1
|
Petri YD, Gutierrez CS, Raines RT. Chemoselective Caging of Carboxyl Groups for On-Demand Protein Activation with Small Molecules. Angew Chem Int Ed Engl 2023; 62:e202215614. [PMID: 36964973 PMCID: PMC10243506 DOI: 10.1002/anie.202215614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Tools for on-demand protein activation enable impactful gain-of-function studies in biological settings. Thus far, however, proteins have been chemically caged at primarily Lys, Tyr, and Sec, typically through the genetic encoding of unnatural amino acids. Herein, we report that the preferential reactivity of diazo compounds with protonated acids can be used to expand this toolbox to solvent-accessible carboxyl groups with an elevated pKa value. As a model protein, we employed lysozyme (Lyz), which has an active-site Glu35 residue with a pKa value of 6.2. A diazo compound with a bioorthogonal self-immolative handle esterified Glu35 selectively, inactivating Lyz. The hydrolytic activity of the caged Lyz on bacterial cell walls was restored with two small-molecule triggers. The decaging was more efficient by small molecules than by esterases. This simple chemical strategy was also applied to a hemeprotein and an aspartyl protease, setting the stage for broad applicability.
Collapse
Affiliation(s)
- Yana D. Petri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Clair S. Gutierrez
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
2
|
Recent Advances in Protein Caging Tools for Protein Photoactivation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In biosciences and biotechnologies, it is recently critical to promote research regarding the regulation of the dynamic functions of proteins of interest. Light-induced control of protein activity is a strong tool for a wide variety of applications because light can be spatiotemporally irradiated in high resolutions. Therefore, synthetic, semi-synthetic, and genetic engineering techniques for photoactivation of proteins have been actively developed. In this review, the conventional approaches will be outlined. As a solution for overcoming barriers in conventional ones, our recent approaches in which proteins were chemically modified with biotinylated caging reagents are introduced to photo-activate a variety of proteins without genetic engineering and elaborate optimization. This review mainly focuses on protein caging and describes the concepts underlying the development of reported approaches that can contribute to the emergence of both novel protein photo-regulating methods and their killer applications.
Collapse
|
3
|
Zhang C, Talukder P, Dedkova LM, Hecht SM. Facilitated synthesis of proteins containing modified dipeptides. Bioorg Med Chem 2021; 41:116210. [PMID: 34022527 DOI: 10.1016/j.bmc.2021.116210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
The elaboration of peptides and proteins containing non-proteinogenic amino acids has been realized using several complementary strategies, including chemical synthesis, ribosome- or non-ribosome-mediated elaboration, intein-mediated polypeptide rearrangements, or some combination of these strategies. All of these have strengths and limitations, and significant efforts have been focused on minimizing the effects of limitations, to improve the overall utility of individual strategies. Our laboratory has studied ribosomally mediated peptide and protein synthesis involving a wide variety of non-proteinogenic amino acids, and in recent years we have described a novel strategy for the selection of modified bacterial ribosomes. These modified ribosomes have enabled the incorporation into peptides and proteins of numerous modified amino acids not accessible using wild-type ribosomes. This has included d-amino acids, β-amino acids, dipeptides and dipeptidomimetic species, as well as phosphorylated amino acids. Presently, we have considered novel strategies for incorporating non-proteinogenic amino acids in improved yields. This has included the incorporation of non-proteinogenic amino acids into contiguous positions, a transformation known to be challenging. We demonstrate the preparation of this type of protein modification by utilizing a suppressor tRNACUA activated with a dipeptide consisting of two identical non-proteinogenic amino acids, in the presence of modified ribosomes selected to recognize such dipeptides. Also, we demonstrate that the use of bis-aminoacylated suppressor tRNAs, shown previously to increase protein yields significantly in vitro, can be extended to the use of non-proteinogenic amino acids.
Collapse
Affiliation(s)
- Chao Zhang
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Poulami Talukder
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
4
|
Light-triggered release of photocaged therapeutics - Where are we now? J Control Release 2019; 298:154-176. [PMID: 30742854 DOI: 10.1016/j.jconrel.2019.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
The current available therapeutics face several challenges such as the development of ideal drug delivery systems towards the goal of personalized treatments for patients benefit. The application of light as an exogenous activation mechanism has shown promising outcomes, owning to the spatiotemporal confinement of the treatment in the vicinity of the diseased tissue, which offers many intriguing possibilities. Engineering therapeutics with light responsive moieties have been explored to enhance the bioavailability, and drug efficacy either in vitro or in vivo. The tailor-made character turns the so-called photocaged compounds highly desirable to reduce the side effects of drugs and, therefore, have received wide research attention. Herein, we seek to highlight the potential of photocaged compounds to obtain a clear understanding of the mechanisms behind its use in therapeutic delivery. A deep overview on the progress achieved in the design, fabrication as well as current and possible future applications in therapeutics of photocaged compounds is provided, so that novel formulations for biomedical field can be designed.
Collapse
|
5
|
An Fmoc-compatible method for synthesis of peptides containing photocaged aspartic acid or glutamic acid. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Matsuo K, Kioi Y, Yasui R, Takaoka Y, Miki T, Fujishima SH, Hamachi I. One-step construction of caged carbonic anhydrase I using a ligand-directed acyl imidazole-based protein labeling method. Chem Sci 2013. [DOI: 10.1039/c3sc50560j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Chen S, Fahmi NE, Nangreave RC, Mehellou Y, Hecht SM. Synthesis of pdCpAs and transfer RNAs activated with thiothreonine and derivatives. Bioorg Med Chem 2012; 20:2679-89. [PMID: 22405920 PMCID: PMC3575115 DOI: 10.1016/j.bmc.2012.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 11/29/2022]
Abstract
N,S-diprotected L-thiothreonine and L-allo-thiothreonine derivatives were synthesized using a novel chemical strategy, and used for esterification of the dinucleotide pdCpA. The aminoacylated dinucleotides were then employed for the preparation of activated suppressor tRNA(CUA) transcripts. Thiothreonine and allo-thiothreonine were incorporated into a predetermined position of a catalytically competent dihydrofolate reductase (DHFR) analogue lacking cysteine, and the elaborated proteins were derivatized site-specifically at the thiothreonine residue with a fluorophore.
Collapse
Affiliation(s)
- Shengxi Chen
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Nour Eddine Fahmi
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Ryan C. Nangreave
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Youcef Mehellou
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
8
|
Lee HM, Larson DR, Lawrence DS. Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. ACS Chem Biol 2009; 4:409-27. [PMID: 19298086 DOI: 10.1021/cb900036s] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biological systems are characterized by a level of spatial and temporal organization that often lies beyond the grasp of present day methods. Light-modulated bioreagents, including analogs of low molecular weight compounds, peptides, proteins, and nucleic acids, represent a compelling strategy to probe, perturb, or sample biological phenomena with the requisite control to address many of these organizational complexities. Although this technology has created considerable excitement in the chemical community, its application to biological questions has been relatively limited. We describe the challenges associated with the design, synthesis, and use of light-responsive bioreagents; the scope and limitations associated with the instrumentation required for their application; and recent chemical and biological advances in this field.
Collapse
Affiliation(s)
- Hsien-Ming Lee
- Departments of Chemistry, Medicinal Chemistry & Natural Products, and Pharmacology, The University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Daniel R. Larson
- Department of Anatomy and Structural Biology, The Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - David S. Lawrence
- Departments of Chemistry, Medicinal Chemistry & Natural Products, and Pharmacology, The University of North Carolina, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
9
|
Synthesis of pdCpAs and transfer RNAs activated with derivatives of aspartic acid and cysteine. Bioorg Med Chem 2008; 16:9023-31. [PMID: 18790645 DOI: 10.1016/j.bmc.2008.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/14/2008] [Accepted: 08/15/2008] [Indexed: 11/21/2022]
Abstract
Described herein is the preparation of new aminoacylated derivatives of the dinucleotide pdCpA, and of transfer RNAs. The focus of the present work is the synthesis of amino acid analogs related to aspartic acid and cysteine species that have important functional roles in many proteins. The activated aminoacyl-tRNAs prepared can be utilized for the elaboration of proteins containing modified aspartic acid and cysteine derivatives at predetermined sites. Of particular interest is definition of functional group protection strategies that can be used for the preparation of the aminoacylated pdCpAs and tRNAs.
Collapse
|
10
|
Schultz C. Molecular tools for cell and systems biology. HFSP JOURNAL 2007; 1:230-48. [PMID: 19404424 DOI: 10.2976/1.2812442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 10/24/2007] [Indexed: 01/25/2023]
Abstract
The sequencing of the genomes of key organisms and the subsequent identification of genes merely leads us to the next real challenge in modern biology-revealing the precise functions of these genes. Further, detailed knowledge of how the products of these genes behave in space and time is required, including their interactions with other molecules. In order to tackle these considerable tasks, a large and continuously expanding toolbox is required to probe the functions of proteins on a cellular level. Here, the currently available tools are described and future developments are projected. There is no doubt that only the close interplay between the life science disciplines in addition to advances in engineering will be able to meet the challenge.
Collapse
Affiliation(s)
- Carsten Schultz
- Gene Expression Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
11
|
Dmochowski IJ, Tang X. Taking control of gene expression with light-activated oligonucleotides. Biotechniques 2007; 43:161, 163, 165 passim. [PMID: 17824383 DOI: 10.2144/000112519] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The recent development of caged oligonucletides that are efficiently activated by ultraviolet (UV) light creates opportunities for regulating gene expression with very high spatial and temporal resolution. By selectively modulating gene activity, these photochemical tools will facilitate efforts to elucidate gene function and may eventually serve therapeutic aims. We demonstrate how the incorporation of a photocleavable blocking group within a DNA duplex can transiently arrest DNA polymerase activity. Indeed, caged oligonucleotides make it possible to control many different protein-oligonucleotide interactions. In related experiments, hybridization of a reverse complementary (antisense) oligodeoxynucleotide to target mRNA can inhibit translation by recruiting endogenous RNases or sterically blocking the ribosome. Our laboratory recently synthesized caged antisense oligonucleotides composed of phosphorothioated DNA or peptide nucleic acid (PNA). The antisense oligonucleotide, which was attached to a complementary blocking oligonucleotide strand by a photocleavable linker, was blocked from binding target mRNA. This provided a useful method for photomodulating hybridization of the antisense strand to target mRNA. Caged DNA and PNA oligonucleotides have proven effective at photoregulating gene expression in cells and zebrafish embryos.
Collapse
Affiliation(s)
- Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
12
|
Tang X, Dmochowski IJ. Regulating gene expression with light-activated oligonucleotides. MOLECULAR BIOSYSTEMS 2006; 3:100-10. [PMID: 17245489 DOI: 10.1039/b614349k] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the development of light-responsive amino acids, the activity of numerous biomolecules has been photomodulated in biochemical, biophysical, and cellular assays. Biological problems of even greater complexity motivate the development of quantitative methods for controlling gene activity with high spatial and temporal resolution, using light as an external trigger. Photoresponsive DNA and RNA oligonucleotides would optimally serve this purpose, but have proven difficult to expand from proofs-of-concept to in vivo experiments. Until recently, the development of this technology was limited by the synthesis of oligonucleotides whose function could be significantly modulated with near-UV light. New synthetic protocols and strategies for both up- and down-regulating gene activity finally make it possible to address biological considerations. In the near future, we can expect photoresponsive DNA and RNA molecules that are relatively non-toxic, nuclease-resistant, and maintain their specificity and activity in vivo. Quantitative, laser-initiated methods for controlling DNA and RNA function will illuminate new areas in cell and developmental biology.
Collapse
Affiliation(s)
- XinJing Tang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | | |
Collapse
|
13
|
Lodder M, Wang B, Hecht SM. The N-pentenoyl protecting group for aminoacyl-tRNAs. Methods 2005; 36:245-51. [PMID: 16076450 DOI: 10.1016/j.ymeth.2005.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 11/30/2022] Open
Abstract
The elaboration of misacylated transfer RNAs by T4 RNA ligase-mediated condensation of an aminoacylated pdCpA derivative and a tRNA (transcript) missing the two 3'-terminal nucleotides requires that the aminoacyl moiety of the dinucleotide be stabilized during the ligation reaction. This can be done conveniently by the use of a simple 4-pentenoyl group attached to N(alpha) of the amino acid. The pentenoyl amide can be deblocked readily with aqueous iodine, presumably via an iodolactone intermediate. This protecting group can be used in conjunction with side chain protecting group for amino acids having side chain functionality, thus permitting the elaboration of proteins bearing side chain protecting groups that can be removed in a subsequent step (e.g., caged proteins). In addition, an aminated analogue of the pentenoyl protecting group, the unnatural amino acid allylglycine, can be employed as part of the peptide backbone to afford a protein cleavable by iodine.
Collapse
Affiliation(s)
- Michiel Lodder
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | | | | |
Collapse
|
14
|
Rothman DM, Petersson EJ, Vázquez ME, Brandt GS, Dougherty DA, Imperiali B. Caged Phosphoproteins. J Am Chem Soc 2004; 127:846-7. [PMID: 15656617 DOI: 10.1021/ja043875c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present the chemical and biological synthesis of caged phosphoproteins using the in vitro nonsense codon suppression methodology. Specifically, phosphoamino acid analogues of serine, threonine, and tyrosine with a single photocleavable o-nitrophenylethyl caging group were synthesized as the amino acyl tRNA adducts for insertion into full-length proteins. For this purpose, a novel phosphitylating agent was developed. The successful incorporation of these bulky and charged amino acids into the alpha-subunit of the nicotinic acetyl choline receptor (nAChR) and the vasodilator-stimulated phosphoprotein (VASP) using an in vitro translation system is reported.
Collapse
Affiliation(s)
- Deborah M Rothman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
15
|
Endo M, Nakayama K, Kaida Y, Majima T. Design and Synthesis of Photochemically Controllable Caspase-3. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200460889] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Endo M, Nakayama K, Kaida Y, Majima T. Design and Synthesis of Photochemically Controllable Caspase-3. Angew Chem Int Ed Engl 2004; 43:5643-5. [PMID: 15495205 DOI: 10.1002/anie.200460889] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Masayuki Endo
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | |
Collapse
|
17
|
Endo M, Nakayama K, Majima T. Design and Synthesis of Photochemically Controllable Restriction EndonucleaseBamHI by Manipulating the Salt-Bridge Network in the Dimer Interface. J Org Chem 2004; 69:4292-8. [PMID: 15202882 DOI: 10.1021/jo035774n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The strategy for the design of photochemically controllable enzymes by manipulating the dimer interface is described. Employing a restriction endonuclease BamHI, the selective incorporation of amino acids having a photoremovable 6-nitroveratryl group into the specific position (Lys132) in the dimer interface of the BamHI mutant (H133A) was performed. The activity of the photofunctionalized BamHI mutant was significantly suppressed, and the following photoirradiation induced the recovery of the activity. In addition, uncaging of the 6-nitroveratryl group introduced to Lys132 did not seriously reduce the catalytic activity and affinity for the substrate. These results indicate that the activity of the enzyme can be effectively regulated by caging and uncaging of the specific amino acid in the dimer interface using the photoremovable group.
Collapse
Affiliation(s)
- Masayuki Endo
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
18
|
Petersson EJ, Brandt GS, Zacharias NM, Dougherty DA, Lester HA. Caging proteins through unnatural amino acid mutagenesis. Methods Enzymol 2003; 360:258-73. [PMID: 12622154 DOI: 10.1016/s0076-6879(03)60114-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The caging of specific residues of proteins is a powerful tool. This discussion attempts to alert the reader to the considerations that must be made in preparing and analyzing a caged protein through nonsense suppression. Although the suppression methodology is conceptually straightforward, it not possible to provide a failsafe "cook book" method for using caged unnaturals. We have emphasized the preparation of caged receptors expressed in Xenopus oocytes, but these approaches can clearly be adapted to many other systems.
Collapse
Affiliation(s)
- E James Petersson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | |
Collapse
|
19
|
Anderson RD, Zhou J, Hecht SM. Fluorescence resonance energy transfer between unnatural amino acids in a structurally modified dihydrofolate reductase. J Am Chem Soc 2002; 124:9674-5. [PMID: 12175203 DOI: 10.1021/ja0205939] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cleavage of a substrate protein by HIV-1 protease has been monitored in real time by the use of a dihydrofolate reductase fusion protein in which a fluorescence donor and a fluorescence acceptor were introduced into sites flanking the HIV-1 protease cleavage site. The amino acids 7-azatryptophan and dabcyl-1,2-diaminopropionic acid were introduced into specific sites of the DHFR fusion protein in an in vitro protein biosynthesizing system using two misacylated suppressor tRNAs, each of which recognized a specific, unique codon introduced into the mRNA. Excitation of the fluorescence acceptor in the initially expressed protein afforded no light production, consistent with quenching by fluorescence resonance energy transfer. Treatment of the elaborated protein with HIV-1 protease cleaved the protein between the fluorescence donor and acceptor, affording a time-dependent increase in fluorescence that was equal in magnitude to that produced by admixture of a stoichiometric amount of free 7-azatryptophan to the solution containing the intact protein.
Collapse
Affiliation(s)
- Raymond D Anderson
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | |
Collapse
|
20
|
Zou K, Cheley S, Givens RS, Bayley H. Catalytic subunit of protein kinase A caged at the activating phosphothreonine. J Am Chem Soc 2002; 124:8220-9. [PMID: 12105899 DOI: 10.1021/ja020405e] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Caged reagents are photoactivatable molecules with applications in biological research. While a great deal of work has been carried out on small caged molecules, less has been done on caged macromolecules, such as proteins. Caged proteins would be especially useful in signal transduction research. Since most proteins involved in cell signaling are regulated by phosphorylation, a means to cage phosphorylated proteins would be generally applicable. Here we show that the catalytic subunit of protein kinase A can be activated by thiophosphorylation at Thr-197. The modified protein can then be caged with 4-hydroxyphenacyl bromide to yield a derivative with a specific catalytic activity that is reduced by approximately 17-fold. Upon photolysis at near UV wavelengths, an approximately 15-fold increase in activity is observed, representing an approximately 85-90% yield of uncaged product with a quantum yield phi(P) = 0.21. Because protein kinases belong to a superfamily with structurally related catalytic domains, the protein chemistry demonstrated here should be applicable to a wide range of signaling proteins.
Collapse
Affiliation(s)
- Keyong Zou
- Department of Medical Biochemistry and Genetics, The Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | | | |
Collapse
|
21
|
Lodder M, Crasto CF, Laikhter AL, An H, Arslan T, Karginov VA, Short III GF, Hecht SM. Synthesis of aspartic acid derivatives useful for the preparation of misacylated transfer RNAs. CAN J CHEM 2000. [DOI: 10.1139/v99-246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several derivatives of aspartic acid were protected on Nα as their NVOC derivatives, and on the side chain carboxylates as nitroveratryl esters. Following activation as the cyanomethyl esters, these fully protected aspartate derivatives were converted to the respective pdCpA esters. The protected aspartyl-pdCpA esters were then utilized as substrates for T4 RNA ligase in the presence of in vitro transcripts of tRNA lacking the pCpA dinucleotide normally found at the 3'-end. In this fashion, several misacylated tRNAs were prepared; following photolytic deprotection, these were employed successfully for incorporation into proteins at predetermined positions.Key words: aminoacylated nucleotides, amino acid protection, protein synthesis, tRNA activation.
Collapse
|
22
|
Abstract
Photoactivatable ligands are important tools used in drug discovery and drug development. These ligands enable researchers to identify the targets of drugs, to determine the affinity and selectivity of the drug-target interaction, and to identify the binding site on the target. Examples are presented from three fundamentally different approaches: (1) photoaffinity labeling of target macromolecules; (2) photoactivation and release of 'caged ligands'; and (3) photoimmobilization of ligands onto surfaces.
Collapse
Affiliation(s)
- G Dormán
- ComGenex, Budapest, 1027 Bem rkp. 33-34, Hungary.
| | | |
Collapse
|
23
|
|