1
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
2
|
Influence of crowding agents on the dynamics of a multidomain protein in its denatured state: a solvation approach. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:289-305. [PMID: 32399581 DOI: 10.1007/s00249-020-01435-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
Abstract
It is now well appreciated that the crowded intracellular environment significantly modulates an array of physiological processes including protein folding-unfolding, aggregation, and dynamics to name a few. In this work we have studied the dynamics of domain I of the protein human serum albumin (HSA) in its urea-induced denatured states, in the presence of a series of commonly used macromolecular crowding agents. HSA was labeled at Cys-34 (a free cysteine) in domain I with the fluorophore 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN) to act as a solvation probe. In partially denatured states (2-6 M urea), lower crowder concentrations (~ < 125 g/L) induced faster dynamics, while the dynamics became slower beyond 150 g/L of crowders. We propose that this apparent switch in dynamics is an evidence of a crossover from soft (enthalpic) to hard-core (entropic) interactions between the protein and crowder molecules. That soft interactions are also important for the crowders used here was further confirmed by the appreciable shift in the wavelength of the emission maximum of BADAN, in particular for PEG8000 and Ficoll 70 at concentrations where the excluded volume effect is not dominant.
Collapse
|
3
|
Johnson A, Karimi A, Luedtke NW. Enzymatic Incorporation of a Coumarin–Guanine Base Pair. Angew Chem Int Ed Engl 2019; 58:16839-16843. [DOI: 10.1002/anie.201910059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Aaron Johnson
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Ashkan Karimi
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
4
|
Johnson A, Karimi A, Luedtke NW. Enzymatic Incorporation of a Coumarin–Guanine Base Pair. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aaron Johnson
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Ashkan Karimi
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
5
|
Sardana D, Yadav K, Shweta H, Clovis NS, Alam P, Sen S. Origin of Slow Solvation Dynamics in DNA: DAPI in Minor Groove of Dickerson-Drew DNA. J Phys Chem B 2019; 123:10202-10216. [PMID: 31589442 DOI: 10.1021/acs.jpcb.9b09275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The measurement and understanding of collective solvation dynamics in DNA have vital biological implications, as protein and ligand binding to DNA can be directly controlled by complex electrostatic interactions of anionic DNA and surrounding dipolar water, and ions. Time-resolved fluorescence Stokes shift (TRFSS) experiments revealed anomalously slow solvation dynamics in DNA much beyond 100 ps that follow either power-law or slow multiexponential decay over several nanoseconds. The origin of such dispersed dynamics remains difficult to understand. Here we compare results of TRFSS experiments to molecular dynamics (MD) simulations of well-known 4',6-diamidino-2-phenylindole (DAPI)/Dickerson-Drew DNA complex over five decades of time from 100 fs to 10 ns to understand the origin of such dispersed dynamics. We show that the solvation time-correlation function (TCF) calculated from 200 ns simulation trajectory (total 800 ns) captures most features of slow dynamics as measured in TRFSS experiments. Decomposition of TCF into individual components unravels that slow dynamics originating from dynamically coupled DNA-water motion, although contribution from coupled water-Na+ motion is non-negligible. The analysis of residence time of water molecules around the probe (DAPI) reveals broad distribution from ∼6 ps to ∼3.5 ns: Several (49 nos.) water molecules show residences time greater than 500 ps, of which at least 14 water molecules show residence times of more than 1 ns in the first solvation shell of DAPI. Most of these slow water molecules are found to occupy two hydration sites in the minor groove near DAPI binding site. The residence time of Na+, however, is found to vary within ∼17-120 ps. Remarkably, we find that freezing the DNA fluctuations in simulation eliminates slower dynamics beyond ∼100 ps, where water and Na+ dynamics become faster, although strong anticorrelation exists between them. These results indicate that primary origin of slow dynamics lies within the slow fluctuations of DNA parts that couple with nearby slow water and ions to control the dispersed collective solvation dynamics in DNA minor groove.
Collapse
Affiliation(s)
- Deepika Sardana
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Kavita Yadav
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Him Shweta
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Ndege Simisi Clovis
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| |
Collapse
|
6
|
Affiliation(s)
- Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Subhajit Acharya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Ultrafast dynamics-driven biomolecular recognition where fast activities dictate slow events. J Biosci 2018. [DOI: 10.1007/s12038-018-9776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
|
9
|
Sharipov TI, Bakhtizin RZ. The study of electrical conductivity of DNA molecules by scanning tunneling spectroscopy. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/256/1/012009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Fluorescent nucleobases as tools for studying DNA and RNA. Nat Chem 2017; 9:1043-1055. [PMID: 29064490 DOI: 10.1038/nchem.2859] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
Understanding the diversity of dynamic structures and functions of DNA and RNA in biology requires tools that can selectively and intimately probe these biomolecules. Synthetic fluorescent nucleobases that can be incorporated into nucleic acids alongside their natural counterparts have emerged as a powerful class of molecular reporters of location and environment. They are enabling new basic insights into DNA and RNA, and are facilitating a broad range of new technologies with chemical, biological and biomedical applications. In this Review, we will present a brief history of the development of fluorescent nucleobases and explore their utility as tools for addressing questions in biophysics, biochemistry and biology of nucleic acids. We provide chemical insights into the two main classes of these compounds: canonical and non-canonical nucleobases. A point-by-point discussion of the advantages and disadvantages of both types of fluorescent nucleobases is made, along with a perspective into the future challenges and outlook for this burgeoning field.
Collapse
|
11
|
Shweta H, Singh MK, Yadav K, Verma SD, Pal N, Sen S. Effect of T·T Mismatch on DNA Dynamics Probed by Minor Groove Binders: Comparison of Dynamic Stokes Shifts of Hoechst and DAPI. J Phys Chem B 2017; 121:10735-10748. [PMID: 28922599 DOI: 10.1021/acs.jpcb.7b06937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recognition of DNA base mismatches and their subsequent repair by enzymes is vital for genomic stability. However, it is difficult to comprehend such a process in which enzymes sense and repair different types of mismatches with different ability. It has been suggested that the differential structural changes of mismatched bases act as cues to the repair enzymes, although the effect of such DNA structural changes on surrounding water and ion dynamics is inevitable due to strong electrostatic coupling among them. Thus, collective dynamics of DNA, water, and ions near the mismatch site is believed to be important for mismatch recognition and repair mechanism. Here we show that introduction of a T·T mismatch in the minor groove of DNA induces dispersed (collective) power-law solvation dynamics (of exponent ∼0.24), measured by monitoring the time-resolved fluorescence Stokes shifts (TRFSS) of two popular minor groove binders (Hoechst 33258 and DAPI) over five decades of time from 100 fs to 10 ns. The same ligands however sense different dynamics (power-law of exponent ∼0.15 or power-law multiplied with biexponential relaxation) in the minor groove of normal-DNA. The similar fluorescence anisotropy decays of ligands measured in normal- and T·T-DNA suggest that Stokes shift dynamics and their changes in T·T-DNA purely originate from the solvation process, and not from any internal rotational motion of probe-ligands. The dispersed power-law solvation dynamics seen in T·T-DNA indicate that the ligands do not sense any particular (exponential) relaxation specific to T·T wobbling and/or other conformational changes. This could be the reason why T·T mismatch is recognized by enzymes with lower efficiency compared to purine-pyrimidine and purine-purine mismatches.
Collapse
Affiliation(s)
- Him Shweta
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Moirangthem Kiran Singh
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Kavita Yadav
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Sachin Dev Verma
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Nibedita Pal
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| |
Collapse
|
12
|
Slow solvation dynamics in supramolecular systems based on bile salts: Role of structural rigidity of bile salt aggregates. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Abstract
Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.
Collapse
Affiliation(s)
- Alexey K Mazur
- UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris, 75005, France
| |
Collapse
|
14
|
Kilin V, Gavvala K, Barthes NPF, Michel BY, Shin D, Boudier C, Mauffret O, Yashchuk V, Mousli M, Ruff M, Granger F, Eiler S, Bronner C, Tor Y, Burger A, Mély Y. Dynamics of Methylated Cytosine Flipping by UHRF1. J Am Chem Soc 2017; 139:2520-2528. [PMID: 28112929 PMCID: PMC5335914 DOI: 10.1021/jacs.7b00154] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation patterns, which are critical for gene expression, are replicated by DNA methyltransferase 1 (DNMT1) and ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) proteins. This replication is initiated by the recognition of hemimethylated CpG sites and further flipping of methylated cytosines (mC) by the Set and Ring Associated (SRA) domain of UHRF1. Although crystallography has shed light on the mechanism of mC flipping by SRA, tools are required to monitor in real time how SRA reads DNA and flips the modified nucleobase. To accomplish this aim, we have utilized two distinct fluorescent nucleobase surrogates, 2-thienyl-3-hydroxychromone nucleoside (3HCnt) and thienoguanosine (thG), incorporated at different positions into hemimethylated (HM) and nonmethylated (NM) DNA duplexes. Large fluorescence changes were associated with mC flipping in HM duplexes, showing the outstanding sensitivity of both nucleobase surrogates to the small structural changes accompanying base flipping. Importantly, the nucleobase surrogates marginally affected the structure of the duplex and its affinity for SRA at positions where they were responsive to base flipping, illustrating their promise as nonperturbing probes for monitoring such events. Stopped-flow studies using these two distinct tools revealed the fast kinetics of SRA binding and sliding to NM duplexes, consistent with its reader role. In contrast, the kinetics of mC flipping was found to be much slower in HM duplexes, substantially increasing the lifetime of CpG-bound UHRF1, and thus the probability of recruiting DNMT1 to faithfully duplicate the DNA methylation profile. The fluorescence-based approach using these two different fluorescent nucleoside surrogates advances the mechanistic understanding of the UHRF1/DNMT1 tandem and the development of assays for the identification of base flipping inhibitors.
Collapse
Affiliation(s)
- Vasyl Kilin
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Krishna Gavvala
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Nicolas P. F. Barthes
- Institut de Chimie de Nice, UMR 7272 CNRS, UniversitéCôte d’Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Benoît Y. Michel
- Institut de Chimie de Nice, UMR 7272 CNRS, UniversitéCôte d’Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Dongwon Shin
- TriLink BioTechnologies, LLC., San Diego, California 92121, United States
| | - Christian Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Olivier Mauffret
- LBPA, UMR 8113 CNRS, ENS Paris-Saclay, Université Paris Saclay, 94235 Cachan Cedex, France
| | - Valeriy Yashchuk
- Department of Physics, Kiev National Taras Shevchenko University, Kiev 01601, Ukraine
| | - Marc Mousli
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Florence Granger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Sylvia Eiler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272 CNRS, UniversitéCôte d’Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
15
|
Singh MK, Shweta H, Sen S. Dispersed dynamics of solvation in G-quadruplex DNA: comparison of dynamic Stokes shifts of probes in parallel and antiparallel quadruplex structures. Methods Appl Fluoresc 2016; 4:034009. [PMID: 28355155 DOI: 10.1088/2050-6120/4/3/034009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
G-quadruplex DNA (GqDNA) structures play an important role in many specific cellular functions and are promising anti-tumor targets for small molecules (ligands). Here, we measured the dynamic Stokes shift of a ligand (Hoechst) bound to parallel c-Myc (mPu22) GqDNA over five decades of time from 100 fs to 10 ns, and compared it with the previously reported dynamics of DAPI bound to antiparallel human telomeric (hTelo22) GqDNA (Pal et al 2015 J. Phys. Chem. Lett. 6 1754). Stokes shift data from fluorescence up-conversion and time-correlated single photon counting experiments was combined to cover the broad dynamic range. The results show that the solvation dynamics of Hoechst in parallel mPu22 GqDNA follow a power law relaxation, added to fast 2 ps exponential relaxation, from 100 fs to 10 ns, with only a subtle difference of power law exponents in the two ligand-GqDNA systems (0.06 in Hoechst-mPu22 compared to 0.16 in DAPI-hTelo22). We measured steady-state fluorescence spectra and time-resolved anisotropy decays which confirm the tight binding of Hoechst to parallel mPu22 with a binding constant of ~1 × 105 M-1. The molecular docking of Hoechst in parallel GqDNA followed by a 50 ns molecular dynamics (MD) simulation on a Hoechst-GqDNA complex reveals that Hoechst binds to one of the outer G-tetrads by end-stacking near G13 and G4, which is different from the binding site of DAPI inside a groove of antiparallel hTelo22 GqDNA. Reconciling previous experimental and simulation results, we assign the 2 ps component to the hydration dynamics of only weakly perturbed water near mPu22 and the power law relaxation to the coupled motion of water and DNA (i.e. DNA backbone, unpaired bases and loops connecting G-tetrads) which come near the Hoechst inside parallel GqDNA.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|
16
|
|
17
|
Choudhury S, Ghosh B, Singh P, Ghosh R, Roy S, Pal SK. Ultrafast differential flexibility of Cro-protein binding domains of two operator DNAs with different sequences. Phys Chem Chem Phys 2016; 18:17983-90. [DOI: 10.1039/c6cp02522f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The crucial ultrafast domain fluctuation of the operator DNA OR3 over OR2 upon complexation with the repressor Cro-protein dimer has been investigated.
Collapse
Affiliation(s)
- Susobhan Choudhury
- Department of Chemical
- Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700 098
- India
| | - Basusree Ghosh
- Division of Structural Biology and Bioinformatics
- Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Priya Singh
- Department of Chemical
- Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700 098
- India
| | - Raka Ghosh
- Division of Structural Biology and Bioinformatics
- Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Siddhartha Roy
- Division of Structural Biology and Bioinformatics
- Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Samir Kumar Pal
- Department of Chemical
- Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700 098
- India
| |
Collapse
|
18
|
Verma SD, Pal N, Singh MK, Sen S. Sequence-Dependent Solvation Dynamics of Minor-Groove Bound Ligand Inside Duplex-DNA. J Phys Chem B 2015; 119:11019-29. [DOI: 10.1021/acs.jpcb.5b01977] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sachin Dev Verma
- Spectroscopy Laboratory,
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nibedita Pal
- Spectroscopy Laboratory,
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Moirangthem Kiran Singh
- Spectroscopy Laboratory,
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory,
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
19
|
Pal N, Shweta H, Singh MK, Verma SD, Sen S. Power-Law Solvation Dynamics in G-Quadruplex DNA: Role of Hydration Dynamics on Ligand Solvation inside DNA. J Phys Chem Lett 2015; 6:1754-1760. [PMID: 26263345 DOI: 10.1021/acs.jpclett.5b00653] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
G-quadruplex DNA (GqDNA) structures act as promising anticancer targets for small-molecules (ligands). Solvation dynamics of a ligand (DAPI: 4',6-diamidino-2-phenylindole) inside antiparallel-GqDNA is studied through direct comparison of time-resolved experiments to molecular dynamics (MD) simulation. Dynamic Stokes shifts of DAPI in GqDNA prepared in H2O buffer and D2O are compared to find the effect of water on ligand solvation. Experimental dynamics (in H2O) is then directly compared with the dynamics computed from 65 ns simulation on the same DAPI-GqDNA complex. Ligand solvation follows power-law relaxation (summed with fast exponential relaxation) from ~100 fs to 10 ns. Simulation results show relaxation below ~5 ps is dominated by water motion, while both water and DNA contribute comparably to dictate long-time power-law dynamics. Ion contribution is, however, found to be negligible. Simulation results also suggest that anomalous solvation dynamics may have origin in subdiffusive motion of perturbed water near GqDNA.
Collapse
Affiliation(s)
- Nibedita Pal
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Him Shweta
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Moirangthem Kiran Singh
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sachin Dev Verma
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
20
|
Roy S, Yashonath S, Bagchi B. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics. J Chem Phys 2015; 142:124502. [DOI: 10.1063/1.4915274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Susmita Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Subramanian Yashonath
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
21
|
Muntean CM, Bratu I, Leopold N, Morari C, Buimaga-Iarinca L, Purcaru MAP. Subpicosecond surface dynamics in genomic DNA from in vitro-grown plant species: a SERS assessment. Phys Chem Chem Phys 2015; 17:21323-30. [PMID: 25687823 DOI: 10.1039/c4cp05425c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work the surface-enhanced Raman total half band widths of seven genomic DNAs from leaves of chrysanthemum (Dendranthema grandiflora Ramat.), common sundew (Drosera rotundifolia L.), edelweiss (Leontopodium alpinum Cass), Epilobium hirsutum L., Hypericum richeri ssp. transsilvanicum (Čelak) Ciocârlan, rose (Rosa x hybrida L.) and redwood (Sequoia sempervirens D. Don. Endl.) have been measured. We have shown that surface-enhanced Raman spectroscopy (SERS) can be used to study the fast subpicosecond dynamics of DNA in the proximity of a metallic surface. The dependencies of the total half band widths and the global relaxation times, on the DNA molecular subgroup structure and on the type of genomic DNA, are reported. In our study, the full widths at half-maximum (FWHMs) for the SERS bands of genomic DNAs from different leaf tissues are typically in the wavenumber range from 15 to 55 cm(-1). Besides, it can be observed that molecular relaxation processes studied in this work have a global relaxation time smaller than 0.71 ps and larger than 0.19 ps. A comparison between different ranges of FT-Raman and SERS band parameters, respectively, corresponding to DNA extracted from leaf tissues is given. It is shown that the interaction between DNA and a metallic surface has the potential to lead to a shortening of the global relaxation times, as compared with molecular dynamics in solution. We have found that the surface dynamics of molecular subgroups in plant DNA is, in some cases, about two times faster than the solution dynamics of nucleic acids. This can be rationalized in a qualitative manner by invoking the complex landscape of the interaction energy between the molecule and the silver surface.
Collapse
Affiliation(s)
- Cristina M Muntean
- National Institute for Research & Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania.
| | | | | | | | | | | |
Collapse
|
22
|
Galindo-Murillo R, Roe DR, Cheatham TE. On the absence of intrahelical DNA dynamics on the μs to ms timescale. Nat Commun 2014; 5:5152. [PMID: 25351257 PMCID: PMC4215645 DOI: 10.1038/ncomms6152] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/05/2014] [Indexed: 01/08/2023] Open
Abstract
DNA helices display a rich tapestry of motion on both short (<100 ns) and long (>1 ms) timescales. However, with the exception of mismatched or damaged DNA, experimental measures indicate that motions in the 1 μs to 1 ms range are effectively absent, which is often attributed to difficulties in measuring motions in this time range. We hypothesized that these motions have not been measured because there is effectively no motion on this timescale, as this provides a means to distinguish faithful Watson-Crick base-paired DNA from damaged DNA. The absence of motion on this timescale would present a 'static' DNA sequence-specific structure that matches the encounter timescales of proteins, thereby facilitating recognition. Here we report long-timescale (~10-44 μs) molecular dynamics simulations of a B-DNA duplex structure that addresses this hypothesis using both an 'Anton' machine and large ensembles of AMBER GPU simulations.
Collapse
Affiliation(s)
- Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112, USA
| | - Daniel R Roe
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112, USA
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112, USA
| |
Collapse
|
23
|
Galindo-Murillo R, Roe DR, Cheatham TE. Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC). Biochim Biophys Acta Gen Subj 2014; 1850:1041-1058. [PMID: 25219455 DOI: 10.1016/j.bbagen.2014.09.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The structure and dynamics of DNA are critically related to its function. Molecular dynamics simulations augment experiment by providing detailed information about the atomic motions. However, to date the simulations have not been long enough for convergence of the dynamics and structural properties of DNA. METHODS Molecular dynamics simulations performed with AMBER using the ff99SB force field with the parmbsc0 modifications, including ensembles of independent simulations, were compared to long timescale molecular dynamics performed with the specialized Anton MD engine on the B-DNA structure d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values over longer and longer time intervals was evaluated in addition to assessing convergence of the dynamics via the Kullback-Leibler divergence of principal component projection histograms. RESULTS These molecular dynamics simulations-including one of the longest simulations of DNA published to date at ~44μs-surprisingly suggest that the structure and dynamics of the DNA helix, neglecting the terminal base pairs, are essentially fully converged on the ~1-5μs timescale. CONCLUSIONS We can now reproducibly converge the structure and dynamics of B-DNA helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations starting from different initial conditions, when aggregated, match the results from long timescale simulations on the specialized Anton MD engine. GENERAL SIGNIFICANCE With access to large-scale GPU resources or the specialized MD engine "Anton" it is possible for a variety of molecular systems to reproducibly and reliably converge the conformational ensemble of sampled structures. This article is part of a Special Issue entitled: Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel R Roe
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
24
|
Ukpebor OT, Shah A, Bazov E, Boutis GS. Inverse temperature transition of elastin like motifs in major ampullate dragline silk: MD simulations of short peptides and NMR studies of water dynamics. SOFT MATTER 2014; 10:773-785. [PMID: 24511323 PMCID: PMC3914981 DOI: 10.1039/c3sm52001c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Using deuterium 2D T1 − T2 Inverse Laplace Transform (ILT) NMR, we have investigated the distribution, population, and dynamics of waters of hydration in major ampullate N. clavipes and A. aurantia silk as a function of temperature. In both samples studied, correlation times much larger than that of free water are measured, and in some cases, appear to increase with increasing temperature over the range of 5 to 60 °C (corresponding to reduced tumbling). In addition, the experimental data point to a reduction in the population of water localized in the silk with increasing temperature in the range of 20 to 50 °C. Molecular dynamics simulations were performed to probe the thermal characteristics of a variety of repeating motifs found in the two silk samples. The repeating motifs GLGSQ, GAAAAAAG, GPGGY, GPGQQ, GPSG, and GPSGPGS found in N. clavipes, GLGSQ, GYGSG, GPGSG, and GPGSQ found in A. aurantia silk were found to exhibit a thermal property observed in short elastin peptides known as the "inverse temperature transition". This is a well known characteristic exhibited by short peptides consisting of (VPGXG)n motifs (where X is any amino acid other than proline) found in elastin--a protein responsible for the elasticity of vertebrate tissues. In qualitative agreement with experimental measurements of water in the silks, all the peptides studied in simulation show evidence of an increase in sidechain contacts and peptide hydrogen bonds, concomitant with a decrease in radius of gyration and localized water as the temperature is raised from approximately 5 to 60 °C.
Collapse
|
25
|
Batabyal S, Mondol T, Choudhury S, Mazumder A, Pal SK. Ultrafast interfacial solvation dynamics in specific protein DNA recognition. Biochimie 2013; 95:2168-76. [DOI: 10.1016/j.biochi.2013.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/06/2013] [Indexed: 12/14/2022]
|
26
|
Paciaroni A, Orecchini A, Goracci G, Cornicchi E, Petrillo C, Sacchetti F. Glassy Character of DNA Hydration Water. J Phys Chem B 2013; 117:2026-31. [DOI: 10.1021/jp3105437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Paciaroni
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| | - Andrea Orecchini
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
- Institut Laue Langevin, 6 rue J. Horowitz F-38042 Grenoble, France
| | - Guido Goracci
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
| | - Elena Cornicchi
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
| | - Caterina Petrillo
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| | - Francesco Sacchetti
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| |
Collapse
|
27
|
Goel T, Kumar S, Maiti S. Thermodynamics and solvation dynamics of BIV TAR RNA-Tat peptide interaction. MOLECULAR BIOSYSTEMS 2012; 9:88-98. [PMID: 23114563 DOI: 10.1039/c2mb25357g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interaction of the trans-activation responsive (TAR) region of bovine immunodeficiency virus (BIV) RNA with the Tat peptide is known to play important role in viral replication. Despite being thoroughly studied through a structural point of view, the nature of binding between BIV TAR RNA and the BIV Tat peptide requires information related to its thermodynamics and the nature of hydration around the TAR-Tat complex. In this context, we carried out the thermodynamic study of binding of the Tat peptide to the BIV TAR RNA hairpin through different calorimetric and spectroscopic measurements. Fluorescence titration of 2-aminopurine tagged BIV TAR RNA with the Tat peptide gives their binding affinity. The isothermal titration calorimetric experiment reveals the enthalpy of binding between BIV TAR RNA and the Tat peptide to be largely exothermic with the value of -11.7 (SEM 0.2) kcal mol(-1). Solvation dynamics measurements of BIV TAR RNA having 2-AP located at the bulge region have been carried out in the absence and presence of the BIV Tat peptide using the time correlated single photon counting technique. The solvent cage around the Tat binding site of RNA appears to be more rigid in the presence of the Tat peptide as compared to the free RNA. The displacement of solvent and ions on RNA due to peptide binding influences the entropic contributions to the total binding energy.
Collapse
Affiliation(s)
- Teena Goel
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, New Delhi 110 007, India
| | | | | |
Collapse
|
28
|
Verma SD, Pal N, Singh MK, Sen S. Probe Position-Dependent Counterion Dynamics in DNA: Comparison of Time-Resolved Stokes Shift of Groove-Bound to Base-Stacked Probes in the Presence of Different Monovalent Counterions. J Phys Chem Lett 2012; 3:2621-2626. [PMID: 26295881 DOI: 10.1021/jz300934x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Time-resolved fluorescence Stokes shifts (TRFSS) of 4',6-diamidino-2-phenylindole (DAPI) inside the minor groove of DNA are measured in the presence of three different monovalent counterions: sodium (Na(+)), rubidium (Rb(+)), and tetrabutylammonium (TBA(+)). Fluorescence up-conversion and time-correlated single photon counting are combined to obtain the time-resolved emission spectra (TRES) of DAPI in DNA from 100 fs to 10 ns. Time-resolved Stokes shift data suggest that groove-bound DAPI can not sense the counterion dynamics because the ions are displaced by DAPI far from the probe-site. However, when these results are compared to the earlier base-stacked coumarin data, the same ions are found to affect the nanosecond dynamics significantly. This suggests that the ions come close to the probe-site, such that they can affect the dynamics when measured by base-stacked coumarin. These results support previous molecular dynamics (MD) simulation data of groove-bound and base-stacked probes inside DNA.
Collapse
Affiliation(s)
- Sachin Dev Verma
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nibedita Pal
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Moirangthem Kiran Singh
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
29
|
Ghatak C, Rao VG, Mandal S, Pramanik R, Sarkar S, Verma PK, Sarkar N. Förster resonance energy transfer among a structural isomer of adenine and various Coumarins inside a nanosized reverse micelle. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 89:67-73. [PMID: 22245885 DOI: 10.1016/j.saa.2011.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/09/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
In this article we have studied Förster Resonance Energy Transfer (FRET) using 2-aminopurine (2-AP), a structural isomer of adenine as donor and various Coumarins as acceptors inside AROSOL-OT (AOT)-water reverse micelles (RM) using steady-state and time-resolved fluorescence spectroscopies. We have used three sets of FRET and all the pairs except 2-AP-Coumarin-480 exhibited quite efficient FRET. For the efficient pairs, overlap integral J(λ) and Förster distance (R0) are of high values but the rate constant of energy transfer (kET) are quite low. The rate is gradually amplified with increase in water content for the 2-AP-Coumarin-440 pair while the reverse is observed for 2-AP-Coumarin-460. In future our FRET pair can be used in more modified and sophisticated confined media such as biomembranes of varying size, physical properties and chemical compositions etc.
Collapse
Affiliation(s)
- Chiranjib Ghatak
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
|
32
|
Sajadi M, Furse KE, Zhang XX, Dehmel L, Kovalenko SA, Corcelli SA, Ernsting NP. Beobachtung einer DNA-Ligand-Schwingung über zeitaufgelöste Fluoreszenzmessung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Sajadi M, Furse KE, Zhang XX, Dehmel L, Kovalenko SA, Corcelli SA, Ernsting NP. Detection of DNA-Ligand Binding Oscillations by Stokes-Shift Measurements. Angew Chem Int Ed Engl 2011; 50:9501-5. [DOI: 10.1002/anie.201102942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/24/2011] [Indexed: 11/10/2022]
|
34
|
Furse KE, Corcelli SA. Effects of an unnatural base pair replacement on the structure and dynamics of DNA and neighboring water and ions. J Phys Chem B 2011; 114:9934-45. [PMID: 20614919 DOI: 10.1021/jp105761b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Incorporating small molecule probes into biomolecular systems to report on local structure and dynamics is a powerful strategy that underlies a wide variety of experimental techniques, including fluorescence, electron paramagnetic resonance (EPR), and Forster resonance energy transfer (FRET) measurements. When an unnatural probe is inserted into a protein or DNA, the degree to which the presence of the probe has perturbed the local structure and dynamics it was intended to study is always an important concern. Here, molecular dynamics (MD) simulations are used to systematically study the effect of replacing a DNA base pair with a fluorescent probe, coumarin 102 deoxyriboside, at six unique sites along an A-tract DNA dodecamer. While the overall structure of the DNA oligonucleotide remains intact, replacement of A*T base pairs leads to widespread structural and dynamic perturbations up to four base pairs away from the probe site, including widening of the minor groove and increased DNA flexibility. New DNA conformations, not observed in the native sequence, are sometimes found in the vicinity of the probe and its partner abasic site analog. Strong correlations are demonstrated between DNA surface topology and water mobility.
Collapse
Affiliation(s)
- K E Furse
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
35
|
Toptygin D, Woolf TB, Brand L. Picosecond protein dynamics: the origin of the time-dependent spectral shift in the fluorescence of the single Trp in the protein GB1. J Phys Chem B 2010; 114:11323-37. [PMID: 20701310 DOI: 10.1021/jp104425t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How a biological system responds to a charge shift is a challenging question directly relevant to biological function. Time-resolved fluorescence of a tryptophan residue reflects protein and solvent response to the difference in pi-electron density between the excited and the ground state. In this study we use molecular dynamics to calculate the time-dependent spectral shift (TDSS) in the fluorescence of Trp-43 in GB1 protein. A new computational method for separating solvent, protein, and fluorophore contributions to TDSS is applied to 100 nonequilibrium trajectories for GB1 in TIP3P water. The results support several nontrivial conclusions. Both longitudinal and transverse relaxation modes of bulk solvent contribute to the TDSS in proteins. All relaxation components slower than the transverse relaxation of bulk solvent have significant contributions from both protein and solvent, with a negative correlation between them. Five exponential terms in the TDSS of GB1 are well separated by their relaxation times. A 0.036 ps term is due to both solvent (60%) and protein (40%). Two exponential terms represent longitudinal (tau(L) approximately = 0.4 ps) and transverse (tau(D) approximately = 5.6 ps) relaxation modes of TIP3P water. A 131 ps term is attributable to a small change in the tertiary structure, with the alpha-helix moving 0.2 A away from the beta-strand containing Trp-43. A 2580 ps term is due to the change in the conformation of the Glu-42 side chain that brings its carboxyl group close to the positively charged end of the excited fluorophore. Interestingly, water cancels 60% of the TDSS resulting from this conformational change.
Collapse
Affiliation(s)
- Dmitri Toptygin
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
36
|
Pal N, Verma SD, Sen S. Probe Position Dependence of DNA Dynamics: Comparison of the Time-Resolved Stokes Shift of Groove-Bound to Base-Stacked Probes. J Am Chem Soc 2010; 132:9277-9. [DOI: 10.1021/ja103387t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nibedita Pal
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sachin Dev Verma
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
37
|
Sinkeldam RW, Greco NJ, Tor Y. Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 2010; 110:2579-619. [PMID: 20205430 PMCID: PMC2868948 DOI: 10.1021/cr900301e] [Citation(s) in RCA: 674] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Renatus W. Sinkeldam
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| | | | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| |
Collapse
|
38
|
Holzhauser C, Berndl S, Menacher F, Breunig M, Göpferich A, Wagenknecht HA. Synthesis and Optical Properties of Cyanine Dyes as Fluorescent DNA Base Substitutions for Live Cell Imaging. European J Org Chem 2010. [DOI: 10.1002/ejoc.200901423] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Fluorescence Spectroscopy as a Tool for Investigating the Self-Organized Polyelectrolyte Systems. SELF ORGANIZED NANOSTRUCTURES OF AMPHIPHILIC BLOCK COPOLYMERS I 2010. [DOI: 10.1007/12_2010_56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Ueno Y, Komatsuzaki S, Takasu K, Kawai S, Kitamura Y, Kitade Y. Synthesis and Properties of Oligonucleotides Containing Novel Fluorescent Biaryl Units. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Furse KE, Corcelli SA. Effects of Long-Range Electrostatics on Time-Dependent Stokes Shift Calculations. J Chem Theory Comput 2009; 5:1959-67. [DOI: 10.1021/ct9001416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kristina E. Furse
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
42
|
Zhong D. Hydration Dynamics and Coupled Water-Protein Fluctuations Probed by Intrinsic Tryptophan. ADVANCES IN CHEMICAL PHYSICS 2009. [DOI: 10.1002/9780470508602.ch3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
43
|
Molecular recognition of plant DNA: does it differ from conventional animal DNA? Int J Biol Macromol 2009; 44:133-7. [PMID: 19059281 DOI: 10.1016/j.ijbiomac.2008.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/07/2008] [Accepted: 11/05/2008] [Indexed: 11/20/2022]
Abstract
The recognition mechanism of DNA with small drugs/ligands is an important field of research from pharmacological point of view. Such studies are ample with DNAs extracted from animal cells, but are rare for those extracted from plant cells. However, such a study is strongly demanding for the formulation of pesticides and other agrochemicals. In this contribution, for the first time, we report the interaction of two well-known DNA binder ethidium bromide (EB) and Hoechst 33258 (H33258) with two genomic DNAs extracted from the leaves of Ricinus communis L. (castor bean) and Mangifera indica (mango) using steady-state and picosecond-resolved fluorescence spectroscopy. The purity of the extracted DNAs is confirmed from gel electrophoresis and optical absorption studies. As evidenced from the circular dichroism (CD) measurements the DNAs retain physiologically relevant B forms. The well-known DNA intercalator EB has been found to show an additional electrostatic mode of binding with the DNAs, which is not present in the conventional animal DNAs. The binding affinity of EB is found to be even weaker for the DNA extracted from M. indica compared to that in R. communis L. On the other hand, the binding affinity of H33258 with the plant DNAs is found to be comparable to that of animal DNAs. The difference in interaction could be rationalized from the possible differences in the base sequences.
Collapse
|
44
|
Sen S, Andreatta D, Ponomarev SY, Beveridge DL, Berg MA. Dynamics of water and ions near DNA: comparison of simulation to time-resolved stokes-shift experiments. J Am Chem Soc 2009; 131:1724-35. [PMID: 19191698 PMCID: PMC2750815 DOI: 10.1021/ja805405a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved Stokes-shift experiments measure the dynamics of biomolecules and of the perturbed solvent near them on subnanosecond time scales, but molecular dynamics simulations are needed to provide a clear interpretation of the results. Here we show that simulations using standard methods quantitatively reproduce the main features of TRSS experiments in DNA and provide a molecular assignment for the dynamics. The simulations reproduce the magnitude and unusual power-law dynamics of the Stokes shift seen in recent experiments [ Andreatta, D., et al. J. Am. Chem. Soc. 2005, 127, 7270 ]. A polarization model is introduced to eliminate cross-correlations between the different components contributing to the signal. Using this model, well-defined contributions of the DNA, water, and counterion to the experimental signal are extracted. Water is found to have the largest contribution and to be responsible for the power-law dynamics. The counterions have a smaller, but non-negligible, contribution with a time constant of 220 ps. The contribution to the signal of the DNA itself is minor and fits a 30 ps stretched exponential. Both time-averaged and dynamic distributions are calculated. They show a small subset of ions with a different coupling but no other evidence of substates or rate heterogeneity.
Collapse
Affiliation(s)
- Sobhan Sen
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 India
| | - Daniele Andreatta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | | | | | - Mark A. Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| |
Collapse
|
45
|
Sankaran NB, Sato Y, Sato F, Rajendar B, Morita K, Seino T, Nishizawa S, Teramae N. Small-Molecule Binding at an Abasic Site of DNA: Strong Binding of Lumiflavin for Improved Recognition of Thymine-Related Single Nucleotide Polymorphisms. J Phys Chem B 2009; 113:1522-9. [DOI: 10.1021/jp808576t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. B. Sankaran
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Fuyuki Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Burki Rajendar
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Kotaro Morita
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Takehiro Seino
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Norio Teramae
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| |
Collapse
|
46
|
Lindquist BA, Furse KE, Corcelli SA. Nitrile groups as vibrational probes of biomolecular structure and dynamics: an overview. Phys Chem Chem Phys 2009; 11:8119-32. [DOI: 10.1039/b908588b] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Banerjee D, Pal SK. Conformational dynamics at the active site of alpha-chymotrypsin and enzymatic activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8163-8168. [PMID: 18572890 DOI: 10.1021/la8010184] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The role of dynamical flexibility at the active site of a proteolytic enzyme alpha-chymotrypsin (CHT) has been correlated with its catalytic activity. The temperature-dependent efficiency of catalysis reveals a bell-shaped feature with a peak at 37 degrees C, the typical body temperature of homeothermal animals. The overall structural integrity of the enzyme in our experimental temperature range has been confirmed from dynamic light scattering (DLS) and circular dichroism (CD) studies. We have followed the dynamical evolution at the active site of CHT with temperature using picosecond-resolved fluorescence anisotropy of anthraniloyl probe (covalently attached to the serine-195 residue) and a substrate mimic (inhibitor) proflavin. The conformational dynamics at the active site is found to have a distinct connection with the enzyme functionality. The conformational flexibility of the enzyme is also evidenced from the compressibility studies on the enzyme. The site selective fluorescence detected circular dichroism (FDCD) studies reveal that the conformational flexibility of the enzyme has an effect on the structural perturbation at the active site. We have also proposed the possible implications of the dynamics in the associated energetics.
Collapse
Affiliation(s)
- Debapriya Banerjee
- Unit for Nano Science & Technology, Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India
| | | |
Collapse
|
48
|
Banerjee D, Pal SK. Excited-State Solvation and Proton Transfer Dynamics of DAPI in Biomimetics and Genomic DNA. J Phys Chem A 2008; 112:7314-20. [DOI: 10.1021/jp801778e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Debapriya Banerjee
- Unit for Nano Science & Technology, Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India
| | - Samir Kumar Pal
- Unit for Nano Science & Technology, Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India
| |
Collapse
|
49
|
Sinkeldam RW, Greco NJ, Tor Y. Polarity of major grooves explored by using an isosteric emissive nucleoside. Chembiochem 2008; 9:706-9. [PMID: 18286575 DOI: 10.1002/cbic.200700714] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Renatus W Sinkeldam
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | | | | |
Collapse
|
50
|
Menacher F, Rubner M, Berndl S, Wagenknecht HA. Thiazole orange and Cy3: improvement of fluorescent DNA probes with use of short range electron transfer. J Org Chem 2008; 73:4263-6. [PMID: 18442293 DOI: 10.1021/jo8004793] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thiazole orange was synthetically incorporated into oligonucleotides by using the corresponding phosphoramidite as the building block for automated DNA synthesis. Due to the covalent fixation of the TO dye as a DNA base surrogate, the TO-modified oligonucleotides do not exhibit a significant increase of fluorescence upon hybridization with the counterstrand. However, if 5-nitroindole (NI) is present as a second artificial DNA base (two base pairs away from the TO dye) a fluorescence increase upon DNA hybridization can be observed. That suggests that a short-range photoinduced electron transfer causes the fluorescence quenching in the single strand. The latter result represents a concept that can be transferred to the commercially available Cy3 label. It enables the Cy3 fluorophore to display the DNA hybridization by a fluorescence increase that is normally not observed with this dye.
Collapse
Affiliation(s)
- Florian Menacher
- University of Regensburg, Institute for Organic Chemistry, Universitätsstrasse 31, Regensburg, Germany
| | | | | | | |
Collapse
|