1
|
Kumar S, Kanchupalli V. Synthesis of γ-Spirolactams via Rh(III)-Catalyzed C-H Activation/Directing Group Migration/Dearomatization/Spiroannulation of Indoles with 1,3-Enynes. Org Lett 2024; 26:8975-8981. [PMID: 39207739 DOI: 10.1021/acs.orglett.4c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
1,3-Enynes are valuable coupling partners in transition-metal-catalyzed C-H functionalizations. Certainly, aliphatic-substituted 1,3-enynes have been thoroughly investigated in C-H functionalizations, whereas aromatic-substituted 1,3-enynes remain underexplored. Herein, we report the realization of this goal, where we achieve an atom-economical protocol for the synthesis of γ-spirolactams via Rh(III)-catalyzed C-H functionalization of N-carbamoylindoles with 1,3-enynes. The reaction proceeds through a unique cascade strategy, such as C-H activation/directing group (DG) migration/indole dearomatization/spiroannulation, to access novel and synthetically challenging spiro[indoline-2,2'-pyrrolidin]-5'-one scaffolds. Moreover, the isolation of intermediate and mechanistic and ESI-HRMS studies further provide valuable insights into the proposed catalytic cycle.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
2
|
Wei XP, Wang XC, Ma T, Qiao XX, Li G, He Y, Zhao XJ. B(C 6F 5) 3/CPA-Catalyzed Aza-Diels-Alder Reaction of 3,3-Difluoro-2-Aryl-3H-indoles and Unactivated Dienes. Chemistry 2024; 30:e202401008. [PMID: 38624085 DOI: 10.1002/chem.202401008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Here we report B(C6F5)3/CPA-catalyzed enantioselective aza-Diels-Alder reaction of 3,3-difluoro-2-Aryl-3H-indoles with unactivated dienes to access chiral 10,10-difluoro-tetrahydropyrido[1,2-a]indoles. This protocol allows the formation of pyrazole-based C2-quaternary indolin-3-ones with high enantioselectivities and regioselectivities. Moreover, gram-scale synthesis of the 10,10-difluoro-tetrahydropyrido[1,2-a]indole skeleton was successfully achieved without any reduction in both yield and enantioselectivity.
Collapse
Affiliation(s)
- Xing-Pin Wei
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xin-Chun Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
3
|
Yang F, Wang L, Liang M, Zhang L, Fan B, Yao B. Pd-Catalyzed Asymmetric Allylation Reaction of 2-Aryl-3 H-indol-3-ones with Allyltrimethylsilane. J Org Chem 2024; 89:1873-1879. [PMID: 38241606 DOI: 10.1021/acs.joc.3c02599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
An efficient method for the first ene-reaction of 2-aryl-3H-indol-3-ones with allyltrimethylsilane has been developed for the first time. The reaction proceeded under the catalysis of Pd(OAc)2 and chiral phosphoric ligand L11 in the presence of Cu(CF3COO)2·XH2O, PivOH, and 5 Å molecular sieves in DMSO at 60 °C. The present methodology can avoid the impact of amine products generated by the reaction on the catalyst, and at the same time, the high catalytic activity of classical palladium catalysts still has catalytic ability for low electrophilic keto-imines. The desired products were furnished in excellent yields with good enantioselectivity.
Collapse
Affiliation(s)
- Fan Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Lun Wang
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
| | - Meiqi Liang
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
| | - Linchun Zhang
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
| | - Baomin Fan
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
- Department School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, Yunnan, People's Republic of China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
4
|
Wu XX, Ma T, Qiao XX, Zou CP, Li G, He Y, Zhao XJ. Enantioselective Alkynylation of 2-Aryl-3H-indol-3-ones via Cooperative Catalysis of Copper/Chiral Phosphoric Acid. Chem Asian J 2023; 18:e202300526. [PMID: 37530657 DOI: 10.1002/asia.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
A facile enantioselective alkynylation of cyclic ketimines attached to a neutral functional group utilizing the dual Cu(I)-CPA catalysis is described. The strategy of the alkynylation of 2-aryl-3H-indol-3-one directly to chiral propargylic amines containing indolin-3-one moiety in good yields and enantioselectivities. Moreover, gram-scale synthesis of chiral propargylamines based C2-quaternary indolin-3-ones was performed. The synthetic applications were confirmed by transformations of the products with no decrease in the yield and enantioselectivity.
Collapse
Affiliation(s)
- Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
5
|
Wu XX, He Y, Qiao XX, Ma T, Zou CP, Li G, Zhao XJ. Organocatalyzed Enantioselective Aza-Morita-Baylis-Hillman Reaction of Cyclic Ketimine with α,β-Unsaturated γ-Butyrolactam. J Org Chem 2023. [PMID: 37157120 DOI: 10.1021/acs.joc.2c02765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The enantioselective aza-MBH reaction is an efficient strategy for constructing novel carbon-carbon bonds, providing access to multitudinous chiral densely functionalized MBH products. However, the enantioselective aza-MBH reaction of cyclic-ketimines that would generate a versatile synthon is still missing and challenging. Herein, we developed a challenging direct organocatalytic asymmetric aza-MBH reaction involving cyclic ketimines attached to a neutral functional group. Moreover, the α,β-unsaturated γ-butyrolactam was utilized as a rare nucleophile alkene in this work. The reactions provide enantiomerically enriched 2-alkenyl-2-phenyl-1,2-dihydro-3H-indol-3-ones, bearing with a tetra-substituted stereogenic center. Moreover, this reaction features high α-selectivities, high enantioselectivities (up to 99% ee), and good yields (up to 80%).
Collapse
Affiliation(s)
- Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
6
|
Ma T, He Y, Qiao XX, Zou CP, Wu XX, Li G, Zhao XJ. Chiral phosphoric acid-catalyzed enantioselective aza-Friedel-Crafts reaction of naphthols and electron-rich phenols with 2-aryl-3 H-indol-3-ones. Org Biomol Chem 2023; 21:489-493. [PMID: 36541043 DOI: 10.1039/d2ob02179j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enantioselective aza-Friedel-Crafts reaction is one of the most straightforward and efficient strategies for constructing a new carbon-carbon bond bearing quaternary stereocenter in organic synthesis, but the catalytic asymmetric aza-Friedel-Crafts reaction of naphthols/phenols with cyclic-ketimines attached to a neutral functional group remains still relatively unexplored. Herein, a highly enantioselective aza-Friedel-Crafts reaction of cyclic-ketimines and naphthols/phenols has been realized using a chiral phosphoric acid catalyst. A variety of chiral aminonaphthols (chiral indolin-3-ones) containing a quaternary stereocenter at the C2 position were obtained with excellent outcomes (up to 97% yield, 98% ee). Moreover, the synthetic utility of the enantiomerically enriched chiral aminonaphthols was demonstrated in some efficient transformations. According to the experimental results, a possible transition state model has been proposed to rationalize the origin of asymmetric induction.
Collapse
Affiliation(s)
- Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
7
|
Hu WB, Qiu YQ, Wei WY, Li Q, Xu YJ. Construction of C2-Quaternary-indol-3-ones via Rh III-Catalyzed [3+2] Spirocyclization from Indole Ketones and Nitroolefins. J Org Chem 2022; 87:6179-6188. [PMID: 35438997 DOI: 10.1021/acs.joc.2c00408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel complex C2-quaternary-indol-3-one units bearing versatile nitro groups have been successfully developed from pseudo-indolones and α,β-unsaturated nitroolefins through rhodium-catalyzed C-H activation/[3 + 2] spirocyclization. Notably, four diastereomers could be selectively obtained in the reaction by condition control.
Collapse
Affiliation(s)
- Wen-Bi Hu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610066 Sichuan, China
| | - Yan-Qing Qiu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610066 Sichuan, China
| | - Wen-Yi Wei
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610066 Sichuan, China
| | - Qing Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610066 Sichuan, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610066 Sichuan, China
| |
Collapse
|
8
|
Matsushita T, Kishimoto S, Hara K, Hashimoto H, Watanabe K. Structural and Functional Analyses of a Spiro-Carbon-Forming, Highly Promiscuous Epoxidase from Fungal Natural Product Biosynthesis. Biochemistry 2020; 59:4787-4792. [DOI: 10.1021/acs.biochem.0c00896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Takuma Matsushita
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kodai Hara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroshi Hashimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
9
|
Fraley AE, Sherman DH. Enzyme evolution in fungal indole alkaloid biosynthesis. FEBS J 2020; 287:1381-1402. [PMID: 32118354 PMCID: PMC7317620 DOI: 10.1111/febs.15270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/24/2019] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
The class of fungal indole alkaloids containing the bicyclo[2.2.2]diazaoctane ring is comprised of diverse molecules that display a range of biological activities. While much interest has been garnered due to their therapeutic potential, this class of molecules also displays unique chemical functionality, making them intriguing synthetic targets. Many elegant and intricate total syntheses have been developed to generate these alkaloids, but the selectivity required to produce them in high yield presents great barriers. Alternatively, if we can understand the molecular mechanisms behind how fungi make these complex molecules, we can leverage the power of nature to perform these chemical transformations. Here, we describe the various studies regarding the evolutionary development of enzymes involved in fungal indole alkaloid biosynthesis.
Collapse
Affiliation(s)
- Amy E. Fraley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
10
|
Zhang Q, Li Y, Wang J, Yang C, Liu C, Li X, Cheng J. B(C
6
F
5
)
3
/Chiral Phosphoric Acid Catalyzed Ketimine–Ene Reaction of 2‐Aryl‐3
H
‐indol‐3‐ones and α‐Methylstyrenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qing‐Xia Zhang
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Yao Li
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Jie Wang
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Chen Yang
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Cheng‐Jun Liu
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Xin Li
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Jin‐Pei Cheng
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| |
Collapse
|
11
|
Zhang QX, Li Y, Wang J, Yang C, Liu CJ, Li X, Cheng JP. B(C 6 F 5 ) 3 /Chiral Phosphoric Acid Catalyzed Ketimine-Ene Reaction of 2-Aryl-3H-indol-3-ones and α-Methylstyrenes. Angew Chem Int Ed Engl 2020; 59:4550-4556. [PMID: 31943586 DOI: 10.1002/anie.201915226] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Indexed: 11/05/2022]
Abstract
The enantioselective ketimine-ene reaction is one of the most challenging stereocontrolled reaction types in organic synthesis. In this work, catalytic enantioselective ketimine-ene reactions of 2-aryl-3H-indol-3-ones with α-methylstyrenes were achieved by utilizing a B(C6 F5 )3 /chiral phosphoric acid (CPA) catalyst. These ketimine-ene reactions proceed well with low catalyst loading (B(C6 F5 )3 /CPA=2 mol %/2 mol %) under mild conditions, providing rapid and facile access to a series of functionalized 2-allyl-indolin-3-ones with very good reactivity (up to 99 % yield) and excellent enantioselectivity (up to 99 % ee). Theoretical calculations reveal that enhancement of the acidity of the chiral phosphoric acid by B(C6 F5 )3 significantly reduces the activation free energy barrier. Furthermore, collective favorable hydrogen-bonding interactions, especially the enhanced N-H⋅⋅⋅O hydrogen-bonding interaction, differentiates the free energy of the transition states of CPA and B(C6 F5 )3 /CPA, thereby inducing the improvement of stereoselectivity.
Collapse
Affiliation(s)
- Qing-Xia Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chen Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Cheng-Jun Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
12
|
Fraley AE, Caddell Haatveit K, Ye Y, Kelly SP, Newmister SA, Yu F, Williams RM, Smith JL, Houk KN, Sherman DH. Molecular Basis for Spirocycle Formation in the Paraherquamide Biosynthetic Pathway. J Am Chem Soc 2020; 142:2244-2252. [PMID: 31904957 DOI: 10.1021/jacs.9b09070] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The paraherquamides are potent anthelmintic natural products with complex heptacyclic scaffolds. One key feature of these molecules is the spiro-oxindole moiety that lends a strained three-dimensional architecture to these structures. The flavin monooxygenase PhqK was found to catalyze spirocycle formation through two parallel pathways in the biosynthesis of paraherquamides A and G. Two new paraherquamides (K and L) were isolated from a ΔphqK strain of Penicillium simplicissimum, and subsequent enzymatic reactions with these compounds generated two additional metabolites, paraherquamides M and N. Crystal structures of PhqK in complex with various substrates provided a foundation for mechanistic analyses and computational studies. While it is evident that PhqK can react with various substrates, reaction kinetics and molecular dynamics simulations indicated that the dioxepin-containing paraherquamide L is the favored substrate. Through this effort, we have elucidated a key step in the biosynthesis of the paraherquamides and provided a rationale for the selective spirocyclization of these powerful anthelmintic agents.
Collapse
Affiliation(s)
| | - Kersti Caddell Haatveit
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | | | | | | | | | - Robert M Williams
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States.,University of Colorado Cancer Center , Aurora , Colorado 80045 , United States
| | | | - K N Houk
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | | |
Collapse
|
13
|
Fang S, Jin S, Ma R, Lu T, Du D. Asymmetric Synthesis of C2-Quaternary Indolin-3-ones Enabled by N-Heterocyclic Carbene Catalysis. Org Lett 2019; 21:5211-5214. [DOI: 10.1021/acs.orglett.9b01823] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shuaishuai Fang
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Shiyi Jin
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Rui Ma
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
14
|
Klas KR, Kato H, Frisvad JC, Yu F, Newmister SA, Fraley AE, Sherman DH, Tsukamoto S, Williams RM. Structural and stereochemical diversity in prenylated indole alkaloids containing the bicyclo[2.2.2]diazaoctane ring system from marine and terrestrial fungi. Nat Prod Rep 2019; 35:532-558. [PMID: 29632911 DOI: 10.1039/c7np00042a] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covering: up to February 2017 Various fungi of the genera Aspergillus, Penicillium, and Malbranchea produce prenylated indole alkaloids possessing a bicyclo[2.2.2]diazaoctane ring system. After the discovery of distinct enantiomers of the natural alkaloids stephacidin A and notoamide B, from A. protuberus MF297-2 and A. amoenus NRRL 35660, another fungi, A. taichungensis, was found to produce their diastereomers, 6-epi-stephacidin A and versicolamide B, as major metabolites. Distinct enantiomers of stephacidin A and 6-epi-stephacidin A may be derived from a common precursor, notoamide S, by enzymes that form a bicyclo[2.2.2]diazaoctane core via a putative intramolecular hetero-Diels-Alder cycloaddition. This review provides our current understanding of the structural and stereochemical homologies and disparities of these alkaloids. Through the deployment of biomimetic syntheses, whole-genome sequencing, and biochemical studies, a unified biogenesis of both the dioxopiperazine and the monooxopiperazine families of prenylated indole alkaloids constituted of bicyclo[2.2.2]diazaoctane ring systems is presented.
Collapse
Affiliation(s)
- Kimberly R Klas
- Department of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ji Y, He X, Peng C, Huang W. Recent advances in the synthesis of C2-spiropseudoindoxyls. Org Biomol Chem 2019; 17:2850-2864. [DOI: 10.1039/c8ob03122c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes the recent development of novel approaches to construct structurally unique oxindoles featuring a spirocycle at the C2 position.
Collapse
Affiliation(s)
- Yanling Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- People's Republic of China
| | - Xianghong He
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- People's Republic of China
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- People's Republic of China
| |
Collapse
|
16
|
Guo L, Tang B, Nie R, Liu Y, Lv S, Wang H, Guo L, Hai L, Wu Y. C–H alkenylation/cyclization and sulfamidation of 2-phenylisatogens using N-oxide as a directing group. Chem Commun (Camb) 2019; 55:10623-10626. [PMID: 31429452 DOI: 10.1039/c9cc05719f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ru(ii)-Catalyzed C–H alkenylation/cyclization and Ir(iii)-catalyzed C–H sulfamidation provided indol-3-one derivatives and sulfamidated 2-phenylisatogens respectively, with good yields and excellent functional group tolerance.
Collapse
Affiliation(s)
- Lingmei Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Baolan Tang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Ruifang Nie
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yanzhao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Shan Lv
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Huijing Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California San Diego
- La Jolla
- USA
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Li Hai
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
17
|
Li JS, Liu YJ, Li S, Ma JA. Chiral phosphoric acid-catalyzed direct asymmetric mannich reaction of cyclicC-acylimines with simple ketones: facile access to C2-quaternary indolin-3-ones. Chem Commun (Camb) 2018; 54:9151-9154. [DOI: 10.1039/c8cc05125a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chiral Brønsted acid-catalyzed direct asymmetric Mannich reaction of simple ketones with cyclicC-acylimines has been established for the synthesis of C2-quaternary indolin-3-ones.
Collapse
Affiliation(s)
- Jin-Shan Li
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin Collaborative Innovation Centre of Chemical Science and Engineering
- Tianjin University
- Tianjin 300072
| | - Yong-Jie Liu
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin Collaborative Innovation Centre of Chemical Science and Engineering
- Tianjin University
- Tianjin 300072
| | - Shen Li
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin Collaborative Innovation Centre of Chemical Science and Engineering
- Tianjin University
- Tianjin 300072
| | - Jun-An Ma
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin Collaborative Innovation Centre of Chemical Science and Engineering
- Tianjin University
- Tianjin 300072
| |
Collapse
|
18
|
Tang X, Zhu HP, Zhou J, Chen Y, Pan XL, Guo L, Li JL, Peng C, Huang W. Highly diastereoselective synthesis of cyclopropane-fused spiro-pseudoindoxyl derivatives through [2 + 1] annulation of 2-ylideneoxindoles and sulfonium bromides. Org Biomol Chem 2018; 16:8169-8174. [DOI: 10.1039/c8ob02034e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We developed an efficient method for diastereoselective synthesis of cyclopropane-fused spiropseudoindoxyl derivatives through [2 + 1] annulation.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Hong-Ping Zhu
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Jin Zhou
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Yang Chen
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Xiao-Li Pan
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Li Guo
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Jun-Long Li
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Wei Huang
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| |
Collapse
|
19
|
Abstract
Covering: up to 2014. Prenylated indole alkaloids comprise a large and structurally diverse family of natural products that often display potent biological activities. In recent years a large family of prenyltransferases that install prenyl groups onto the indole core have been discovered. While the vast majority of these enzymes are evolutionarily related and share a common protein fold, they are remarkably versatile in their ability to catalyze reverse and normal prenylations at all positions on the indole ring. This highlight article will focus on recent studies of the mechanisms utilized by indole prenyltransferases. While all of the prenylation reactions may follow a direct electrophilic aromatic substitution mechanism, studies of structure and reactivity suggest that in some cases prenylation may first occur at the nucleophilic C-3 position, and subsequent rearrangements then generate the final product.
Collapse
Affiliation(s)
- Martin E Tanner
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, V6T 1Z1, British Columbia, Canada.
| |
Collapse
|
20
|
Huang JR, Qin L, Zhu YQ, Song Q, Dong L. Multi-site cyclization via initial C–H activation using a rhodium(iii) catalyst: rapid assembly of frameworks containing indoles and indolines. Chem Commun (Camb) 2015; 51:2844-7. [PMID: 25580478 DOI: 10.1039/c4cc07125e] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tandem multi-site cyclization triggered by Rh(iii)-catalyzed C–H activation has been achieved for highly efficient synthesis of spirocycle indolin-3-one (C2-cyclization), benzo[a]carbazole (C3-cyclization) and an unusual indoxyl core (N1-cyclization).
Collapse
Affiliation(s)
- Ji-Rong Huang
- Key laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Liu Qin
- Key laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Yu-Qin Zhu
- Key laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Qiang Song
- Key laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Lin Dong
- Key laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| |
Collapse
|
21
|
Patel P, Narendraprasad Reddy B, Ramana C. The synthesis of the central tricyclic core of the isatisine A: harmonious orchestration of [metal]-catalyzed reactions in a sequence. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Gu B, He S, Yan X, Zhang L. Tentative biosynthetic pathways of some microbial diketopiperazines. Appl Microbiol Biotechnol 2013; 97:8439-53. [DOI: 10.1007/s00253-013-5175-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 01/20/2023]
|
23
|
Finefield JM, Frisvad JC, Sherman DH, Williams RM. Fungal origins of the bicyclo[2.2.2]diazaoctane ring system of prenylated indole alkaloids. JOURNAL OF NATURAL PRODUCTS 2012; 75:812-33. [PMID: 22502590 PMCID: PMC3485739 DOI: 10.1021/np200954v] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Over eight different families of natural products consisting of nearly 70 secondary metabolites that contain the bicyclo[2.2.2]diazaoctane ring system have been isolated from various Aspergillus, Penicillium, and Malbranchea species. Since 1968, these secondary metabolites have been the focus of numerous biogenetic, synthetic, taxonomic, and biological studies and, as such, have made a lasting impact across multiple scientific disciplines. This review covers the isolation, biosynthesis, and biological activity of these unique secondary metabolites containing the bridging bicyclo[2.2.2]diazaoctane ring system. Furthermore, the diverse fungal origin of these natural products is closely examined and, in many cases, updated to reflect the currently accepted fungal taxonomy.
Collapse
Affiliation(s)
- Jennifer M Finefield
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
24
|
A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. ACTA ACUST UNITED AC 2012; 18:1499-512. [PMID: 22118684 DOI: 10.1016/j.chembiol.2011.08.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 11/21/2022]
Abstract
A single gene cluster of Penicillium chrysogenum contains genes involved in the biosynthesis and secretion of the mycotoxins roquefortine C and meleagrin. Five of these genes have been silenced by RNAi. Pc21g15480 (rds) encodes a nonribosomal cyclodipeptide synthetase for the biosynthesis of both roquefortine C and meleagrin. Pc21g15430 (rpt) encodes a prenyltransferase also required for the biosynthesis of both mycotoxins. Silencing of Pc21g15460 or Pc21g15470 led to a decrease in roquefortine C and meleagrin, whereas silencing of the methyltransferase gene (Pc21g15440; gmt) resulted in accumulation of glandicolin B, indicating that this enzyme catalyzes the conversion of glandicolin B to meleagrin. All these genes are transcriptionally coregulated. Our results prove that roquefortine C and meleagrin derive from a single pathway.
Collapse
|
25
|
Guo JP, Tan JL, Wang YL, Wu HY, Zhang CP, Niu XM, Pan WZ, Huang XW, Zhang KQ. Isolation of talathermophilins from the thermophilic fungus Talaromyces thermophilus YM3-4. JOURNAL OF NATURAL PRODUCTS 2011; 74:2278-2281. [PMID: 21967034 DOI: 10.1021/np200365z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Six indole alkaloids with various levels of prenylation were isolated from the thermophilic fungus Talaromyces thermophilus strain YM3-4. Their structures were identified by NMR and MS spectroscopic analyses. Compounds 1 and 2 are new analogues of the key versatile precursor notoamide E. Compound 3 is a novel analogue of preechinulin, and compound 4 was reported as a natural occurring cyclo(glycyltryptophyl) for the first time. The metabolite profile of this thermophilic organism displayed a biosynthetic pathway for talathermophilins.
Collapse
Affiliation(s)
- Ji-Peng Guo
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Williams RM. Natural products synthesis: enabling tools to penetrate Nature's secrets of biogenesis and biomechanism. J Org Chem 2011; 76:4221-59. [PMID: 21438619 PMCID: PMC3174107 DOI: 10.1021/jo2003693] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Selected examples from our laboratory of how synthetic technology platforms developed for the total synthesis of several disparate families of natural products was harnessed to penetrate biomechanistic and/or biosynthetic queries is discussed. Unexpected discoveries of biomechanistic reactivity and/or penetrating the biogenesis of naturally occurring substances were made possible through access to substances available only through chemical synthesis. Hypothesis-driven total synthesis programs are emerging as very useful conceptual templates for penetrating and exploiting the inherent reactivity of biologically active natural substances. In many instances, new enabling synthetic technologies were required to be developed. The examples demonstrate the often untapped richness of complex molecule synthesis to provide powerful tools to understand, manipulate and exploit Nature's vast and creative palette of secondary metabolites.
Collapse
Affiliation(s)
- Robert M Williams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
| |
Collapse
|
27
|
Fukuda T, Sudoh Y, Tsuchiya Y, Okuda T, Fujimori F, Igarashi Y. Marianins A and B, prenylated phenylpropanoids from Mariannaea camptospora. JOURNAL OF NATURAL PRODUCTS 2011; 74:1327-1330. [PMID: 21488655 DOI: 10.1021/np200035m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Marianins A (1) and B (2), two new prenylated phenylpropanoids, were isolated from the culture extract of the fungus Mariannaea camptospora. Structures of marianins were elucidated by interpretation of NMR and other spectroscopic data. 1 is a 5-methylcoumarin bearing two prenyloxy groups, while 2 is an orcinol derivative substituted with a 3,3-dimethyl-4-pentenoyl chain. 2 is possibly derived from 1 through a Claisen rearrangement of the prenyl group, followed by lactone hydrolysis and decarboxylation. These compounds showed weak antibacterial activity against Micrococcus luteus.
Collapse
Affiliation(s)
- Takao Fukuda
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Notoamide E: Biosynthetic incorporation into notoamides C and D in cultures of Aspergillus versicolor NRRL 35600. Tetrahedron Lett 2011; 52:1987-1989. [PMID: 22140279 DOI: 10.1016/j.tetlet.2011.02.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Notoamide E, a short-lived secondary metabolite, has been proposed as a biosynthetic intermediate to several advanced metabolites isolated from Aspergillus versicolor. In order to verify the role of this indole alkaloid along the biosynthetic pathway, synthetic doubly (13)C-labeled notoamide E was fed to Aspergillus versicolor. Analysis of the metabolites showed significant incorporation of notoamide E into the natural products notoamides C and D.
Collapse
|
29
|
Abstract
Important biologically active indole alkaloids are decorated with prenyl (3,3-dimethylallyl) and tert-prenyl (1,1-dimethylallyl) groups. Covering the literature until the end of 2010, this review article comprehensively summarises and discusses the currently available technologies of prenylation and tert-prenylation of indoles, which have been applied in natural products total syntheses or could be applied there in the near future. We focus on those procedures which introduce the C(5) units in one step, organised according to the indole position to be functionalised. Key strategies include electrophilic and nucleophilic prenylation and tert-prenylation, prenyl and tert-prenyl rearrangements, transition metal-mediated reactions and enzymatic methods.
Collapse
Affiliation(s)
- Thomas Lindel
- Institut für Organische Chemie, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | | | | |
Collapse
|
30
|
Zhou YQ, Wang NX, Zhou SB, Huang Z, Cao L. [4 + 3] Cycloaddition of Aromatic α,β-Unsaturated Aldehydes and Ketones with Epoxides: One-Step Approach to Synthesize Seven-Membered Oxacycles Catalyzed by Lewis Acid. J Org Chem 2010; 76:669-72. [DOI: 10.1021/jo101669t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu-Qiang Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China, 100190
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China, 100190
| | - Shu-Bao Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China, 100190
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, China, 830046
| | - Zhong Huang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China, 100190
| | - Linghua Cao
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, China, 830046
| |
Collapse
|
31
|
Chu YS, Niu XM, Wang YL, Guo JP, Pan WZ, Huang XW, Zhang KQ. Isolation of Putative Biosynthetic Intermediates of Prenylated Indole Alkaloids from a Thermophilic Fungus Talaromyces thermophilus. Org Lett 2010; 12:4356-9. [DOI: 10.1021/ol101817g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan-Sheng Chu
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - Xue-Mei Niu
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - Yan-Li Wang
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - Ji-Peng Guo
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - Wen-Zheng Pan
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - Xiao-Wei Huang
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
32
|
Yin WB, Xie XL, Matuschek M, Li SM. Reconstruction of pyrrolo[2,3-b]indoles carrying an alpha-configured reverse C3-dimethylallyl moiety by using recombinant enzymes. Org Biomol Chem 2010; 8:1133-41. [PMID: 20165805 DOI: 10.1039/b922440h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nine reversely C3-prenylated pyrrolo[2,3-b]indoles were successfully prepared by using two recombinant enzymes involved in the biosynthesis of acetylaszonalenin from Neosartorya fischeri. The prenyltransferase AnaPT catalysed the conversion of six tryptophan-containing cyclic dipeptides to reversely C3-prenylated indoline derivatives. Using cyclo-L-Trp-L-Trp as substrate, both mono- and diprenylated indolines were obtained. Two of the AnaPT products were acetylated at position N1 by the acetyltransferase AnaAT. The structures of the obtained compounds were characterised by HR-ESI-MS, (1)H- and (13)C-NMR analyses as well as by long-range (1)H-(13)C connectivities in heteronuclear multiple-bond correlation (HMBC) spectra after preparative isolation. Their absolute configurations were determined by analysing the (1)H-(1)H spatial correlations in rotating-frame nuclear overhauser effect spectroscopy (ROESY).
Collapse
Affiliation(s)
- Wen-Bing Yin
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie, Deutschhausstrasse 17A, D-35037, Marburg, Germany
| | | | | | | |
Collapse
|
33
|
Li SM. Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. PHYTOCHEMISTRY 2009; 70:1746-1757. [PMID: 19398116 DOI: 10.1016/j.phytochem.2009.03.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 05/27/2023]
Abstract
A series of putative indole prenyltransferase genes could be identified in the genome sequences of different fungal strains including Aspergillus fumigatus and Neosartorya fischeri. The gene products show significant sequence similarities to dimethylallyltryptophan synthases from different fungi. We have cloned and overexpressed seven of these genes, fgaPT1, fgaPT2, ftmPT1, ftmPT2, 7-dmats, cdpNPT and anaPT in Escherichia coli and Saccharomyces cerevisiae. The overproduced enzymes were characterised biochemically. Three additional indole prenyltransferases, DmaW-Cs, TdiB and MaPT were also identified and characterised in the last years. Sequence analysis and comparison with known aromatic prenyltransferases as well as biochemical investigation revealed that these enzymes belong to a group of aromatic prenyltransferases. The characterised prenyltransferases are soluble proteins, catalyse different prenyl transfer reactions on indole moieties of various substrates and do not require divalent metal ions for their prenyl transfer reactions. In addition, indole prenyltransferases carry tryptophan aminopeptidase activity, which strengths their relationship in the evolution. These properties differ clearly from membrane-bound aromatic prenyltransferases from different sources and soluble prenyltransferases from bacteria. All of the indole prenyltransferases accepted only dimethylallyl diphosphate as prenyl donor. On the other hand, they showed broad substrate specificity towards their aromatic substrates. Diverse simple tryptophan derivatives and tryptophan-containing cyclic dipeptides were accepted by these enzymes, providing a strategy for convenient production of biologically active substances, e.g. by chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Shu-Ming Li
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie, Marburg, Germany.
| |
Collapse
|
34
|
Yin WB, Grundmann A, Cheng J, Li SM. Acetylaszonalenin Biosynthesis in Neosartorya fischeri. J Biol Chem 2009; 284:100-109. [DOI: 10.1074/jbc.m807606200] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
35
|
Kremer A, Li SM. Potential of a 7-dimethylallyltryptophan synthase as a tool for production of prenylated indole derivatives. Appl Microbiol Biotechnol 2008; 79:951-61. [PMID: 18481055 DOI: 10.1007/s00253-008-1505-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/09/2008] [Accepted: 04/14/2008] [Indexed: 01/08/2023]
Abstract
Recently, a gene for a 7-dimethylallyltryptophan synthase (7-DMATS) was identified in Aspergillus fumigatus and its enzymatic function was proven biochemically. In this study, the behaviour of 7-DMATS towards aromatic substrates was investigated and compared with that of the 4-dimethylallyltryptophan synthase FgaPT2 from the same fungus. In total, 24 simple indole derivatives were tested as potential substrates for 7-DMATS. With an exception of 7-methyltryptophan, all of the substances were accepted by 7-DMATS and converted to their prenylated derivatives, indicating a more flexible substrate specificity of 7-DMATS in comparison to that of FgaPT2. The relative activities of 7-DMATS towards these substrates were from 4% to 89% of that of L-tryptophan, much higher than that of FgaPT2. Structural elucidation of the isolated enzymatic products by nuclear magnetic resonance and mass spectrometry analysis proved unequivocally the prenylation at position C7 of the indole ring. Overnight incubation with eight substances showed that the conversion ratios were in the range of 55.9% to 99.7%. This study provided an additional example that prenylated indole derivatives can be effectively produced by using the overproduced and purified 7-DMATS.
Collapse
Affiliation(s)
- Anika Kremer
- Heinrich-Heine-Universität Düsseldorf, Institut für Pharmazeutische Biologie und Biotechnologie, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | |
Collapse
|
36
|
Pichowicz M, Simpkins NS, Blake AJ, Wilson C. Studies towards complex bridged alkaloids: regio- and stereocontrolled enolate chemistry of 2,5-diketopiperazines. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Yin WB, Ruan HL, Westrich L, Grundmann A, Li SM. CdpNPT, an N-Prenyltransferase fromAspergillus fumigatus: Overproduction, Purification and Biochemical Characterisation. Chembiochem 2007; 8:1154-61. [PMID: 17525915 DOI: 10.1002/cbic.200700079] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A putative prenyltransferase gene, cdpNPT, was identified in the genome sequence of Aspergillus fumigatus by a homology search by using known prenyltransferases and sequence analysis. CdpNPT consists of 440 amino acids and has a molecular mass of about 50 kDa. The coding sequence of cdpNPT was cloned in pQE60 and overexpressed in E. coli. The soluble His(6)-fusion CdpNPT was purified to near homogeneity and characterised biochemically. The enzyme showed broad substrate specificity towards aromatic substrates and was found to catalyse the prenylation of tryptophan-containing cyclic dipeptides at N1 of the indole moieties in the presence of dimethylallyl diphosphate (DMAPP); geranyl diphosphate was not accepted as prenyl donor. The structures of the enzymatic products were elucidated by NMR and MS analysis. The K(m) value for DMAPP was determined to be 650 microM. Due to substrate inhibition, K(m) values could not be obtained for the aromatic substrates. CdpNPT does not need divalent metal ions for its enzymatic reaction, although Ca(2+) enhances the reaction velocity by up to the threefold. CdpNPT is the first N-prenyltransferase that has been purified and characterised in a homogenous form after heterologous overproduction. Interestingly, it shows significant sequence similarity to other indole prenyltransferases that catalyse the formation of C--C bonds.
Collapse
Affiliation(s)
- Wen-Bing Yin
- Heinrich-Heine-Universität Düsseldorf, Institut für Pharmazeutische Biologie und Biotechnologie, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
38
|
Unsöld IA, Li SM. Reverse prenyltransferase in the biosynthesis of fumigaclavine C in Aspergillus fumigatus: gene expression, purification, and characterization of fumigaclavine C synthase FGAPT1. Chembiochem 2006; 7:158-64. [PMID: 16397874 DOI: 10.1002/cbic.200500318] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A putative prenyltransferase gene-fgaPT1-has been identified in the biosynthetic gene cluster of fumigaclavines in Aspergillus fumigatus AF293. The gene was cloned and overexpressed in Escherichia coli, and the His6-fusion FgaPT1 was purified to near homogeneity and characterized biochemically. The enzyme was found to convert fumigaclavine A into fumigaclavine C by attaching a dimethylallyl moiety to C-2 of the indole nucleus in a "reverse" manner, that is, by connection of C-3 of the dimethylallyl moiety to an aromatic nucleus. FgaPT1 is a soluble, dimeric protein with a subunit size of 50 kDa. K m(app) values for fumigaclavine A and dimethylallyl diphosphate were determined to be 6 and 13 microM, respectively, while the turnover number was 0.8 s(-1). Metal ions such as Mg2+ and Ca2+ are not essential for the enzymatic activity. FgaPT1 showed relatively strict substrate specificity towards fumigaclavine A, with only dimethylallyl diphosphate being accepted as a donor under our conditions. FgaPT1 is the first reverse prenyltransferase from fungi to have been purified and characterized in homogenous form after heterologous overproduction. Surprisingly, it shows very low sequence similarity to the recently identified prenyltransferase LtxC from cyanobacteria, which also catalyzes the reverse prenylation of an indole nucleus.
Collapse
Affiliation(s)
- Inge A Unsöld
- Eberhard-Karls-Universität Tübingen, Pharmazeutische Biologie, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | |
Collapse
|
39
|
Grubbs AW, Artman GD, Williams RM. Concise syntheses of the 1,7-dihydropyrano[2,3-g]indole ring system of the stephacidins, aspergamides and norgeamides. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.10.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Williams RM. Total synthesis and biosynthesis of the paraherquamides: an intriguing story of the biological Diels-Alder construction. Chem Pharm Bull (Tokyo) 2002; 50:711-40. [PMID: 12045324 DOI: 10.1248/cpb.50.711] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The syntheses and biosyntheses of the paraherquamide and brevianamide families of prenylated indole-derived alkaloids are reviewed. It has been proposed that the unique bicyclo[2.2.2]diazaoctan ring system that is common to this family of natural products, arises by a biological intramolecular Diels-Alder cycloaddition reaction. Both synthetic approaches and total syntheses of several members of this family of natural products are reviewed. The biosynthesis of these alkaloids has also constituted an active area of research and the current state of knowledge on the biosynthesis of these natural products are reviewed.
Collapse
|
41
|
Shibata N, Tarui T, Doi Y, Kirk KL. Synthesis of Fluorogypsetin and Fluorobrevianamide E by a Novel Fluorination-Cyclization ofcyclo-L-Trp-L-AAs. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20011203)113:23<4593::aid-ange4593>3.0.co;2-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
|
43
|
Metabolism of Aromatic Compounds and Nucleic Acid Bases. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|