1
|
Tripathi S, Islam S, Seth SK, Bauzá A, Frontera A, Mukhopadhyay S. Supramolecular assemblies involving salt bridges: DFT and X-ray evidence of bipolarity. CrystEngComm 2020. [DOI: 10.1039/d0ce01356k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three new aminopyridinium/4,4′-oxydibenzoate salts have been synthesized and structurally characterized. A common feature of these compounds is the formation of antiparallel π-stacked salt bridges.
Collapse
Affiliation(s)
- Suparna Tripathi
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
- Department of Chemistry
| | - Samiul Islam
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | | | - Antonio Bauzá
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Frontera
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | | |
Collapse
|
2
|
Seth SK, Bauzá A, Frontera A. Bipolar behaviour of salt-bridges: a combined theoretical and crystallographic study. NEW J CHEM 2018. [DOI: 10.1039/c8nj02194e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this manuscript, we study the bipolar behaviour of salt-bridges by combining theoretical calculations with an X-ray crystallographic study of succinate and aminopyridinium salts.
Collapse
Affiliation(s)
- Saikat Kumar Seth
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
- Department of Chemistry
| | - Antonio Bauzá
- Department of Chemistry
- Universitat de les Illes Balears
- Crta. De Valldemossa km 7.5
- 07122 Palma de Mallorca
- Spain
| | - Antonio Frontera
- Department of Chemistry
- Universitat de les Illes Balears
- Crta. De Valldemossa km 7.5
- 07122 Palma de Mallorca
- Spain
| |
Collapse
|
3
|
Gebbie MA, Wei W, Schrader AM, Cristiani TR, Dobbs HA, Idso M, Chmelka BF, Waite JH, Israelachvili JN. Tuning underwater adhesion with cation-π interactions. Nat Chem 2017; 9:473-479. [PMID: 28430190 DOI: 10.1038/nchem.2720] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/09/2016] [Indexed: 12/23/2022]
Abstract
Cation-π interactions drive the self-assembly and cohesion of many biological molecules, including the adhesion proteins of several marine organisms. Although the origin of cation-π bonds in isolated pairs has been extensively studied, the energetics of cation-π-driven self-assembly in molecular films remains uncharted. Here we use nanoscale force measurements in combination with solid-state NMR spectroscopy to show that the cohesive properties of simple aromatic- and lysine-rich peptides rival those of the strong reversible intermolecular cohesion exhibited by adhesion proteins of marine mussel. In particular, we show that peptides incorporating the amino acid phenylalanine, a functional group that is conspicuously sparing in the sequences of mussel proteins, exhibit reversible adhesion interactions significantly exceeding that of analogous mussel-mimetic peptides. More broadly, we demonstrate that interfacial confinement fundamentally alters the energetics of cation-π-mediated assembly: an insight that should prove relevant for diverse areas, which range from rationalizing biological assembly to engineering peptide-based biomaterials.
Collapse
Affiliation(s)
- Matthew A Gebbie
- Materials Department, University of California, Santa Barbara, California 93106, USA.,Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Wei Wei
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Alex M Schrader
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | - Thomas R Cristiani
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Howard A Dobbs
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Matthew Idso
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - J Herbert Waite
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | - Jacob N Israelachvili
- Materials Department, University of California, Santa Barbara, California 93106, USA.,Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA.,Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
4
|
Pinheiro S, Soteras I, Gelpí JL, Dehez F, Chipot C, Luque FJ, Curutchet C. Structural and energetic study of cation–π–cation interactions in proteins. Phys Chem Chem Phys 2017; 19:9849-9861. [DOI: 10.1039/c6cp08448f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Statistical and energetic analysis of cation–π–cation motifs in protein structures suggests a potential stabilizing role in the protein fold.
Collapse
Affiliation(s)
- Silvana Pinheiro
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Biomedicina (IBUB)
- Facultat de Farmàcia i Ciències de l'Alimentació
- Universitat de Barcelona
- Barcelona
- Spain
| | - Ignacio Soteras
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia and Institut de Biomedicina (IBUB)
- Facultat de Farmàcia i Ciències de l'Alimentació
- Universitat de Barcelona
- Santa Coloma de Gramenet
- Spain
| | - Josep Lluis Gelpí
- Departament de Bioquímica i Biomedicina Molecular
- Facultat de Biologia
- Universitat de Barcelona
- Spain
| | - François Dehez
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana – Champaign
- Unité Mixte de Recherche No. 7565
- Université de Lorraine
- Vandoeuvre-lès-Nancy cedex
- France
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana – Champaign
- Unité Mixte de Recherche No. 7565
- Université de Lorraine
- Vandoeuvre-lès-Nancy cedex
- France
| | - F. Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia and Institut de Biomedicina (IBUB)
- Facultat de Farmàcia i Ciències de l'Alimentació
- Universitat de Barcelona
- Santa Coloma de Gramenet
- Spain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Biomedicina (IBUB)
- Facultat de Farmàcia i Ciències de l'Alimentació
- Universitat de Barcelona
- Barcelona
- Spain
| |
Collapse
|
5
|
Abstract
On the basis of many literature measurements, a critical overview is given on essential noncovalent interactions in synthetic supramolecular complexes, accompanied by analyses with selected proteins. The methods, which can be applied to derive binding increments for single noncovalent interactions, start with the evaluation of consistency and additivity with a sufficiently large number of different host-guest complexes by applying linear free energy relations. Other strategies involve the use of double mutant cycles, of molecular balances, of dynamic combinatorial libraries, and of crystal structures. Promises and limitations of these strategies are discussed. Most of the analyses stem from solution studies, but a few also from gas phase. The empirically derived interactions are then presented on the basis of selected complexes with respect to ion pairing, hydrogen bonding, electrostatic contributions, halogen bonding, π-π-stacking, dispersive forces, cation-π and anion-π interactions, and contributions from the hydrophobic effect. Cooperativity in host-guest complexes as well as in self-assembly, and entropy factors are briefly highlighted. Tables with typical values for single noncovalent free energies and polarity parameters are in the Supporting Information.
Collapse
Affiliation(s)
- Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hans-Jörg Schneider
- FR Organische Chemie der Universität des Saarlandes , D-66041 Saarbrücken, Germany
| |
Collapse
|
6
|
Carrazana-García JA, Cabaleiro-Lago EM, Campo-Cacharrón A, Rodríguez-Otero J. A theoretical study of ternary indole-cation-anion complexes. Org Biomol Chem 2015; 12:9145-56. [PMID: 25296040 DOI: 10.1039/c4ob01879f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simultaneous interactions of an anion and a cation with a π system were investigated by MP2 and M06-2X theoretical calculations. Indole was chosen as a model π system for its relevance in biological environments. Two different orientations of the anion, interacting with the N-H and with the C-H groups of indole, were considered. The four cations (Na(+), NH4(+), C(NH2)3(+) and N(CH3)4(+)) and the four anions (Cl(-), NO3(-), HCOO(-) and BF4(-)) included in the study are of biological interest. The total interaction energy of the ternary complexes was calculated and separated into its two- and three-body components and all of them are further divided into their electrostatic, exchange, repulsion, polarization and dispersion contributions using the local molecular orbital-energy decomposition analysis (LMO-EDA) methodology. The binding energy of the indole-cation-anion complexes depends on both ions, with the cation having the strongest effect. The intense cation-anion attraction determines the geometric and energetic features in all ternary complexes. These structures, with both ions on the same side of the π system, show an anti-cooperative interaction. However, the interaction is not only determined by electrostatics, but also the polarization contribution is important. Specific interactions like the one established between the anion and the N-H group of indole or the proton transfer between an acidic cation and a basic anion play a significant role in the energetics and the structure of particular complexes. The presence of the polar solvent as modelled with the polarizable continuum model (PCM) does not seem to have a significant effect on the geometry of the ternary complexes, but drastically weakens the interaction energy. Also, the strength of the interaction is reduced at a faster rate when the anion is pushed away, compared to the results obtained in the gas phase. The combination of PCM with the addition of one water molecule indicates that the PCM method properly reproduces the main energetic and geometrical changes, even at the quantitative level, but the explicit hydration allows refining the solvent effect and detecting cases that do not follow the general trend.
Collapse
Affiliation(s)
- Jorge A Carrazana-García
- Departamento de Química Física, Facultade de Ciencias, Universidade de Santiago de Compostela, Campus de Lugo, Avenida Alfonso X El Sabio s/n, Lugo 27002, Lugo, Spain.
| | | | | | | |
Collapse
|
7
|
Hussain MA, Mahadevi AS, Sastry GN. Estimating the binding ability of onium ions with CO2 and π systems: a computational investigation. Phys Chem Chem Phys 2015; 17:1763-75. [DOI: 10.1039/c4cp03434a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The impact of increasing methyl substitution on onium ions in their complexes with CO2 and aromatic systems has been analyzed using DFT calculations.
Collapse
Affiliation(s)
- M. Althaf Hussain
- Center for Molecular Modeling
- Indian Institute of Chemical Technology
- Hyderabad 500607
- India
| | - A. Subha Mahadevi
- Center for Molecular Modeling
- Indian Institute of Chemical Technology
- Hyderabad 500607
- India
| | - G. Narahari Sastry
- Center for Molecular Modeling
- Indian Institute of Chemical Technology
- Hyderabad 500607
- India
| |
Collapse
|
8
|
Mitra M, Manna P, Das A, Seth SK, Helliwell M, Bauzá A, Choudhury SR, Frontera A, Mukhopadhyay S. On the importance of unprecedented lone pair-salt bridge interactions in Cu(II)-malonate-2-amino-5-chloropyridine-perchlorate ternary system. J Phys Chem A 2013; 117:5802-11. [PMID: 23796026 DOI: 10.1021/jp4046066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A Cu(II)-malonate complex with formula {(C5H6N2Cl)12[Cu(1)(C3H2O4)2][Cu(2)(C3H2O4)2(H2O)2][Cu(4)(C3H2O4)2][Cu(3)(C3H2O4)2(H2O)2](ClO4)4}n (1) [C5H6N2Cl = protonated 2-amino-5-chloropyridine, C3H4O4 = malonic acid, ClO4(-) = perchlorate] has been synthesized from purely aqueous media simple by mixing the reactants in their stoichiometric ratio, and its crystal structure has been determined by single-crystal X-ray diffraction. In 1, copper(II) malonate units form infinite 1D polymeric chains, which are interlinked by hydrogen bonds to generate 2D sheets. These 2D sheets are joined side by side primarily by various hydrogen bonds to form a 3D structure. A multitude of salt bridges are formed in this structure, connecting the protonated 2-amino-5-chloropyridines and the malonate ligands of the polymeric polyanion. Examining this characteristic of the solid-state architecture, we noticed several salt-bridge (sb)···π interactions and an unexplored interaction between the lone pair (lp) of one malonate oxygen atom and a planar salt bridge. The combination of this interaction with various other weak intermolecular forces results in a remarkably extended supramolecular network combining a wide variety of interactions involving π-systems (Cl···π, π···π) and salt bridges (sb···π and lp···sb). We describe the energetic and geometric features of this lone pair-salt-bridge interaction and explore its impact on the resultant supramolecular organization using theoretical DFT-D3 calculations.
Collapse
Affiliation(s)
- Monojit Mitra
- Department of Chemistry, Jadavpur University , Kolkata 700 032, India
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mitra M, Manna P, Seth SK, Das A, Meredith J, Helliwell M, Bauzá A, Choudhury SR, Frontera A, Mukhopadhyay S. Salt-bridge–π (sb–π) interactions at work: associative interactions of sb–π, π–π and anion–π in Cu(ii)-malonate–2-aminopyridine–hexafluoridophosphate ternary system. CrystEngComm 2013. [DOI: 10.1039/c2ce26790j] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Cao Z, Li S, Yan T. Cation-π Interactions between a Free-Base Porphyrin and an Ionic Liquid: A Computational Study. Chemphyschem 2012; 13:1743-7. [DOI: 10.1002/cphc.201100868] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Indexed: 11/08/2022]
|
11
|
Gasa TB, Valente C, Stoddart JF. Solution-phase counterion effects in supramolecular and mechanostereochemical systems. Chem Soc Rev 2011; 40:57-78. [DOI: 10.1039/c005424k] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Feng Y, Liu L, Mu TW, Guo QX. Influence of a Hydrophobic Environment on the Structure of Arginine-Carboxylate Salt Bridge. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20020201007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Abstract
Supramolecular chemistry has expanded dramatically in recent years both in terms of potential applications and in its relevance to analogous biological systems. The formation and function of supramolecular complexes occur through a multiplicity of often difficult to differentiate noncovalent forces. The aim of this Review is to describe the crucial interaction mechanisms in context, and thus classify the entire subject. In most cases, organic host-guest complexes have been selected as examples, but biologically relevant problems are also considered. An understanding and quantification of intermolecular interactions is of importance both for the rational planning of new supramolecular systems, including intelligent materials, as well as for developing new biologically active agents.
Collapse
Affiliation(s)
- Hans-Jörg Schneider
- Organische Chemie, Universität des Saarlandes, 66041 Saarbrücken, Deutschland.
| |
Collapse
|
14
|
|
15
|
Pashynska V, Kosevich M, Stepanian S, Adamowicz L. Noncovalent complexes of tetramethylammonium with chlorine anion and 2,5-dihydroxybenzoic acid as models of the interaction of quaternary ammonium biologically active compounds with their molecular targets: A theoretical study. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.theochem.2007.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Kim D, Lee EC, Kim KS, Tarakeshwar P. Cation−π−Anion Interaction: A Theoretical Investigation of the Role of Induction Energies. J Phys Chem A 2007; 111:7980-6. [PMID: 17655210 DOI: 10.1021/jp073337x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cation-pi and the corresponding anion-pi interactions have in general been investigated as binary complexes despite their association with counterions. However, a recent study of the ammonia channel highlights the important but overlooked role of anions in cation-pi interactions. In an effort to examine the structural and energetic consequences of the presence of counterions, we have carried out detailed ab initio calculations on some model cation-pi-anion ternary complexes and evaluated the nonpair potential terms, three-body contributions, and attractive and repulsive energy components of the interaction energy. The presence of the anion in the vicinity of the pi system leads to a large redistribution of electron density and hence leads to an inductive stabilization. The resulting electronic and geometrical changes have important consequences in both chemical and biological systems. Compared to cation-pi-anion ternary complexes, the magnitude of the cation-pi interaction in pi-cation-anion ternary complexes is markedly lower because of charge transfer from the anion to the cation.
Collapse
Affiliation(s)
- Dongwook Kim
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
17
|
|
18
|
Cheng YH, Liu L, Fu Y, Chen R, Li XS, Guo QX. Counterion Effects on the Cation−π Interaction between Alkaline Earth Cations and Benzene. J Phys Chem A 2002. [DOI: 10.1021/jp020121g] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yu-Hui Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lei Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rong Chen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Song Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Xiang Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Bartoli S, Roelens S. Binding of acetylcholine and tetramethylammonium to a cyclophane receptor: anion's contribution to the cation-pi interaction. J Am Chem Soc 2002; 124:8307-15. [PMID: 12105911 DOI: 10.1021/ja025884w] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of the lipophilic cyclophane 1 with several acetylcholine (ACh) and tetramethylammonium (TMA) salts has been investigated in deuteriochloroform to ascertain the influence of the counterion on the cation-pi interaction. Reliable association constants have been measured for 17 salts of commonly used anions; corresponding binding free energies -DeltaG degrees ranged from over 8 kJ mol(-1) down to the limit of detection. The dramatic dependence of the binding energy on the anion showed that the latter takes part in the process with a passive and adverse contribution, which inhibits cation binding even to complete suppression in unfavorable cases. Thermodynamic parameters for the association of 1 with TMA picrate demonstrate that binding is enthalpic in origin, showing a substantial enthalpy gain (DeltaH degrees = -16.7 kJ mol(-1)) and an adverse entropic contribution (DeltaS degrees = -27.9 J mol(-1) K(-1)). A correlation has been found between the "goodness" of anions as binding partners and the solubility of their salts. Conversion of the anion into a more charge-dispersed species, for example, conversion of chloride into dialkyltrichlorostannate, improves cation binding substantially, indicating that charge dispersion is a main factor determining the influence of the anion on the cation-pi interaction. DFT computational studies show that the variation of the binding free energy of TMA with the counterion is closely accounted for by the electrostatic potential (EP) of the ion pair: guest binding appears to respond to the cation's charge density exposed to the receptor, which is determined by the anion's charge density through a polarization mechanism. A value of -DeltaG degrees = 38.6 kJ mol(-1) has been extrapolated for the free energy of binding of TMA to 1 in chloroform but in the absence of a counterion. The transmission of electrostatic effects from the ion pair to the cation-pi interaction demonstrates that host-guest association is governed by Coulombic attraction, as long as factors (steric, entropic, solvation, etc.) other than pure electrostatics are not prevalent.
Collapse
Affiliation(s)
- Sandra Bartoli
- CNR, Istituto di Chimica dei Composti Organometallici, Dipartimento di Chimica Organica, Università di Firenze, Polo Scientifico, I-50019 Sesto Fiorentino, Firenze, Italy
| | | |
Collapse
|
20
|
Hwang S, Jang YH, Chung DS. Ab Initio Studies on the Relative Stabilities of Neutral and Ionic Forms of Acetic Acid–Methylamine Complex andβ-Alanine in Various Solvents. CHEM LETT 2001. [DOI: 10.1246/cl.2001.1182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Mavri J, Hadži D. Modelling of ligand–receptor interactions: ab-initio and DFT calculations of solvent reaction field effects on methylated ammonium–π and –acetate complexes. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0166-1280(00)00733-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Nielsen PA, Jaroszewski JW, Norrby PO, Liljefors T. An NMR and ab initio quantum chemical study of acid-base equilibria for conformationally constrained acidic alpha-amino acids in aqueous solution. J Am Chem Soc 2001; 123:2003-6. [PMID: 11456822 DOI: 10.1021/ja002926c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protonation states of a series of piperidinedicarboxylic acids (PDAs), which are conformationally constrained acidic alpha-amino acids, have been studied by (13)C NMR titration in water. The resulting data have been correlated with theoretical results obtained by HF/6-31+G calculations using the polarizable continuum model (PCM) for the description of water. The PDAs are highly ionizable and contain one or two possible internal hydrogen bonds. In the present study, we show that the PCM model is able to reproduce the relative stabilities of the different protonation states of the PDAs. Furthermore, our results show that prediction of relative pK(a) values for two different types of ionizable functional groups covering a pK(a) range from 1.6 to 12.1 is possible with a high degree of accuracy.
Collapse
Affiliation(s)
- P A Nielsen
- Department of Medicinal Chemistry, Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
23
|
Kim KS, Tarakeshwar P, Lee JY. Molecular Clusters of pi-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. Chem Rev 2000; 100:4145-86. [PMID: 11749343 DOI: 10.1021/cr990051i] [Citation(s) in RCA: 917] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K S Kim
- National Creative Research Initiative Center for Superfunctional Materials, Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyojadong, Pohang 790-784, Korea
| | | | | |
Collapse
|
24
|
Quantum Mechanical Conformational Analysis of β-Alanine Zwitterion in Aqueous Solution. J Am Chem Soc 2000. [DOI: 10.1021/ja992902+] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|