1
|
Chen W, Xu H, Dai S, Wang J, Yang Z, Jin Y, Zou M, Xiao X, Wu T, Yan W, Zhang B, Lin Z, Zhao M. Detection of low-frequency mutations in clinical samples by increasing mutation abundance via the excision of wild-type sequences. Nat Biomed Eng 2023; 7:1602-1613. [PMID: 37500748 DOI: 10.1038/s41551-023-01072-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
The efficiency of DNA-enrichment techniques is often insufficient to detect mutations that occur at low frequencies. Here we report a DNA-excision method for the detection of low-frequency mutations in genomic DNA and in circulating cell-free DNA at single-nucleotide resolution. The method is based on a competitive DNA-binding-and-digestion mechanism, effected by deoxyribonuclease I (DNase) guided by single-stranded phosphorothioated DNA (sgDNase), for the removal of wild-type DNA strands. The sgDNase can be designed against any wild-type DNA sequences, allowing for the uniform enrichment of all the mutations within the target-binding region of single-stranded phosphorothioated DNA at mild-temperature conditions. Pretreatment with sgDNase enriches all mutant strands with initial frequencies down to 0.01% and leads to high discrimination factors for all types of single-nucleotide mismatch in multiple sequence contexts, as we show for the identification of low-abundance mutations in samples of blood or tissue from patients with cancer. The method can be coupled with next-generation sequencing, droplet digital polymerase chain reaction, Sanger sequencing, fluorescent-probe-based assays and other mutation-detection methods.
Collapse
Affiliation(s)
- Wei Chen
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haiqi Xu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shenbin Dai
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ziyu Yang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuewen Jin
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mengbing Zou
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xianjin Xiao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tongbo Wu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Yan
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Bin Zhang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
2
|
Shan Z, Ghadirian N, Lyumkis D, Horton NC. Pretransition state and apo structures of the filament-forming enzyme SgrAI elucidate mechanisms of activation and substrate specificity. J Biol Chem 2022; 298:101760. [PMID: 35202658 PMCID: PMC8960973 DOI: 10.1016/j.jbc.2022.101760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/01/2022] Open
Abstract
Enzyme filamentation is a widespread phenomenon that mediates enzyme regulation and function. For the filament-forming sequence-specific DNA endonuclease SgrAI, the process of filamentation both accelerates its DNA cleavage activity and expands its DNA sequence specificity, thus allowing for many additional DNA sequences to be rapidly cleaved. Both outcomes-the acceleration of DNA cleavage and the expansion of sequence specificity-are proposed to regulate critical processes in bacterial innate immunity. However, the mechanistic bases underlying these events remain unclear. Herein, we describe two new structures of the SgrAI enzyme that shed light on its catalytic function. First, we present the cryo-EM structure of filamentous SgrAI bound to intact primary site DNA and Ca2+ resolved to ∼2.5 Å within the catalytic center, which represents the trapped enzyme-DNA complex prior to the DNA cleavage reaction. This structure reveals important conformational changes that contribute to the catalytic mechanism and the binding of a second divalent cation in the enzyme active site, which is expected to contribute to increased DNA cleavage activity of SgrAI in the filamentous state. Second, we present an X-ray crystal structure of DNA-free (apo) SgrAI resolved to 2.0 Å resolution, which reveals a disordered loop involved in DNA recognition. Collectively, these multiple new observations clarify the mechanism of expansion of DNA sequence specificity of SgrAI, including the indirect readout of sequence-dependent DNA structure, changes in protein-DNA interactions, and the disorder-to-order transition of a crucial DNA recognition element.
Collapse
Affiliation(s)
- Zelin Shan
- Laboratory of Genetics, The Salk Institute of Biological Sciences, La Jolla, California, USA
| | - Niloofar Ghadirian
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute of Biological Sciences, La Jolla, California, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
3
|
Janke JJ, Yu Y, Pomin VH, Zhao J, Wang C, Linhardt RJ, García AE. Characterization of Heparin's Conformational Ensemble by Molecular Dynamics Simulations and Nuclear Magnetic Resonance Spectroscopy. J Chem Theory Comput 2022; 18:1894-1904. [PMID: 35108013 PMCID: PMC9027489 DOI: 10.1021/acs.jctc.1c00760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heparin is a highly charged, polysulfated polysaccharide and serves as an anticoagulant. Heparin binds to multiple proteins throughout the body, suggesting a large range of potential therapeutic applications. Although its function has been characterized in multiple physiological contexts, heparin's solution conformational dynamics and structure-function relationships are not fully understood. Molecular dynamics (MD) simulations facilitate the analysis of a molecule's underlying conformational ensemble, which then provides important information necessary for understanding structure-function relationships. However, for MD simulations to afford meaningful results, they must both provide adequate sampling and accurately represent the energy properties of a molecule. The aim of this study is to compare heparin's conformational ensemble using two well-developed force fields for carbohydrates, known as GLYCAM06 and CHARMM36, using replica exchange molecular dynamics (REMD) simulations, and to validate these results with NMR experiments. The anticoagulant sequence, an ultra-low-molecular-weight heparin, known as Arixtra (fondaparinux, sodium), was simulated with both parameter sets. The results suggest that GLYCAM06 matches experimental nuclear magnetic resonance three-bond J-coupling values measured for Arixtra better than CHARMM36. In addition, NOESY and ROESY experiments suggest that Arixtra is very flexible in the sub-millisecond time scale and does not adopt a unique structure at 25 C. Moreover, GLYCAM06 affords a much more dynamic conformational ensemble for Arixtra than CHARMM36.
Collapse
Affiliation(s)
- J Joel Janke
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yanlei Yu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Angel E García
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
4
|
Czapinska H, Siwek W, Szczepanowski RH, Bujnicki JM, Bochtler M, Skowronek KJ. Crystal Structure and Directed Evolution of Specificity of NlaIV Restriction Endonuclease. J Mol Biol 2019; 431:2082-2094. [DOI: 10.1016/j.jmb.2019.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/14/2019] [Accepted: 04/07/2019] [Indexed: 12/14/2022]
|
5
|
Olorunniji FJ, McPherson AL, Pavlou HJ, McIlwraith MJ, Brazier JA, Cosstick R, Stark WM. Nicked-site substrates for a serine recombinase reveal enzyme-DNA communications and an essential tethering role of covalent enzyme-DNA linkages. Nucleic Acids Res 2015; 43:6134-43. [PMID: 25990737 PMCID: PMC4499144 DOI: 10.1093/nar/gkv521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 11/12/2022] Open
Abstract
To analyse the mechanism and kinetics of DNA strand cleavages catalysed by the serine recombinase Tn3 resolvase, we made modified recombination sites with a single-strand nick in one of the two DNA strands. Resolvase acting on these sites cleaves the intact strand very rapidly, giving an abnormal half-site product which accumulates. We propose that these reactions mimic second-strand cleavage of an unmodified site. Cleavage occurs in a synapse of two sites, held together by a resolvase tetramer; cleavage at one site stimulates cleavage at the partner site. After cleavage of a nicked-site substrate, the half-site that is not covalently linked to a resolvase subunit dissociates rapidly from the synapse, destabilizing the entire complex. The covalent resolvase-DNA linkages in the natural reaction intermediate thus perform an essential DNA-tethering function. Chemical modifications of a nicked-site substrate at the positions of the scissile phosphodiesters result in abolition or inhibition of resolvase-mediated cleavage and effects on resolvase binding and synapsis, providing insight into the serine recombinase catalytic mechanism and how resolvase interacts with the substrate DNA.
Collapse
Affiliation(s)
- Femi J Olorunniji
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Arlene L McPherson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Hania J Pavlou
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Michael J McIlwraith
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - John A Brazier
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, Berkshire, RG6 6AD, UK
| | - Richard Cosstick
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
6
|
Ferrandino R, Sidorova N, Rau D. Using single-turnover kinetics with osmotic stress to characterize the EcoRV cleavage reaction. Biochemistry 2014; 53:235-46. [PMID: 24328115 DOI: 10.1021/bi401089y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type II restriction endonucleases require metal ions to specifically cleave DNA at canonical sites. Despite the wealth of structural and biochemical information, the number of Mg(2+) ions used for cleavage by EcoRV, in particular, at physiological divalent ion concentrations has not been established. In this work, we employ a single-turnover technique that uses osmotic stress to probe reaction kinetics between an initial specific EcoRV-DNA complex formed in the absence of Mg(2+) and the final cleavage step. With osmotic stress, complex dissociation before cleavage is minimized and the reaction rates are slowed to a convenient time scale of minutes to hours. We find that cleavage occurs by a two-step mechanism that can be characterized by two rate constants. The dependence of these rate constants on Mg(2+) concentration and osmotic pressure gives the number of Mg(2+) ions and water molecules coupled to each kinetic step of the EcoRV cleavage reaction. Each kinetic step is coupled to the binding 1.5-2.5 Mg(2+) ions, the uptake of ∼30 water molecules, and the cleavage of a DNA single strand. We suggest that each kinetic step reflects an independent, rate-limiting conformational change of each monomer of the dimeric enzyme that allows Mg(2+) ion binding. This modified single-turnover protocol has general applicability for metalloenzymes.
Collapse
Affiliation(s)
- Rocco Ferrandino
- The Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
7
|
Ho MH, De Vivo M, Dal Peraro M, Klein ML. Understanding the effect of magnesium ion concentration on the catalytic activity of ribonuclease H through computation: does a third metal binding site modulate endonuclease catalysis? J Am Chem Soc 2011; 132:13702-12. [PMID: 20731347 DOI: 10.1021/ja102933y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ribonuclease H (RNase H) belongs to the nucleotidyl-transferase superfamily and hydrolyzes the phosphodiester linkage on the RNA strand of a DNA/RNA hybrid duplex. Due to its activity in HIV reverse transcription, it represents a promising target for anti-HIV drug design. While crystallographic data have located two ions in the catalytic site, there is ongoing debate concerning just how many metal ions bound at the active site are optimal for catalysis. Indeed, experiments have shown a dependency of the catalytic activity on the Mg(2+) concentration. Moreover, in RNase H, the glutamate residue E188 has been shown to be essential for full enzymatic activation, regardless of the Mg(2+) concentration. The catalytic center is known to contain two Mg(2+) ions, and E188 is not one of the primary metal ligands. Herein, classical molecular dynamics (MD) simulations are employed to study the metal-ligand coordination in RNase H at different concentration of Mg(2+). Importantly, the presence of a third Mg(2+) ion, bound to the second-shell ligand E188, is a persistent feature of the MD simulations. Free energy calculations have identified two distinct conformations, depending on the concentration of Mg(2+). At standard concentration, a third Mg(2+) is found in the catalytic pocket, but it does not perturb the optimal RNase H active conformation. However, at higher concentration, the third Mg(2+) ion heavily perturbs the nucleophilic water and thereby influences the catalytic efficiency of RNase H. In addition, the E188A mutant shows no ability to engage additional Mg(2+) ions near the catalytic pocket. This finding likely explains the decrease in catalytic activity of E188A and also supports the key role of E188 in localizing the third Mg(2+) ion at the active site. Glutamate residues are commonly found surrounding the metal center in the endonuclease family, which suggests that this structural motif may be an important feature to enhance catalytic activity. The present MD calculations support the hypothesis that RNase H can accommodate three divalent metal ions in its catalytic pocket and provide an in-depth understanding of their dynamic role for catalysis.
Collapse
Affiliation(s)
- Ming-Hsun Ho
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | |
Collapse
|
8
|
Sengerová B, Tomlinson C, Atack JM, Williams R, Sayers JR, Williams NH, Grasby JA. Brønsted analysis and rate-limiting steps for the T5 flap endonuclease catalyzed hydrolysis of exonucleolytic substrates. Biochemistry 2010; 49:8085-93. [PMID: 20698567 DOI: 10.1021/bi100895j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During replication and repair flap endonucleases (FENs) catalyze endonucleolytic and exonucleolytic (EXO) DNA hydrolyses. Altering the leaving group pK(a), by replacing the departing nucleoside with analogues, had minimal effect on k(cat)/K(M) in a T5FEN-catalyzed EXO reaction, producing a very low Brønsted coefficient, β(lg). Investigation of the viscosity dependence of k(cat)/K(M) revealed that reactions of EXO substrates are rate limited by diffusional encounter of enzyme and substrate, explaining the small β(lg). However, the maximal single turnover rate of the FEN EXO reaction also yields a near zero β(lg). A low β(lg) was also observed when evaluating k(cat)/K(M) for D201I/D204S FEN-catalyzed reactions, even though these reactions were not affected by added viscogen. But an active site K83A mutant produced a β(lg) = -1.2 ± 0.10, closer to the value observed for solution hydrolysis of phosphate diesters. The pH-maximal rate profiles of the WT and K83A FEN reactions both reach a maximum at high pH and do not support an explanation of the data that involves catalysis of leaving group departure by Lys 83 functioning as a general acid. Instead, a rate-limiting physical step, such as substrate unpairing or helical arch ordering, that occurs after substrate association must kinetically hide an inherent large β(lg). It is suggested that K83 acts as an electrostatic catalyst that stabilizes the transition state for phosphate diester hydrolysis. When K83 is removed from the active site, chemistry becomes rate limiting and the leaving group sensitivity of the FEN-catalyzed reaction is revealed.
Collapse
Affiliation(s)
- Blanka Sengerová
- Centre for Chemical Biology, Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Xie F, Briggs JM, Dupureur CM. Nucleophile activation in PD...(D/E)xK metallonucleases: an experimental and computational pK(a) study. J Inorg Biochem 2010; 104:665-72. [PMID: 20347155 PMCID: PMC2913505 DOI: 10.1016/j.jinorgbio.2010.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/03/2010] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
Abstract
Metallonucleases conduct metal-dependent nucleic acid hydrolysis. While metal ions serve in multiple mechanistic capacities in these enzymes, precisely how the attacking water is activated remains unclear for those lacking an obvious general base. All arguments hinge on appropriate pK(a)s for active site moieties very close to this species, and measurement of the pK(a) of a specific water molecule is difficult to access experimentally. Here we describe a computational approach for exploring the local electrostatic influences on the water-derived nucleophile in metallonucleases featuring the common PD...(D/E)xK motif. We utilized UHBD to predict the pK(a)s of active site groups, including that of a water molecule positioned to act as a nucleophile. The pK(a) of a Mg(II)-ligated water molecule hydrogen bonded to the conserved Lys70 in a Mg(II)-PvuII enzyme complex was calculated to be 6.5. The metal and the charge on the Lys group were removed in separate experiments; both resulted in the elevation of the pK(a) of this water molecule, consistent with contributions from both moieties to lowering this pK(a). This behavior is preserved among other PD...(D/E)xK metallonucleases. pK(a)s extracted from the pH dependence of the single turnover rate constant are compared to previous experimental data and the above predicted pK(a)s.
Collapse
|
10
|
Gaynor JW, Piperakis MM, Fisher J, Cosstick R. Reverse-direction (5'-->3') synthesis of oligonucleotides containing a 3'-S-phosphorothiolate linkage and 3'-terminal 3'-thionucleosides. Org Biomol Chem 2010; 8:1463-70. [PMID: 20204222 DOI: 10.1039/b923545k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of oligodeoxynucleotides containing 3'-thionucleosides has been explored using a reverse-direction (5'-->3') approach, based on nucleoside monomers which contain a trityl- or dimethoxytrityl-protected 3'-thiol and a 5'-O-phosphoramidite. These monomers are relatively simple to prepare as trityl-based protecting groups were introduced selectively at a 3'-thiol in preference to a 5'-hydroxyl group. As an alternative approach, trityl group migration could be induced from the 5'-oxygen to the 3'-thiol function. 5'-->3' Synthesis of oligonucleotides gave relatively poor yields for the internal incorporation of 3'-thionucleosides [to give a 3'-S-phosphorothiolate (3'-SP) linkage] and multiple 3'-SP modifications could not be introduced by this method. However, the reverse direction approach provided an efficient route to oligonucleotides terminating with a 3'-thionucleoside. The direct synthesis of these thio-terminating oligomers has not previously been reported and the methods described are applicable to 2'-deoxy-3'-thionucleosides derived from thymine, cytosine and adenine.
Collapse
Affiliation(s)
- James W Gaynor
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK L69 7ZD
| | | | | | | |
Collapse
|
11
|
Imhof P, Fischer S, Smith JC. Catalytic Mechanism of DNA Backbone Cleavage by the Restriction Enzyme EcoRV: A Quantum Mechanical/Molecular Mechanical Analysis. Biochemistry 2009; 48:9061-75. [DOI: 10.1021/bi900585m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Petra Imhof
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | - Stefan Fischer
- Computational Biochemistry, IWR, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | - Jeremy C. Smith
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
- Oak Ridge National Laboratory, P.O. Box 2008 MS 6309, Oak Ridge, Tennessee 37831-6309
| |
Collapse
|
12
|
Babic AC, Little EJ, Manohar VM, Bitinaite J, Horton NC. DNA distortion and specificity in a sequence-specific endonuclease. J Mol Biol 2008; 383:186-204. [PMID: 18762194 PMCID: PMC2605692 DOI: 10.1016/j.jmb.2008.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/04/2008] [Accepted: 08/12/2008] [Indexed: 11/30/2022]
Abstract
Five new structures of the Q138F HincII enzyme bound to a total of three different DNA sequences and three different metal ions (Ca(2+), Mg(2+), and Mn(2+)) are presented. While previous structures were produced from soaking Ca(2+) into preformed Q138F HincII/DNA crystals, the new structures are derived from cocrystallization with Ca(2+), Mg(2+), or Mn(2+). The Mn(2)(+)-bound structure provides the first view of a product complex of Q138F HincII with cleaved DNA. Binding studies and a crystal structure show how Ca(2+) allows trapping of a Q138F HincII complex with noncognate DNA in a catalytically incompetent conformation. Many Q138F HincII/DNA structures show asymmetry, despite the binding of a symmetric substrate by a symmetric enzyme. The various complexes are fit into a model describing the different conformations of the DNA-bound enzyme and show how DNA conformational energetics determine DNA-cleavage rates by the Q138F HincII enzyme.
Collapse
Affiliation(s)
- Andrea C. Babic
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| | - Elizabeth J. Little
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| | - Veena M. Manohar
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| | | | - Nancy C. Horton
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
13
|
Lu J, Li NS, Sengupta RN, Piccirilli JA. Synthesis and biochemical application of 2'-O-methyl-3'-thioguanosine as a probe to explore group I intron catalysis. Bioorg Med Chem 2008; 16:5754-60. [PMID: 18397828 PMCID: PMC2664738 DOI: 10.1016/j.bmc.2008.03.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/24/2008] [Indexed: 11/25/2022]
Abstract
Oligonucleotides containing 3'-S-phosphorothiolate linkages provide valuable analogues for exploring the catalytic mechanisms of enzymes and ribozymes, both to identify catalytic metal ions and to probe hydrogen-bonding interactions. Here, we have synthesized 2'-O-methyl-3'-thioguanosine to test a possible hydrogen-bonding interaction in the Tetrahymena ribozyme reaction. We developed an efficient method for the synthesis of 2'-O-methyl-3'-thioguanosine phosphoramidite in eight steps starting from 2'-O-methyl-N(2)-(isobutyryl) guanosine with 10.4% overall yield. Following incorporation into oligonucleotides using solid-phase synthesis, we used this new analogue to investigate whether the 3'-oxygen of the guanosine cofactor in the Tetrahymena ribozyme reaction serves as an acceptor for the hydrogen bond donated by the adjacent 2'-hydroxyl group. We show that regardless of whether the guanosine cofactor bears a 3'-oxygen or 3'-sulfur leaving group, replacing the adjacent 2'-hydroxyl group with a 2'-methoxy group incurs the same energetic penalty, providing evidence against an interaction. These results indicate that the hydrogen bond donated by the guanosine 2'-hydroxyl group contributes to catalytic function in a manner distinct from the U(-1) 2'-hydroxyl group.
Collapse
Affiliation(s)
- Jun Lu
- Howard Hughes Medical Institute, Department of Biochemistry & Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
14
|
Gaynor JW, Bentley J, Cosstick R. Synthesis of the 3'-thio-nucleosides and subsequent automated synthesis of oligodeoxynucleotides containing a 3'-S-phosphorothiolate linkage. Nat Protoc 2008; 2:3122-35. [PMID: 18079712 DOI: 10.1038/nprot.2007.451] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oligodeoxynucleotides containing 3'-S-phosphorothiolate (3'-PS) linkages have become useful tools for probing enzyme-catalyzed cleavage processes in DNA. This protocol describes the synthesis of the phosphorothioamidite monomers derived from thymidine and 2'-deoxycytidine, and their application to a fully automated procedure for synthesising oligodeoxynucleotides containing 3'-PS linkages. The synthesis of the 5'-protected-3'-amidites is achievable in 2 weeks with the DNA synthesis and purification taking another 1 week.
Collapse
Affiliation(s)
- James W Gaynor
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| | | | | |
Collapse
|
15
|
Takahashi S, Matsuno H, Furusawa H, Okahata Y. Kinetic analyses of divalent cation-dependent EcoRV digestions on a DNA-immobilized quartz crystal microbalance. Anal Biochem 2007; 361:210-7. [PMID: 17217909 DOI: 10.1016/j.ab.2006.11.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 11/18/2022]
Abstract
Enzymatic digestion with a type IIP restriction endonuclease EcoRV was investigated on a DNA-immobilized 27-MHz quartz crystal microbalance (QCM). Real-time observations of both the enzyme binding process and the DNA cleavage process of EcoRV were followed by frequency (mass) changes on the QCM, which were dependent on divalent cations such as Ca(2+) or Mg(2+). In the presence of Ca(2+), the site-specific binding of EcoRV to DNA could be observed, without the catalytic process. On the other hand, in the presence of Mg(2+), both the binding of the enzyme to the specific DNA (mass increase) and the site-specific cleavage reaction (mass decrease) could be observed continuously from QCM frequency changes. From time courses of frequency (mass) changes, each kinetic parameter, namely binding rate constants (k(on)), dissociation rate constants (k(off)), dissociation constants (K(d)) of EcoRV to DNA, and catalytic rate constant (k(cat)) of the cleavage reaction, could be determined. The binding kinetic parameters of EcoRV in the presence of Ca(2+) were consistent with those of the binding process followed by the cleavage process in the presence of Mg(2+). The k(cat) value obtained by the QCM method was also consistent with that obtained by other methods. This study is the first to simultaneously determine k(on), k(off), and k(cat) for a type IIP restriction endonuclease on one device.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Department of Biomolecular Engineering, Frontier Collaborative Research Center, Tokyo Institute of Technology and CREST, Japan Science and Technology Corp., 4259 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
16
|
Mones L, Simon I, Fuxreiter M. Metal-binding sites at the active site of restriction endonuclease BamHI can conform to a one-ion mechanism. Biol Chem 2007; 388:73-8. [PMID: 17214552 DOI: 10.1515/bc.2007.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The number of metal ions required for phosphoryl transfer in restriction endonucleases is still an unresolved question in molecular biology. The two Ca(2+) and Mn(2+) ions observed in the pre- and post-reactive complexes of BamHI conform to the classical two-metal ion choreography. We probed the Mg(2+) cofactor positions at the active site of BamHI by molecular dynamics simulations with one and two metal ions present and identified several catalytically relevant sites. These can mark the pathway of a single ion during catalysis, suggesting its critical role, while a regulatory function is proposed for a possible second ion.
Collapse
Affiliation(s)
- Letif Mones
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1113 Budapest, Hungary
| | | | | |
Collapse
|
17
|
Hiller DA, Rodriguez AM, Perona JJ. Non-cognate Enzyme–DNA Complex: Structural and Kinetic Analysis of EcoRV Endonuclease Bound to the EcoRI Recognition Site GAATTC. J Mol Biol 2005; 354:121-36. [PMID: 16236314 DOI: 10.1016/j.jmb.2005.09.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/14/2005] [Accepted: 09/15/2005] [Indexed: 11/25/2022]
Abstract
The crystal structure of EcoRV endonuclease bound to non-cognate DNA at 2.0 angstroms resolution shows that very small structural adaptations are sufficient to ensure the extreme sequence specificity characteristic of restriction enzymes. EcoRV bends its specific GATATC site sharply by 50 degrees into the major groove at the center TA step, generating unusual base-base interactions along each individual DNA strand. In the symmetric non-cognate complex bound to GAATTC, the center step bend is relaxed to avoid steric hindrance caused by the different placement of the exocyclic thymine methyl groups. The decreased base-pair unstacking in turn leads to small conformational rearrangements in the sugar-phosphate backbone, sufficient to destabilize binding of crucial divalent metal ions in the active site. A second crystal structure of EcoRV bound to the base-analog GAAUTC site shows that the 50 degrees center-step bend of the DNA is restored. However, while divalent metals bind at high occupancy in this structure, one metal ion shifts away from binding at the scissile DNA phosphate to a position near the 3'-adjacent phosphate group. This may explain why the 10(4)-fold attenuated cleavage efficiency toward GAATTC is reconstituted by less than tenfold toward GAAUTC. Examination of DNA binding and bending by equilibrium and stopped-flow florescence quenching and fluorescence resonance energy transfer (FRET) methods demonstrates that the capacity of EcoRV to bend the GAATTC non-cognate site is severely limited, but that full bending of GAAUTC is achieved at only a threefold reduced rate compared with the cognate complex. Together, the structural and biochemical data demonstrate the existence of distinct mechanisms for ensuring specificity at the bending and catalytic steps, respectively. The limited conformational rearrangements observed in the EcoRV non-cognate complex provide a sharp contrast to the extensive structural changes found in a non-cognate BamHI-DNA crystal structure, thus demonstrating a diversity of mechanisms by which restriction enzymes are able to achieve specificity.
Collapse
Affiliation(s)
- David A Hiller
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | | | | |
Collapse
|
18
|
Elliott SL, Brazier J, Cosstick R, Connolly BA. Mechanism of the Escherichia coli DNA T:G-mismatch endonuclease (Vsr protein) probed with thiophosphate-containing oligodeoxynucleotides. J Mol Biol 2005; 353:692-703. [PMID: 16188275 DOI: 10.1016/j.jmb.2005.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
The mechanism of the Escherichia coli DNA T:G mismatch endonuclease (Vsr) has been investigated using oligodeoxynucleotides substituted, at the scissile phosphate, with isomeric phosphorothioates and a 3'-phosphorothiolate. Binding and kinetic data with the phosphorothioates/phosphorothiolate indicate that the two magnesium ions, which constitute essential co-factors, are required to stabilise the extra negative charge developed on the phosphate as the transition state is formed. Additionally one of the magnesium ions serves to activate the leaving group (the non-bridging 3'-oxygen atom of the scissile phosphate) during the hydrolysis reaction. Stereochemical analysis, using the R(p) phosphorothioate isomer, indicates that Vsr carries out a hydrolytic reaction with inversion of stereochemistry at phosphorus, compatible with an in-line attack of water and a pentacovalent transition state with trigonal bipyramidal geometry. In conjunction with structures of Vsr bound to its products, these data allow the reconstruction of the enzyme-substrate complex and a comprehensive description of the hydrolysis mechanism.
Collapse
Affiliation(s)
- Sarah L Elliott
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|
19
|
Etzkorn C, Horton NC. Mechanistic insights from the structures of HincII bound to cognate DNA cleaved from addition of Mg2+ and Mn2+. J Mol Biol 2004; 343:833-49. [PMID: 15476804 DOI: 10.1016/j.jmb.2004.08.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/24/2004] [Accepted: 08/27/2004] [Indexed: 11/16/2022]
Abstract
The three-dimensional X-ray crystal structures of HincII bound to cognate DNA containing GTCGAC and Mn(2+) or Mg(2+), at 2.50A and 2.95A resolution, respectively, are presented. In both structures, the DNA is found cleaved, and the positions of the active-site groups, cleaved phosphate group, and 3' oxygen atom of the leaving group are in very similar positions. Two highly occupied Mn(2+) positions are found in each active site of the four crystallographically independent subunit copies in the HincII/DNA/Mn(2+) structure. The manganese ion closest to the previously identified single Ca(2+) position of HincII is shifted 1.7A and has lost direct ligation to the active-site aspartate residue, Asp127. A Mn(2+)-ligated water molecule in a position analogous to that seen in the HincII/DNA/Ca(2+) structure, and proposed to be the attacking nucleophile, is beyond hydrogen bonding distance from the active-site lysine residue, Lys129, but remains within hydrogen bonding distance from the proRp oxygen atom of the phosphate group 3' to the scissile phosphate group. In addition, the position of the cleaved phosphate group is on the opposite side of the axis connecting the two metal ions relative to that found in the BamHI/product DNA/Mn(2+) structure. Mechanistic implications are discussed, and a model for the two-metal-ion mechanism of DNA cleavage by HincII is proposed.
Collapse
Affiliation(s)
- Christopher Etzkorn
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
20
|
Etzkorn C, Horton NC. Ca2+ binding in the active site of HincII: implications for the catalytic mechanism. Biochemistry 2004; 43:13256-70. [PMID: 15491133 DOI: 10.1021/bi0490082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 2.8 A crystal structure of the type II restriction endonuclease HincII bound to Ca(2+) and cognate DNA containing GTCGAC is presented. The DNA is uncleaved, and one calcium ion is bound per active site, in a position previously described as site I in the related blunt cutting type II restriction endonuclease EcoRV [Horton, N. C., Newberry, K. J., and Perona, J. J. (1998) Proc. Natl. Acad. Sci. U.S.A. 95 (23), 13489-13494], as well as that found in other related enzymes. Unlike the site I metal in EcoRV, but similar to that of PvuII, NgoMIV, BamHI, BglII, and BglI, the observed calcium cation is directly ligated to the pro-S(p) oxygen of the scissile phosphate. A calcium ion-ligated water molecule is well positioned to act as the nucleophile in the phosphodiester bond cleavage reaction, and is within hydrogen bonding distance of the conserved active site lysine (Lys 129), as well as the pro-R(p) oxygen of the phosphate group 3' of the scissile phosphate, suggesting possible roles for these groups in the catalytic mechanism. Kinetic data consistent with an important role for the 3'-phosphate group in DNA cleavage by HincII are presented. The previously observed sodium ion [Horton, N. C., Dorner, L. F., and Perona, J. J. (2002) Nat. Struct. Biol. 9, 42-47] persists in the active sites of the Ca(2+)-bound structure; however, kinetic data show little effect on the single-turnover rate of DNA cleavage in the absence of Na(+) ions.
Collapse
Affiliation(s)
- Christopher Etzkorn
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
21
|
King JB, Bowen LM, Dupureur CM. Binding and conformational analysis of phosphoramidate-restriction enzyme interactions. Biochemistry 2004; 43:8551-9. [PMID: 15222766 DOI: 10.1021/bi049509n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphoramidates are modified deoxyoligonucleotides that feature nitrogen in place of the 3'-oxygen of a phosphodiester linkage. Noted for stability against nuclease activity, these linkages are of both mechanistic and therapeutic interest. While a number of studies characterizing the properties of oligonucleotides composed entirely of phosphoramidate linkages have been published, little is known about how singly substituted phosphoramidate substitutions affect the thermodynamics and structure of protein-oligonucleotide interactions. We chose to investigate these interactions with PvuII endonuclease, the DNA binding behavior of which is well-characterized. Oligonucleotide duplexes containing a phosphoramidate substitution at the scissile phosphates were resistant to cleavage by the enzyme, even after extended incubations. However, the enzyme was able to cleave the native strand in a native:phosphoramidate heteroduplex at a rate comparable to that observed with the native substrate. Ca(II)-stimulated PvuII binding for a phosphoramidate-substituted oligonucleotide is comparable to that of the native duplex (K(d) approximately 200 pM). K(d) values obtained in the presence of Mg(II) are somewhat weaker (K(d) approximately 10 nM). Under metal-free conditions, the enzyme exhibited a remarkable approximately 50-fold greater affinity for the modified oligonucleotide relative to the native substrate (5 vs 240 nM). While (31)P NMR spectra indicate increased chemical shift dispersion in the free phosphoramidate duplex, the spectrum of the enzyme-bound duplex is similar to that of the native duplex. (1)H-(15)N HSQC analysis indicates that enzyme conformations in the presence of these oligonucleotides are also comparable. The tight binding of the phosphoramidate duplex under metal-free conditions and its resistance to cleavage are attributed to local conformational adjustments propagating from the O-->N substitution.
Collapse
Affiliation(s)
- Julie B King
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA
| | | | | |
Collapse
|
22
|
Horton NC, Perona JJ. DNA Cleavage byEcoRV Endonuclease: Two Metal Ions in Three Metal Ion Binding Sites†. Biochemistry 2004; 43:6841-57. [PMID: 15170321 DOI: 10.1021/bi0499056] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four crystal structures of EcoRV endonuclease mutants K92A and K38A provide new insight into the mechanism of DNA bending and the structural basis for metal-dependent phosphodiester bond cleavage. The removal of a key active site positive charge in the uncleaved K92A-DNA-M(2+) substrate complex results in binding of a sodium ion in the position of the amine nitrogen, suggesting a key role for a positive charge at this position in stabilizing the sharp DNA bend prior to cleavage. By contrast, two structures of K38A cocrystallized with DNA and Mn(2+) ions in different lattice environments reveal cleaved product complexes featuring a common, novel conformation of the scissile phosphate group as compared to all previous EcoRV structures. In these structures, the released 5'-phosphate and 3'-OH groups remain in close juxtaposition with each other and with two Mn(2+) ions that bridge the conserved active site carboxylates. The scissile phosphates are found midway between their positions in the prereactive substrate and postreactive product complexes of the wild-type enzyme. Mn(2+) ions occupy two of the three sites previously described in the prereactive complexes and are plausibly positioned to generate the nucleophilic hydroxide ion, to compensate for the incipient additional negative charge in the transition state, and to ionize a second water for protonation of the 3'-oxyanion. Reconciliation of these findings with earlier X-ray and fluorescence studies suggests a novel mechanism in which a single initially bound metal ion in a third distinct site undergoes a shift in position together with movement of the scissile phosphate deeper into the active site cleft. This reconfigures the local environment to permit binding of the second metal ion followed by movement toward the pentacovalent transition state. The new mechanism suggested here embodies key features of previously proposed two- and three-metal catalytic models, and offers a view of the stereochemical pathway that integrates much of the copious structural and functional data that are available from exhaustive studies in many laboratories.
Collapse
Affiliation(s)
- Nancy C Horton
- Department of Chemistry and Biochemistry and Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, California 93106-9510, USA
| | | |
Collapse
|
23
|
|
24
|
Hiller DA, Fogg JM, Martin AM, Beechem JM, Reich NO, Perona JJ. Simultaneous DNA Binding and Bending by EcoRV Endonuclease Observed by Real-Time Fluorescence†. Biochemistry 2003; 42:14375-85. [PMID: 14661948 DOI: 10.1021/bi035520w] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complete catalytic cycle of EcoRV endonuclease has been observed by combining fluorescence anisotropy with fluorescence resonance energy transfer (FRET) measurements. Binding, bending, and cleavage of substrate oligonucleotides were monitored in real time by rhodamine-x anisotropy and by FRET between rhodamine and fluorescein dyes attached to opposite ends of a 14-mer DNA duplex. For the cognate GATATC site binding and bending are found to be nearly simultaneous, with association and bending rate constants of (1.45-1.6) x 10(8) M(-1) s(-1). On the basis of the measurement of k(off) by a substrate-trapping approach, the equilibrium dissociation constant of the enzyme-DNA complex in the presence of inhibitory calcium ions was calculated as 3.7 x 10(-12) M from the kinetic constants. Further, the entire DNA cleavage reaction can be observed in the presence of catalytic Mg(2+) ions. These measurements reveal that the binding and bending steps occur at equivalent rates in the presence of either Mg(2+) or Ca(2+), while a slow decrease in fluorescence intensity following bending corresponds to k(cat), which is limited by the cleavage and product dissociation steps. Measurement of k(on) and k(off) in the absence of divalent metals shows that the DNA binding affinity is decreased by 5000-fold to 1.4 x 10(-8) M, and no bending could be detected in this case. Together with crystallographic studies, these data suggest a model for the induced-fit conformational change in which the role of divalent metal ions is to stabilize the sharply bent DNA in an orientation suitable for accessing the catalytic transition state.
Collapse
Affiliation(s)
- David A Hiller
- Department of Chemistry and Biochemistry and Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, 93106-9510, USA
| | | | | | | | | | | |
Collapse
|
25
|
Parry D, Moon SA, Liu HH, Heslop P, Connolly BA. DNA recognition by the EcoRV restriction endonuclease probed using base analogues. J Mol Biol 2003; 331:1005-16. [PMID: 12927537 DOI: 10.1016/s0022-2836(03)00861-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The EcoRV restriction endonuclease recognises palindromic GATATC sequences and cuts between the central T and dA bases in a reaction that has an absolute requirement for a divalent metal ion, physiologically Mg(2+). Use has been made of base analogues, which delete hydrogen bonds between the protein and DNA (or hydrophobic interactions in the case of the 5-CH(3) group of thymine), to evaluate the roles of the outer two base-pairs (GATATC) in DNA recognition. Selectivity arises at both the binding steps leading to the formation of the enzyme-DNA-metal ion ternary complex (assayed by measuring the dissociation constant in the presence of the non-reactive metal Ca(2+)) and the catalytic step (evaluated using single-turnover hydrolysis in the presence of Mg(2+)), with each protein-DNA contact contributing to recognition. With the A:T base-pair, binding was reduced by the amount expected for the simple loss of a single contact; much more severe effects were observed with the G:C base-pair, suggesting additional conformational perturbation. Most of the modified bases lowered the rate of hydrolysis; furthermore, the presence of an analogue in one strand of the duplex diminished cutting at the second, unmodified strand, indicative of communication between DNA binding and the active site. The essential metal ion Mg(2+) plays a key role in mediating interactions between the DNA binding site and active centre and in many instances rescue of hydrolysis was seen with Mn(2+). It is suggested that contacts between the GATATC site are required for tight binding and for the correct assembly of metal ions and bound water at the catalytic site, functions important in providing acid/base catalysis and transition state stabilisation.
Collapse
Affiliation(s)
- Damian Parry
- School of Cell and Molecular Biosciences, The University of Newcastle, NE2 4HH, Newcastle-upon-Tyne, UK
| | | | | | | | | |
Collapse
|
26
|
Mordasini T, Curioni A, Andreoni W. Why do divalent metal ions either promote or inhibit enzymatic reactions? The case of BamHI restriction endonuclease from combined quantum-classical simulations. J Biol Chem 2003; 278:4381-4. [PMID: 12496295 DOI: 10.1074/jbc.c200664200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Divalent metal ions are essential to many enzymatic reactions involving nucleic acids, but their critical and specific role still needs to be uncovered. Restriction endonucleases are a prominent group of such metal-requiring enzymes. Large scale accurate simulations of Mg- and Ca-BamHI elucidate the mechanism of the catalytic reaction leading to DNA cleavage and show that it involves the concerted action of two metal ions and water molecules. It is also established that what is decisive for the dramatically different behavior of magnesium (a cocatalyst) and calcium (an inhibitor) are kinetic factors and not the properties of the prereactive states of the enzymes. A new perspective is opened for the understanding of the functional role of metal ions in biological processes.
Collapse
Affiliation(s)
- Tiziana Mordasini
- IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland
| | | | | |
Collapse
|
27
|
Abstract
Type II restriction endonucleases have emerged as important paradigms for the study of protein-nucleic acid interactions. This is due to their ability to catalyse phosphodiester bond cleavage with very large rate enhancements while also maintaining exquisite sequence selectivities. The principles and methods developed to analyze site-specific binding and catalysis for restriction endonucleases can be applied to other enzymes which also operate on nucleic acids. This paper reviews biochemical and structural approaches to characterization of these enzymes, with particular attention to the multiple crucial roles of divalent metal ions, the possibilities for use of alternative substrates in binding and catalytic experiments, the strategies for exploring the detailed chemistry of phosphoryl transfer, and the use of X-ray crystallography to provide descriptions of conformational pathways at specific, nonspecific, and noncognate DNA sites.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA.
| |
Collapse
|
28
|
Horton NC, Otey C, Lusetti S, Sam MD, Kohn J, Martin AM, Ananthnarayan V, Perona JJ. Electrostatic contributions to site specific DNA cleavage by EcoRV endonuclease. Biochemistry 2002; 41:10754-63. [PMID: 12196013 DOI: 10.1021/bi020305l] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutational analysis of amino acids at the periphery of the EcoRV endonuclease active site suggests that moderate-range electrostatic effects play a significant role in modulating the efficiency of phosphoryl transfer. Asp36 and Lys38 located on minor-groove binding surface loops approach within 7-9 A of the scissile phosphates of the DNA. While the rates of single-site mutations removing the carboxylate or amine moieties at these positions are decreased 10(3)-10(5)-fold compared to that of wild-type EcoRV, we find that double mutants which rebalance the charge improve catalysis by up to 500-fold. Mutational analysis also suggests that catalytic efficiency is influenced by Lys173, which is buried at the base of a deep depression penetrating from a distal surface of the enzyme. The Lys173 amine group lies just 6 A from the amine group of the conserved essential Lys92 side chain in the active site. Kinetic and crystallographic analyses of the EcoRV E45A mutant enzyme further show that the Glu45 carboxylate group facilitates an extensive set of conformational transitions which occur upon DNA binding. The crystal structure of E45A bound to DNA and Mn2+ ions reveals significant conformational alterations in a small alpha-helical portion of the dimer interface located adjacent to the DNA minor groove. This leads to a tertiary reorientation of the two monomers as well as shifting of the key major-groove binding recognition loops. Because the Glu45 side chain does not appear to play a direct structural role in maintaining the active site, these rearrangements may instead originate in an altered electrostatic potential caused by removal of the negative charge. A Mn2+ binding site on the scissile phosphate is also disrupted in the E45A structure such that inner-sphere metal interactions made by the scissile DNA phosphate and conserved Asp90 carboxylate are each replaced with water molecules in the mutant. These findings argue against a proposed role for Asp36 as the general base in EcoRV catalysis, and reveal that the induced-fit conformational changes necessary for active site assembly and metal binding are significantly modulated by the electrostatic potential in this region.
Collapse
Affiliation(s)
- Nancy C Horton
- Department of Chemistry and Biochemistry and Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, California 93106-9510, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chambert S, Décout JL. RECENT DEVELOPMENTS IN THE SYNTHESIS, CHEMICAL MODIFICATIONS AND BIOLOGICAL APPLICATIONS OF SULFUR MODIFIED NUCLEOSIDES, NUCLEOTIDES AND OLIGONUCLEOTIDES. ORG PREP PROCED INT 2002. [DOI: 10.1080/00304940209355745] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Sam MD, Horton NC, Nissan TA, Perona JJ. Catalytic efficiency and sequence selectivity of a restriction endonuclease modulated by a distal manganese ion binding site. J Mol Biol 2001; 306:851-61. [PMID: 11243793 DOI: 10.1006/jmbi.2000.4434] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crystal structures of EcoRV endonuclease bound in a ternary complex with cognate duplex DNA and manganese ions have previously revealed an Mn(2+)-binding site located between the enzyme and the DNA outside of the dyad-symmetric GATATC recognition sequence. In each of the two enzyme subunits, this metal ion bridges between a distal phosphate group of the DNA and the imidazole ring of His71. The new metal- binding site is specific to Mn(2+) and is not occupied in ternary cocrystal structures with either Mg(2+) or Ca(2+). Characterization of the H71A and H71Q mutants of EcoRV now demonstrates that these distal Mn(2+) sites significantly modulate activity toward both cognate and non-cognate DNA substrates. Single-turnover and steady-state kinetic analyses show that removal of the distal site in the mutant enzymes increases Mn(2+)-dependent cleavage rates of specific substrates by tenfold. Conversely, the enhancement of non-cognate cleavage at GTTATC sequences by Mn(2+) is significantly attenuated in the mutants. As a consequence, under Mn(2+) conditions EcoRV-H71A and EcoRV-H71Q are 100 to 700-fold more specific than the wild-type enzyme for cognate DNA relative to the GTTATC non-cognate site. These data reveal a strong dependence of DNA cleavage efficiency upon metal ion-mediated interactions located some 20 A distant from the scissile phosphodiester linkages. They also show that discrimination of cognate versus non-cognate DNA sequences by EcoRV depends in part on contacts with the sugar-phosphate backbone outside of the target site.
Collapse
Affiliation(s)
- M D Sam
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biochemistry and Molecular Biology, University of California at Santa Barbara, Santa Barbara, CA, 93106-9510, USA
| | | | | | | |
Collapse
|
31
|
Reid SL, Parry D, Liu HH, Connolly BA. Binding and recognition of GATATC target sequences by the EcoRV restriction endonuclease: a study using fluorescent oligonucleotides and fluorescence polarization. Biochemistry 2001; 40:2484-94. [PMID: 11327870 DOI: 10.1021/bi001956p] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligonucleotides labeled with hexachlorofluorescein (hex) have enabled the interaction of the restriction endonuclease EcoRV with DNA to be evaluated using fluorescence anisotropy. The sensitivity of hex allowed measurements at oligonucleotide concentrations as low as 1 nM, enabling K(D) values in the low nanomolar range to be measured. Both direct titration, i.e., addition of increasing amounts of the endonuclease to hex-labeled oligonucleotides, and displacement titration, i.e., addition of unlabeled oligonucleotide to preformed hex-oligonucleotide/EcoRV endonuclease complexes, have been used for K(D) determination. Displacement titration is the method of choice; artifacts due to any direct interaction of the enzyme with the dye are eliminated, and higher fluorescent-labeled oligonucleotide concentrations may be used, improving signal-to-noise ratio. Using this approach (with three different oligonucleotides) we found that the EcoRV restriction endonuclease showed a preference of between 1.5 and 6.5 for its GATATC target sequence at pH 7.5 and 100 mM NaCl, when the divalent cation Ca2+ is absent. As expected, both the presence of Ca2+ and a decrease in pH value stimulated the binding of specific sequences but had much less effect on nonspecific ones.
Collapse
Affiliation(s)
- S L Reid
- Department of Biochemistry and Genetics, The University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|