10.1021/jp301446v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Damon R. Carl
- Department
of Chemistry, University of Utah, 315 S. 1400 E. Room 2020, Salt Lake City, Utah
84112, United States
| | - P. B. Armentrout
- Department
of Chemistry, University of Utah, 315 S. 1400 E. Room 2020, Salt Lake City, Utah
84112, United States
| |
Collapse
|
41
|
Aitken GDC, Cox H, Stace AJ. Moderating the Acidity of Pb(II)–Water Complexes through the Coordination of Nonaqueous Ligands: A Computational Study. J Phys Chem A 2012; 116:3035-41. [DOI: 10.1021/jp300032m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Georgina D. C. Aitken
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K
| | - Hazel Cox
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K
| | - Anthony J. Stace
- School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
42
|
Manzano H, Pellenq RJM, Ulm FJ, Buehler MJ, van Duin ACT. Hydration of calcium oxide surface predicted by reactive force field molecular dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4187-4197. [PMID: 22316164 DOI: 10.1021/la204338m] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this work, we present the parametrization of Ca-O/H interactions within the reactive force field ReaxFF, and its application to study the hydration of calcium oxide surface. The force field has been fitted using density functional theory calculations on gas phase calcium-water clusters, calcium oxide bulk and surface properties, calcium hydroxide, bcc and fcc Ca, and proton transfer reactions in the presence of calcium. Then, the reactive force field has been used to study the hydration of the calcium oxide {001} surface with different water contents. Calcium oxide is used as a catalyzer in many applications such as CO(2) sequestration and biodiesel production, and the degree of surface hydroxylation is a key factor in its catalytic performance. The results show that the water dissociates very fast on CaO {001} bare surfaces without any defect or vacancy. The surface structure is maintained up to a certain amount of water, after which the surface undergoes a structural rearrangement, becoming a disordered calcium hydroxyl layer. This transformation is the most probable reason for the CaO catalytic activity decrease.
Collapse
Affiliation(s)
- Hegoi Manzano
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | | | | | | | | |
Collapse
|
43
|
Chen X, Stace AJ. A gas phase perspective on the Lewis acidity of metal ions in aqueous solution. Chem Commun (Camb) 2012; 48:10292-4. [DOI: 10.1039/c2cc35859j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
O'Brien JT, Williams ER. Coordination numbers of hydrated divalent transition metal ions investigated with IRPD spectroscopy. J Phys Chem A 2011; 115:14612-9. [PMID: 22098330 DOI: 10.1021/jp210878s] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydration of the divalent transition metal ions, Mn, Fe, Co, Ni, Cu, and Zn, with 5-8 water molecules attached was investigated using infrared photodissociation spectroscopy and photodissociation kinetics. At 215 K, spectral intensities in both the bonded-OH and free-OH stretch regions indicate that the average coordination number (CN) of Mn(2+), Fe(2+), Co(2+), and Ni(2+) is ~6, and these CN values are greater than those of Cu(2+) and Zn(2+). Ni has the highest CN, with no evidence for any population of structures with a water molecule in a second solvation shell for the hexa-hydrate at temperatures up to 331 K. Mn(2+), Fe(2+), and Co(2+) have similar CN at low temperature, but spectra of Mn(2+)(H(2)O)(6) indicate a second population of structures with a water molecule in a second solvent shell, i.e., a CN < 6, that increases in abundance at higher temperature (305 K). The propensity for these ions to undergo charge separation reactions at small cluster size roughly correlates with the ordering of the hydrolysis constants of these ions in aqueous solution and is consistent with the ordering of average CN values established from the infrared spectra of these ions.
Collapse
Affiliation(s)
- Jeremy T O'Brien
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | |
Collapse
|
45
|
El-Nahas AM, Khedr GE, Emam SM. Thermodynamic and kinetic stability of magnesium dication solvated by tetramethylethylenediamine. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.09.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Rydén J, Öberg S. Proton transfer reactions for methanol and water containing manganese ion complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:2276-2281. [PMID: 21989706 DOI: 10.1007/s13361-011-0260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/14/2011] [Accepted: 09/18/2011] [Indexed: 05/31/2023]
Abstract
Under considerations in the current study are reactions of the type [Mn(LOH)(2)](2+) → [Mn(LO)](+) + LOH(2)(+), where the ligand LOH represents water or/and methanol. Preferential proton transfer reactions and loss of any ligand fragments are discussed in the light of ligand polarizability, dipole moment, dissociation energy, proton affinity, differences in ligand-ion ionization energy, and ion radii. The results indicate the proton affinity and dissociation energy of the O-H bond are more important for the overall proton transfer reaction than differences in the first ionization energy of the ligand and the second ionization energy of the metal ion.
Collapse
Affiliation(s)
- Jens Rydén
- Department of Chemistry, University of Sussex, Brighton, UK.
| | | |
Collapse
|
47
|
LI XIN, YANG ZHONGZHI. ANAB INITIOSTUDY OF PROTON-TRANSFER REACTION INBe2+(H2O)nAND THE SPATIAL CHANGING FEATURE IN THE FORMATION PROCESS OF HYDROXIDE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633606002064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The proton-transfer reaction in Be2+( H2O )nis investigated by an ab initio calculation. With an increasing number of water molecules, there are different formation processes of hydroxide, and the reaction barrier is dependent on the cluster size n. By MELD ab initio program and own-coding programs, we have calculated the potential acting on an electron within a molecule, and have investigated the changing of spatial appearance for the formation process of hydroxide, by the molecular intrinsic characteristic contour defined in terms of the classical turning point of electron movement.
Collapse
Affiliation(s)
- XIN LI
- Department of Chemistry, Liaoning Normal University, Dalian 116029, China
| | - ZHONG-ZHI YANG
- Department of Chemistry, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|
48
|
Carnegie PD, Bandyopadhyay B, Duncan MA. Infrared spectroscopy of Mn+ (H2O) and Mn2+ (H2O) via argon complex predissociation. J Phys Chem A 2011; 115:7602-9. [PMID: 21619058 DOI: 10.1021/jp203501n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Singly and doubly charged manganese-water cations, and their mixed complexes with attached argon atoms, are produced by laser vaporization in a pulsed nozzle source. Complexes of the form Mn(+)(H(2)O)Ar(n) (n = 1-4) and Mn(2+)(H(2)O)Ar(4) are studied via mass-selected infrared photodissociation spectroscopy, detected in the mass channels corresponding to the elimination of argon. Sharp resonances are detected for all complexes in the region of the symmetric and asymmetric stretch vibrations of water. With the guidance of density functional theory computations, specific vibrational band resonances are assigned to complexes having different argon attachment configurations. In the small singly charged complexes, argon adds first to the metal ion site and later in larger clusters to the hydrogens of water. The doubly charged complex has argon only on the metal ion. Vibrations in all of these complexes are shifted to lower frequencies than those of the free water molecule. These shifts are greater when argon is attached to hydrogen and also greater for the dication compared to the singly charged species. Cation binding also causes the IR intensities for water vibrations to be much greater than those of the free water molecule, and the relative intensities are greater for the symmetric stretch than the asymmetric stretch. This latter effect is also enhanced for the dication complex.
Collapse
Affiliation(s)
- P D Carnegie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, United States
| | | | | |
Collapse
|
49
|
Oikawa T, Urabe T, Kawano SI, Tanaka M. Basic Study of Lanthanide Nitrate Species in Solution by Electrospray Ionization Mass Spectrometry. J SOLUTION CHEM 2011. [DOI: 10.1007/s10953-011-9696-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Choi CM, Lee JH, Choi YH, Kim HJ, Kim NJ, Heo J. Ultraviolet photodepletion spectroscopy of dibenzo-18-crown-6-ether complexes with alkaline Earth metal divalent cations. J Phys Chem A 2011; 114:11167-74. [PMID: 20961155 DOI: 10.1021/jp1027299] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ultraviolet photodepletion spectra of dibenzo-18-crown-6-ether complexes with alkaline earth metal divalent cations (A(2+)-DB18C6, A = Ba, Sr, Ca, and Mg) were obtained in the gas phase using electrospray ionization quadrupole ion-trap reflectron time-of-flight mass spectrometry. Each spectrum exhibits the lowest energy absorption band in the wavenumber region of 35 400-37 800 cm(-1), which is tentatively assigned as the origin of the S(0)-S(1) transition of A(2+)-DB18C6. This origin band shows a red shift as the size of the metal dication increases from Mg(2+) to Ba(2+). The binding energies of the metal dications to DB18C6 at the S(0) state were calculated at the lowest energy structures optimized by the density functional theory and employed with the experimental energies of the origin bands to estimate the binding energies at the S(1) state. We suggest that the red shifts of the origin bands arise from the decrease in the binding energies of the metal dications at the S(1) state by nearly constant ratios with respect to the binding energies at the S(0) state, which decrease with increasing size of the metal dication. This unique relationship of the binding energies between the S(0) and S(1) states gives rise to a linear correlation between the relative shift of the origin band of A(2+)-DB18C6 and the binding energy of the metal dication at the S(0) state. The size effects of the metal cations on the properties of metal-DB18C6 complex ions are also manifested in the linear plot of the relative shift of the origin band as a function of the size to charge ratio of the metal cations, where the shifts of the origin bands for all DB18C6 complexes with alkali and alkaline earth metal cations are fit to the same line.
Collapse
Affiliation(s)
- Chang Min Choi
- Department of Chemistry, Chungbuk National University, Chungbuk 361-763, Korea
| | | | | | | | | | | |
Collapse
|